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 ABSTRACT 

 In this study an analytical method is developed to obtain the response of electro-magneto-thermo-
elastic stress and perturbation of a magnetic field vector for a thick-walled spherical functionally 
graded piezoelectric material (FGPM). The hollow sphere, which is placed in a uniform magnetic 
field, is subjected to a temperature gradient, inner and outer pressures and a constant electric 
potential difference between its inner and outer surfaces. The thermal, piezoelectric and 
mechanical properties except the Poisson’s ratio are assumed to vary with the power law functions 
through the thickness of the hollow sphere. By solving the heat transfer equation, in the first step, 
a symmetric distribution of temperature is obtained. Using the infinitesimal electro-magneto-
thermo-elasticity theory, then, the Navier’s equation is solved and exact solutions for stresses, 
electric displacement, electric potential and perturbation of magnetic field vector in the FGPM 
hollow sphere are obtained. Moreover, the effects of magnetic field vector, electric potential and 
material in-homogeneity on the stresses and displacements distributions are investigated. The 
presented results indicate that the material in-homogeneity has a significant influence on the 
electro-magneto-thermo-mechanical behaviors of the FGPM hollow sphere and should therefore 
be considered in its optimum design. 

© 2010 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 GPMs have attracted widespread attention in recent years. FGPM is a kind of piezoelectric material with 
material composition and properties that varies continuously and gradually along certain directions. This makes 

FGPM to be suitable for many specific applications such as sensors or actuators. Chen et al. [1] investigated a 
piezoceramic hollow sphere analytically, based on the 3D equations of mechanical and piezoelectricity. Their 
numerical results are performed for different boundary conditions imposed on the spherical surfaces. Lim and He [2] 
obtained an exact solution of a compositionally graded piezoelectric layer under uniform stretch, bending and 
twisting. Shi and Chen [3] presented the analytical solution for a piezoelectric cantilever beam with continuously 
graded properties subjected to different loadings. They proposed and determined a pair of stress and induction 
functions in the form of polynomials. Moreover, based on these functions, they obtained a set of analytical solutions 
for the beam under different loadings. WU and Syu [4] considered an exact solution of a cylindrical shell made of 
functionally graded piezoelectric materials under cylindrical bending using the method of perturbation. They are 
taken into account the transverse normal load and normal electric displacement (or electric potential), respectively, 
applied on the lateral surfaces of the shells. Moreover, they assumed that the cylindrical shells are considered to be 
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fully simple supports at the edges in the circumferential direction and with a large value of length in the axial 
direction. Also, they investigated the coupled electro-elastic effect on the structural behavior of FG piezoelectric 
shells and the influence of the material property gradient index on the variables of electric and mechanical fields. 

For an electro-magneto-elastic case, Dai et al. [5] studied the electro-magneto-elastic behaviors of functionally 
graded piezoelectric in geometry, i.e. solid cylinders and spheres. They showed that mechanical and electric loads 
on the FGPM cylinders and spheres can control the distributions of stresses, perturbation of magnetic field vector 
and electric potential in the FGPM solid structures. For an electro-thermo-elastic case, Ootao and Tanigawa [6] 
carried out the transient piezothermoelastic analysis for a hollow sphere made of functionally graded piezoelectric 
material. They considered the thermal, thermo-elastic and piezoelectric constants of the hollow sphere as power 
functions of the radial coordinate and showed some numerical results for the temperature change, displacement, 
stress and electric potential distributions. Khoshgoftar et al. [7] presented the thermo-elastic analysis of a thick 
walled cylinder made of functionally graded piezoelectric material. They loaded the cylinder subjected to the 
temperature gradient and inner and outer pressures and also defined all the mechanical, thermal and piezoelectric 
properties except the Poisson ratio as a power function in the radial direction.  Ghorbanpour Arani et al. [8] 
considered a hollow circular cylinder made of exponentially graded piezoelectric material (EGPM), e.g. PZT_4. 
Their loadings were composed of internal and external pressures, a distributed temperature field due to steady state 
heat conduction with convective boundary condition, an inertia body force due to rotation with constant angular 
velocity and a constant electric potential difference between its inner and outer surfaces. Also, they assumed that the 
material properties except Poisson’s ratio and thermal conduction coefficient are exponentially distributed along 
radius. 

