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 ABSTRACT 

 In this paper, transverse vibrations of thin circular plates with guided edge and resting on Winkler 
foundation have been studied on the basis of Classical Plate Theory. Parametric investigations on 
the vibration of circular plates resting on elastic foundation have been carried out with respect to 
various foundation stiffness parameters. Twelve vibration modes are presented. The location of 
the stepped region with respect to foundation stiffness parameter is presented. 
                                                                                  © 2012 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 IRCULAR plate systems [1-4] have wide applications in various fields of engineering; they are used as 
structural elements resting on foundations. The problems of plates on elastic foundation are important in 

engineering design and have been the focus of attention of many researchers. Some of the recent studies have 
reestablished the efficiency of the classical approach in analyzing the vibrations of variety of structures. Although 
the circular symmetry of the problem allows for its significant simplification, many difficulties very often arise due 
to complexity and uncertainty of boundary conditions. This uncertainty could be due to practical engineering 
applications where the edge of the plate does not fall into the classical boundary conditions such as clamped, simply 
supported or free. When the boundary conditions of the plate deviate from classical cases, elastic translational 
restraints should be considered. A recent survey of literature shows that very few studies exist on the study of 
circular plates resting on elastic foundation. Wang and Wang [5], who observed the switching between 
axisymmetric and asymmetric vibration modes, recently investigated the effect of internal elastic translational 
supports.  

The vibration characteristics of plates resting on an elastic medium are different from those of the plates 
supported only on the boundary. Leissa [6] discussed the vibration of a plate supported laterally by an elastic 
foundation. Leissa deduced that the effect of Winkler foundation merely increases the square of the natural 
frequency of the plate by a constant. Salari et al. [7] speculated the same conclusion.  Ascione and Grimaldi [8] 
studied unilateral frictionless contact between a circular plate and a Winkler foundation using a variational 
formulation. One of the earliest formulations of this problem was presented by Leissa [6], who tabulated values of 
frequency parameter for four vibration modes of simply supported circular plate with varying rotational stiffness. 
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Kang and Kim [9] presented an extensive review of the modal properties of the elastically restrained beams and 
plates. Zheng and Zhou [10] studied the large deflection of a circular plate resting on Winkler foundation. Ghosh 
[11] studied the free and forced vibration of circular plates on Winkler foundation by exact analytical method. The 
most general soil model used in practical applications is the Winkler [12] model in which the elastic medium below 
a structure is represented by a system of identical but mutually independent elastic linear springs. Recent 
investigations have reiterated the efficiency of the classical approach [13] in analyzing the behavior of structures 
under vibrations. There are other papers [Weisman [14], Dempsey et al. [15], Celep et al. [16]] dealing with the 
study of plates on a Winkler foundation. In general, papers dealing with vibrating plates, shells and beams are 
concerned primarily with the determination of eigenvalues and mode shapes [1-4]. The present study deals with 
obtaining exact solutions to the most important practical case of transverse vibrations of circular plates resting on 
Winkler foundation with guided edge conditions at the periphery of the plate. The results are presented for the non-
dimensional frequency parameter of the plate for a wide range of values of Winkler foundation modulus parameter 
for use in design of such systems in micro or macro electro-mechanical devices.  

2    MATHEMATICAL FORMULATION OF THE SYSTEM 

The considered elastic thin circular plate is supported on a Winkler foundation as shown in Fig. 1. In the classical 
plate theory [1-4], the following fourth order differential equation describes free flexural vibrations of a thin circular 
uniform plate. 
 

4 2 2( , , ) ( , , ) / 0D w r t h w r t t        (1) 

 
where 3 2/12(1 )D Eh    is the flexural rigidity of a plate and , , , ,a h E   are the plate’s radiuses, thickness, 

density, Young’s modulus and Poisson ratio’s respectively. 

R  
Fig. 1 
A thin circular plate with guided edge and supported on 
full elastic foundation. 

 
The homogeneous equation for Kirchoff’s plate on one parameter elastic foundation is given by the following 

equation [11]  
 

4 2 2( , , ) ( , , ) ( , , ) / 0wD w r t K w r t h w r t t           (2) 

 
Displacement in Eq. (2) can be presented as a combination of spatial and time dependent components as follows; 

Let 
 

( , , ) ( , )
iwt

w r t W r e    (3) 

 
Now substitute the Eq. (3) in Eq. (2) 
 

4 2( , ) ( ) ( , ) 0wD W r K h W r        
 

(4) 

The solution to the above equation takes the following form 
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where nJ is Bessel function of the first kind of first order and nI  is modified Bessel function of the first kind of first 

order. The boundary conditions can be formulated at r a , as follows: 

( , ) 0
w

a
r


 


 

 
(6) 

( , ) 0rV a    (7) 

 
From Eqs. (6) and (7) yield the following: 

 

( , ) 0
w

a
r


 


 

 
(8) 

2
2

2

1 1 1
(1 ) 0

W W
D W

r r r r r

     
              

 
 

(9) 

 
From Eqs. (5), (8) and (9), we derived the following:  
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The frequency equation can be calculated From Eqs. (10) and (11), which allows determining eigenvalues mn . 

