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 ABSTRACT 

 In the present paper, time dependent creep behavior of hollow circular rotating cylinders made of 
exponentially graded material (EGM) is investigated. Loading is composed of an internal pressure, 
a distributed temperature field due to steady state heat conduction with convective boundary 
condition and a centrifugal body force. All the material properties are assumed to be exponentially 
graded along radius. A semi analytical solution followed by the method of successive 
approximation has been developed to obtain history of stresses and deformations during creep 
evolution of the EGM rotating cylinder. The material creep constitutive model is defined by the 
Bailey-Norton time-dependent creep law. A comprehensive comparison has been made between 
creep response of homogenous and non-homogenous cylinder. It has been found that the material 
in-homogeneity exponent has a significant effect on creep response of the EGM cylinder. It has 
been concluded that using exponentially graded material significantly decreases creep strains, 
stresses and deformations of the EGM rotating cylinder. 
                                                                                  © 2012 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 UNCTIONALLY graded materials (FGM) are used in modern technologies for structural components 
mostly used in nuclear power plants, aircraft industries, space engineering and pressure vessels. These materials 

are intentionally designed so that their properties are variable in the prescribed directions in space. Many 
investigators have used power law variation for material properties to analyze the structural components [1, 2]. 
Recently, exponential law for material properties attracted more attention due to offering useful and advantages 
characteristics by several authors [3,4]. Effects of material anisotropic properties on elastic and creep behavior of 
components have been an active area of research in the past decade. There have been some studies dealing with 
elastic and steady state creep analysis of FG rotating cylinders. Fukui and Yamanaka [5] investigated the effects of 
the material grading index on the strength and deformation of thick walled Functionally Graded (FG) tubes under 
internal pressure. Loghman and Wahab [6] studied the creep stress and damage histories of thick-walled tubes using 
the material constant creep and creep rupture properties defined by the “Theta Projection Concept” [7]. Loghman 
and Shokouhi [8] investigated creep stress redistribution and damage histories of thick-walled spheres using the 
same “Theta Projection Concept” for material properties. Aleayoub and Loghman [9] considered creep stress 
redistribution Analysis of thick-walled FGM spheres. Chen et al [10] studied the creep behavior of thick walled 
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cylinders made of FGM and subjected to both internal and external pressures. They obtained the asymptotic 
solutions on the basis of Taylor expansion series and compared it with the results of Finite Element analysis (FEA) 
obtained by using ABAQUS software. You et al [11] analyzed the steady state creep in thick walled cylinders made 
of arbitrary FGMs and subjected to internal pressure. Singh et al. [12] investigated effect of anisotropy on the steady 
state creep in functionally graded cylinder subjected to internal and external pressures. The subject of time-
dependent creep analysis is considered by several investigators. Yang [13] and Xuan et al. [14]. Time-dependent 
Magneto-thermo-elastic creep analysis of functionally graded cylinders has been investigated by Loghman et al. 
[15]. Stress and deformation histories of FGM cylinders subjected to internal pressure, thermal and magnetic field 
are presented. In another study Loghman et al. [16] considered time-dependent magneto-thermo-elastic creep 
modeling of FGM spheres using method of successive elastic solution. Time-dependent creep stress redistribution 
analysis of thick-walled functionally graded spheres has been presented by Loghman et al. [17]. History of stresses 
and strains during creep evolution are reported. Time-dependent thermoelastic creep analysis of rotating disk made 
of Al–SiC composite has been carried out by Loghman et al. [18]. They have shown that time-dependent creep 
stress redistributions approaches the steady-state solution after almost 50 years.  

The main objective of this paper is to study the time-dependent creep behavior of rotating cylinders made from 
exponentially graded material using Bailey-Norton creep constitutive model. 

2 HEAT CONDUCTION PROBLEM WITH CONVECTIVE BOUNDARY CNDITION AT OUYER 
SURFACE 

In this study, a distributed temperature field due to steady-state heat conduction with convective boundary condition 
at outer surface of the EGM cylinder has been considered. The geometry and thermo-mechanical loading and 
boundary conditions of the problem are shown in Fig. 1. The heat transfer equation in the cylindrical coordinate 
system is given by [19] 
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where H is the ratio of convective heat transfer coefficient and ( )TK r  is the radial-dependent thermal conduction 
coefficient, which is assumed to be an exponential function of r  as follows: 
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Substituting Eq. (3) into the heat conduction Eq. (1), yields the general solution for the temperature distribution 

as follows: 
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where the exponential integral function, Ei( , )a z  , is defined for Re( ) 0z   by [20] 
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The unknowns, 1Z  and 2Z  are determined using boundary condition Eq. (2) as: 
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Temperature distribution and the effect of thermal in-homogeneity parameter   are illustrated in Fig. 2.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 
Schematic of anisotropic exponentially graded material (EGM) 
rotating cylinder under thermo mechanical loadings. 
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Fig. 2 
Distribution of dimensionless temperature versus dimensionless 
radial coordinates for variable thermal in-homogeneity 
parameter. 