For a magneto-thermo-elastic case, by means of an analytical method, Ghorbanpour Arani et al. [9] investigated 
the magneto-thermo-elastic stress and perturbation of the magnetic field vector in functionally graded hollow sphere 
placed in uniform magnetic and temperature fields subjected to an internal pressure. They employed hyper-
geometric functions to solve the governing equation and also assumed that the material properties through the 
graded direction are nonlinear with an exponential distribution. Moreover, they obtained the temperature, 
displacement and stress fields and the perturbation of magnetic field vector and compared with those of the 
homogeneous case. Ghorbanpour Arani et al. [10] presented an exact solution for magneto-thermo-elastic transient 
response and perturbation of the magnetic field vector for a functionally graded thick hollow sphere subjected to 
magnetic and thermo-elastic fields. Using the Hankel and Laplace transform techniques, they solved the dynamic 
equation of magneto-thermo-elastic and the radial and circumferential stresses as well as the perturbation of the 
magnetic field vector for a typical material are obtained. For an electro-magneto-thermo-elastic case, Dai et al. [11] 
studied the electro-magneto-thermo-elastic behaviors of a functionally graded piezoelectric hollow cylinder, placed 
in a uniform magnetic field, subjected to electric, thermal and mechanical loads. Using the infinitesimal theory of 
electro-magneto-thermo-elasticity, they obtained the electric, magnetic, thermal and mechanical properties of the 
material that obey an identical power law in the radial direction and also determined exact solutions for electric 
displacement, stresses, electric potential and perturbation of magnetic field vector in the FGPM hollow cylinder. 

In this study, an exact solution for a radially polarized FGPM hollow sphere with electro-magneto-thermo-elastic 
behaviors subjected to magnetic and thermo-elastic field is presented. The material properties through the graded 
direction are assumed to be nonlinear with a power law function. The temperature, displacement and stress fields, 
electric potential and the perturbation of magnetic field vector are determined and compared with those of the 
homogeneous case. 

2    BASIC FORMULATIONS 
2.1 Heat conduction equation 

The axisymmetric, steady state, and heat conduction equation in the spherical coordinate system with the thermal 
boundary condition is given in this section as [8] 
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where a and b are the inner and outer radii, respectively, kk(r) is the thermal conductivity which is assumed to be a 
function of radius, h is the convective heat transfer coefficient ratio and T is the temperature. Assuming k(r) as a 
function of radius: 
 

m
ok r k r( ) =  (2)

 

 
where k0  is the nominal thermal conductivity, and m is the material in-homogeneity. Substituting Eq. (2) into Eq. 

(1a) yields the FGPM heat conduction equation as 
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Integrating twice Eq. (3) yields 
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Using the boundary conditions (1b) and (1c), the constants C1 and C2 are determined as follows 
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2.2 The problem formulation 

Consider a radially polarized thick-walled FGPM sphere with perfect conductivity subjected to a uniform magnetic 

field vector 


H H(0,0, ) . The components of the displacement, stress, radial electric displacement, electric potential, 

and perturbation of magnetic field vector  in the spherical coordinate  r( , , )  are, respectively, expressed as 

  i ru r i r D( ),  ( , , ),  =  and  r( ) . Due to symmetry, it is assumed that     U U 0,  = = = . The constitutive 

equations for the FGPM hollow sphere subjected to a rapid charge in temperature ( )T r are expressed as 
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where ij ic i j e i g p11 11( , 1,2), ( 1,2), ,= =  and   are elastic constants, dielectric constant, piezoelectric coefficient 

and thermal expansion coefficients, respectively, and all material constants are assumed to follow the same power-
law function across the thickness of the FGPM hollow sphere, i.e. 
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where α is the thermal expansion constant. The mechanical and electrical boundary conditions are expressed as  
 

     r a r b r a r br a r b r a r b
P P, , ,

= = = =
=- =- = =  (9)