The mode shape parameters mnC  can be determined corresponding to these eigenvalues by using either Eq. (10) or 
Eq. (11). The amplitude of each vibration mode in Eq. (5) is set by the normalization constant mnA determined from 
the following condition [14]. 
 

2

0 0

( , ). ( , )
a
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(12) 

 
where, mnM  is a mass of the plate, 1mp nq     if ,m p n q   and 0mp nq    if m≠ p or n ≠ .q  

Dimensionless normalization constant mnA  can be determined from Eqs. (5) and (12) and it is given by 
following: 
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(13)  

 

In Eq (4), mn is the natural frequency of vibrations: 
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It is clear from the Eq. (14) the natural frequency of vibrations is dependent on the plate radius and eigenvalues 
from Eq. (14) 
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*4 4 2
mn mn      (18) 

1
* 4 2 4
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(19) 
 
where mn  is eigenvalue without foundation and *

mn  is eigenvalue with Winkler foundation 

3    SOLUTION 

Writing appropriate program and using Matlab computer software with symbolic capabilities, the above set of 
equations are solved for obtaining values of non-dimensional frequency parameter ( *

mn ), for a given range of 
values Winkler foundation parameter. The following are the input parameters to the program; (i) Foundation ratio 
(  ) (ii) Poisson ratio (  ) (iii) Upper bound for eigenvalues (N) (iv) Suggested for eigenvalues (d) (v) Number of 

mode shape parameters (n). The   program finds eigenvalues *
mn  by using Matlab root finding function. 

4    RESULTS AND DISCUSSIONS 

The Matlab programming code is also implanted for various plate materials by adjusting the Poisson ratio.The 
Poisson ratio used in this case is 0.3. Results are presented for a wide range of foundation parameter as they are not 
presently available in the literature. The eigenvalues for the plate with guided edge and fully resting on the elastic 
foundation are computed. The effects of the foundation stiffness ratios on eigenvalues are plotted in Fig. 2. It has 
been observed from Fig. 2, that eigenvalues increases with an increment in the foundation stiffness ratio, and the 
plate become unstable in the region when the foundation stiffness ratio exceeds a certain value. Twelve vibration 
modes are presented in Fig. 2. The smoothened stepped variation is observed in Fig. 2. The stepped region increases 
with increase in foundation stiffness ratio and vibration modes. The location of the stepped region with respect to   

changed gradually from the range of 0.059745 † [0.988372] ‡– 1.053192 [14.67192] to 2 [9.91694] – 1.9966 
[15.3779]. It † represents foundation stiffness ratio and ‡  represents

 
eigenvalues through out the text. The 

eigenvalues for different plate materials, for various values of foundation parameters are computed and the results 
are given in Table 1. It is observed that for any value of foundation parameter (  ), eigenvalues are independent on 

Poisson ratio, as presented in Fig. 3. 

 



311                   Vibrations of Circular Plates with Guided Edge and Resting on Elastic Foundation 

© 2012 IAU, Arak Branch 

0

5

10

15

20

25

30

35

-3 -2 -1 0 1 2 3
Foundation Parameter,  Log(ξ) 

Ei
ge

nv
al

ue
,λ

m
n 

 

λ00
λ10
 λ20
λ01
 λ11
λ21
 λ02
 λ12
λ22
λ03
λ13
λ23

 
 
 
 
 
 
 
 
 
Fig. 2 
Effect of foundation constraint,   on eigenvalues, mn . 

 
 

Table 1 
Eigenvalues for different Poisson’s ratio and foundation parameter  

  1   50   100   1000   1 04e    1 05e    
0 3.83614 7.2188 10.053 31.62448 100.0001 316.22777 

0.1 3.83614 7.2188 10.053 31.62448 100.0001 316.22777 
0.2 3.83614 7.2188 10.053 31.62448 100.0001 316.22777 
0.3 3.83614 7.2188 10.053 31.62448 100.0001 316.22777 
0.4 3.83614 7.2188 10.053 31.62448 100.0001 316.22777 
0.5 3.83614 7.2188 10.053 31.62448 100.0001 316.22777 
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Fig. 3 
Effect of poisson ratio,   on eigenvalues, mn . 

5    CONCLUSIONS 

The paper introduced a Matlab code for eigenvalues, of a circular plate with guided edge supports and resting on 
Winkler foundation. Two-dimensional plots of eigenvalues were drawn for different values of foundation stiffness 
ratios. It has been observed that the eigenvalues changes desperately only in a limited range of constraints specific to 
each vibration mode and are stable elsewhere. By knowing the position of the region where eigenvalues change 
rigorously is rudiment for structural design in the field of civil, marine, mechanical and aeronautical engineering 
applications and vibration control. It is also observed that the influence of foundation stiffness ratio on eigenvalues 
is more predominant. 
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