3    BASIC FORMULATION 

Consider a long rotating EGM cylinder subjected to an internal pressure and the above mentioned temperature 
distribution. Assuming total strains to be the sum of elastic, thermal and creep strains and employing the plain-strain 
assumption the stress-strain relations in terms of displacement, thermal and creep strains are written as follows: 
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where 
 

1 11 12 2 11 12( ), ( ).r z r zC C C C              (8) 

 
In this study, we want to describe useful and advantages impression of exponentially graded material property on 

history of stresses and deformations due to creep phenomenon. Hence, material in-homogeneity property used in this 
study is taken as follows: 
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where r represents the general material properties of the cylinder such as elastic parameters, thermal expansion 

coefficients, creep strain coefficients and mass density, and 0 corresponds to the value of the coefficients at the 
inner surface.  

The equilibrium equation of rotating cylinder is given by: 
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Substituting Eq. (7) into Eq. (10) yields the following constitutive differential equation with variable and time-

dependent coefficients as: 
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where the variable coefficients are: 

 

 

11 12
1 2 222

11 11

1 1 2
3 4

11 11

1 21 1
5 6

11 11

1
7

1

( ) ( )1 1 1
( ) ; ( ) ( ) ;

( ) ( )

( ) ( ) ( )1
( ) ; ( ) ;

( ) ( )

( ) ( )( ) ( )1
( ) ; ( ) ;

( ) ( )

( )
( )

dC r dC r
D r D r r C r

C r dr r drr C r

d r r r
D r D r

C r dr r rC r

r rr d r
D r D r

C r C r dr r

r
D r

C

         
   

   
    

 
    

    
 




2

8
1 11

; ( ) ;
( ) ( )

r
D r

r C r

 
 

 

 
 
 
 
 

(12) 

 
No exact solution for Eq. (11) can be obtained, since its right hand side contains functions of time-dependent 

creep strains and existing exponential in-homogeneity parameters (i.e. Eq. (9)). Hence, a semi-analytical method has 
been employed to solve it as discussed below. 
 

4    SOLUTION ALGORITHMS 
4.1 Semi-analytical method 

A semi-analytical method for solution of the differential Eq. (11) has been applied. The solution domain is first 

divided into some finite divisions [21, 18]. The coefficients of Eq. (11) are evaluated at mr , mean radius of mth 
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division, and therefore, the differential equation with constant coefficients become valid only for the mth sub-
domain which can be re-written as [21] 
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The coefficients of Eq. (13) are evaluated in each division in terms of geometric and material constants and the 

radius of mth division. Hence, the differential equation can now be solved since the terms corresponding to the creep 
strain functions on the right hand side of the equation have become known. The general solution for Eq. (13) in 

terms of unknown constants ( 1 2,m mX X ) could be written as follows: 
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Substituting the displacement from Eq. (15) into Eq. (7), the radial and circumferential stresses are evaluated. 

Subsequently, the unknowns 1
mX and 2

mX  are determined by applying the necessary boundary conditions between 

two adjacent sub-domains. For this purpose, the continuity of the radial displacement u as well as radial stress r  
are imposed at the interfaces of the adjacent sub-domains as follows: 
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The global boundary conditions at inner and outer surfaces of the hollow cylinder expressed as: 
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The continuity conditions Eq. (17) together with the global boundary conditions (18) yields a set of linear 

algebraic equations in terms of 1
kX and 2

kX . Solving the resultant linear algebraic equations, the unknown 
coefficients are calculated. Then, the displacement component and radial and circumferential stresses are determined 
in each radial sub-domain. Increasing the number of divisions improves the accuracy of the results. 

4.2 Time dependent creep analyses 

Creep strain rates are related to the stresses and the material uniaxial creep constitutive model by the well known 
Prandtle-Reuss equations as: 
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For plane-strain condition the axial creep strain rate disappears (i.e. 0C

zz  ) and from Eq. (21) the axial stress 

can be written as follows: 
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Substituting Eq. (22) into Eqs. (19) and (20) the radial and circumferential strain rates are evaluated as: 
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The Bailey–Norton’s creep constitutive model for the effective strain is [22] 
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where ( )B r and ( )n r are the radial-dependent material creep parameters and q is a constant coefficient which 

1/ 3 1/ 2.q  . In this study 1
0( ) bB r b r  and ( )n r is considered to be a constant 0( ) .n r n   

Considering the Von Mises equivalent stress 
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and substituting Eq. (22) into Eq. (26) the effective stress may be reduced as: 
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4.3 Successive approximation method to obtain history of creep stresses  

A successive approximation method has been employed to obtain history of creep stresses, strains and deformation 
as follows: 
1. Assuming an appropriate time increment at each timing step. The total time is therefore the sum of time 

increments during the progress of the creep process. For the ith timing step, the total time is 
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step. Hence, the same initial estimates at all divisions are considered (as 0.00001C
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Creep strain at any point throughout the thickness of the cylinder is the cumulative sum of all previous creep strains 
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where the subscripts i and m indicate the timing steps and division points, respectively. 
3. First order derivative of radial creep strain are calculated using finite difference approximation as follows: 
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4. Cumulative creep strains and its first order derivatives are substituted in Eq. (13). This differential equation can be 

solved for the displacement at mth layer. Using local and global boundary conditions the displacements at time it  

are determined. Furthermore, substituting resultant radial displacement in Eq. (7), component of radial and 
circumferential stresses for each division points are achieved.   
5. Substituting radial and circumferential stresses from step 4 in Eq. (27), effective stresses are evaluated for each 
division. 
6. Effective creep strain rates are then calculated at all division points (m) for ith timing step using Bailey–Norton’s 
creep constitutive model using Eq. (25). 
7. From Prandtl–Reuss relation, radial and circumferential creep strain rates are obtained Eq. (23) and Eq. (24). 
8. New values for radial and circumferential creep strain increments at all division points are obtained using the 
above creep strain rates (stage 7) and the time increment. 
 



A. Loghman and V. Atabakhshian                   320 

© 2012 IAU, Arak Branch 

,
, ,

,
, ,

,

.

C new C
rr im rr im i

C new C
im im i

t

t 

   

   




 

 
(30) 

 
9. These new obtained values for creep strain increments are compared with the estimated values and if needed 
replaced and the procedure is repeated until the required convergence is achieved. In the next time step, the first 
estimate for creep strain increments is the converged value obtained from the previous time step; hence, the 
procedure is continued from stage 2. 

5    NUMERICAL RESULTS AND DISCUSSION 

In this section an exponentially graded rotating cylinder is considered with radius ratio of 0.5
a

b
  which is rotating 

with a constant angular velocity of 400rad
s . The internal pressure applied on the cylinder is P 2in MPa . The 

material parameters are 22E GPa , 0 33000 kg
m

  , 0 16.28e 6(1 / )r K   , 0 0 26.38e 6(1 / )z K     and 

0.3  . The ratio of the convective heat transfer coefficient is 0.72. The Bailey–Norton’s creep constitutive 

constants are 0 1e 28b    , 1 1b  , 1
3q   and 3n  . Other elastic constants are obtained from the following 

relations 110
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5.1 Example 1 

To show the effect of in-homogeneity parameter on initial elastic stress response of the EGM cylinders the range of 

2 2     are considered in this example. Considering 0C
rr   and 0C

  , Eqs. (9) and (10) are reduced to 
elastic constitutive equations at zero time. Figs. 3-7 show the radial, circumferential, axial and effective stress 
distributions and radial displacement of EGM hollow rotating cylinder respectively. The temperature field of EGM 
hollow rotating cylinder due to steady state heat conduction with convective boundary condition at various thermal 
in-homogeneity exponents are presented in section 2. From the curve of Fig. 3, it is shown that the radial stresses 
satisfying the boundary conditions at the inner and outer surface of the EGM cylinder and are significantly affected 
by the in-homogeneity parameter  . Figs. 4-6 show that the in-homogeneity parameter   has also a great effect on 
the circumferential, axial and effective stresses. It is easily seen from Fig. 7 that increasing in-homogeneity 
parameter significantly decreases radial displacement throughout the thickness. 
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Fig. 3 
Distribution of dimensionless radial stresses versus 
dimensionless radial coordinates with variable in-
homogeneity parameter  , and 1  . 
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Fig. 4 
Distribution of dimensionless circumferential stresses 
versus dimensionless radial coordinates with variable in-
homogeneity parameter  , and 1  . 
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Fig. 5 
Distribution of dimensionless axial stresses versus 
dimensionless radial coordinates with variable in-
homogeneity parameter  , and 1  . 
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Fig. 6 
Distribution of dimensionless effective stresses versus 
dimensionless radial coordinates with variable in-
homogeneity parameter  , and 1  . 
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Fig. 7 
Distribution of dimensionless radial displacement versus 
dimensionless radial coordinates with variable in-
homogeneity parameter  , and 1  . 
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5.2 Example 2 

For time dependent creep analyses the case of in-homogeneity parameter equal to 1     has been selected due to 
its most uniform effective stress distribution at zero time. History of stresses, strains and radial displacement from 
their initial elastic distribution at zero time up to 5 years are studied. In Figs. 8-14 results are presented for history of 
radial, circumferential, axial and effective stresses, radial displacement, radial and circumferential creep strains, 
respectively. In general radial, circumferential, axial and effective stresses are decreasing due to creep evolution as 
is evident from Figs. 8-11. The curves in Fig. 12 show maximum variation of normalized radial displacement after 5 
years is not exceeded 1.2 percent of initial elastic case.  Radial and circumferential creep strain histories are shown 
in Figs. 13 and 14. Due to incompressibility of material during creep evolution and the plane-strain condition of the 
problem the radial and circumferential creep strains are equal and opposite sign during creep process. In order to 
demonstrate the significant effect of exponentially law a homogeneous material is studied in example 3.  
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Fig. 8 
History of dimensionless radial stresses from initial elastic 
up to 5 years for the case 1.     
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Fig. 9 
History of dimensionless circumferential stresses from 
initial elastic up to 5 years for the case 1.     
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Fig. 10 
History of dimensionless axial stresses from initial elastic 
up to 5 years for the case 1.     
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Fig. 11 
History of dimensionless effective stresses from initial 
elastic up to 5 years for the case 1.     
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Fig. 12 
History of dimensionless radial displacement from initial 
elastic up to 5 years for the case 1.     
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Fig. 13 
History of radial creep strain from initial elastic up to 5 
years for the case 1.     
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Fig. 14 
History of circumferential creep strain from initial elastic 
up to 5 years for the case 1.     
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5.3 Example 3 

Setting the in-homogeneity exponent equal to zero ( 0    ) a homogeneous material is considered to compare the 
results with an EGM defined by 1    . The results are presented for history of radial, circumferential, axial and 
effective stresses, radial displacement, radial and circumferential creep strains in Figs. 15-21, respectively. 
Comparing history of stresses for homogeneous material depicted in Figs. 15-18 with EGM illustrated in Figs. 8-11 
shows that exponential law for material property significantly decreases all stress levels at elastic and creep 
condition. The same conclusion can be reached comparing the radial displacement demonstrated in Fig 19. Creep 
strains in homogeneous material shown in Figs. 20-21are considerably higher than those in exponentially graded 
materials. This is an important and useful result for using exponentially graded materials. 
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Fig. 15 
History of dimensionless radial stresses from initial 
elastic up to 5 years for homogenous 
material  i.e. 0 .     
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Fig. 16 
History of dimensionless circumferential stresses from 
initial elastic up to 5 years for homogenous 
material  i.e. 0 .     
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Fig. 17 
History of dimensionless axial stresses from initial elastic 
up to 5 years for homogenous material  i.e. 0 .     

 



325                   Semi-analytical Solution for Time-dependent Creep Analysis of Rotating Cylinders … 

© 2012 IAU, Arak Branch 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
15

20

25

30

35

40

45

50


e*

=(r-a)/(b-a)

 

 

initial elastic

after 6 months

after 12 months
after 18 months

after 5 years

 
 
 
 
 
 
 
 
Fig. 18 
History of dimensionless effective stresses from  initial 
elastic up to 5 years for homogenous 
material  i.e. 0 .     
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Fig. 19 
History of dimensionless radial distribution from initial 
elastic up to 5 years for homogenous 
material  i.e. 0 .     
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Fig. 20 
History of radial creep strain from initial elastic up to 5 
years for homogenous material  i.e. 0 .     
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Fig. 21 
History of circumferential creep strain from initial elastic 
up to 5 years for homogenous material  i.e. 0 .     
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6    CONCLUSIONS 

From the results presented in this paper the following concluding remarks can be made: 
1. Exponentially graded materials offered advantageous results to minimizing all thermo elastic and creep stresses. 
Hence, making EGM’s is suggested for fabricating engineering structures which are subjected to high temperatures.  
2. The material in-homogeneity parameter has a considerable effect on the thermoelastic and creep response of 
rotating cylinders made of EGMs. 
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