 

 
Assuming that the magnetic permeability,  , at the outer surface of the FGPM sphere to be equal to the 

magnetic permeability of the medium around it, and omitting displacement electric currents, the governing 
electrodynamics Maxwell equations for a perfectly conducting elastic body can be written as [12,13] 
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where , , ,J e H h
 

are the electric current density vector, perturbation of electric field vector, magnetic intensity vector 

and perturbation of magnetic field vector, respectively. In the spherical coordinates  r( , , ) , applying an initial 

magnetic field vector 


H H(0,0, )  into Eq. (10) yields 
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In the absence of body force, the equilibrium equation of FGPM hollow sphere is expressed as [12, 13]  
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where f  is the Lorentz’s force [12, 13] which can be expressed as  
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In the absence of charge density force, the charge equation of electrostatics is expressed as [14] 
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Solving Eq. (14) yields 
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Substituting Eqs. (8) and (15) into Eq. (7c) yields 
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Substituting Eqs. (16) and (4) into Eqs. (7a) and (7b) and utilizing Eq. (8) yields 
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2.3 The solution of equilibrium equation for FGPM 

Substituting Eqs. (17a), (17b) and (13) into Eq. (12), the equilibrium equation of FGPM hollow sphere is expressed 
as 
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The solution of Eq. (19) can be written as 
 

h pu r u r u r( ) ( ) ( )= +  (21)
 

 

where hu r( )  and pu r( )  are the homogeneous and particular solutions, respectively. The homogeneous solution of 
Eq. (19) is expressed as follows 
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where S is an arbitrary constant, substituting Eq. (22) into Eq. (19) yields 
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The roots of the characteristics Eq. (23) are written as 
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These roots may be real distinct, double roots, and complex conjugate. For real distinct roots, the solution of Eq. 
(22) is expressed as 

 
n nhu r A r A r1 2

2 3( ) = +  (25)
 

 
In the case of double roots, n n n1 2= =  the solution of Eq. (22) is written as the following form 
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and the solution of Eq. (22) for complex roots n x yi n x yi1 2,= + = -  is obtained as 
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where A2  and A3  are the unknown constants that determined by the given boundary conditions Eq. (9) for the real 

distinct roots and -2<m<2. The particular solution pu r( )  to Eq. (19) can be obtained as  
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Substituting Eq. (28) into Eq. (19) yields 
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According to the coefficients of the identical powers, the coefficients are:  
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Substituting Eqs. (25) and (28) into Eq. (21) yields 
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Substituting Eq. (31) into Eq. (16) yields 
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Integrating Eq. (32) yields 
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Substituting Eq.(31) into final item of Eq. (11) and Eqs. (17a) and (17b), the perturbation of magnetic field 

vector, radial and circumferential stresses of the FGPM hollow sphere are obtained as 
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where A A A1 2 3, ,  and A4  are unknown constants that determined by the given boundary conditions. 

3    NUMERICAL RESULTS AND DISCUSSIONS 

In this article, electro-magneto-thermo-mechanical stresses, electric displacement, electric potential and perturbation 
of magnetic field vector of the FGPM hollow sphere under electric, thermal and mechanical loads are considered to 
determine a numerical result. The mechanical, electrical, magnetic and thermal constants for the FGPM hollow 
sphere are considered as [9, 11, and 15] 
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The non-dimensional parameters are defined as 
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Example 1. 
In this example, a thick hollow sphere is considered that the geometry parameters and boundary conditions and the 
corresponding boundary conditions are expressed as 
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  
a b a b r a

P P o a b T71 10 Pa, 0, 50 W/A, , 0.25 m, 0.5 m, 300 K
=

= ´ = = = = = =  (37)
 

 
Fig. 1 shows the variation of temperature along the radial direction for different values of the material parameter 

m. It is seen from the results that the non-dimensional temperature at the inner radius equals one, which satisfies 
prescribed thermal boundary condition, and the non-dimensional temperature decreases with increasing the power 
law index m at the same radial point of the FGPM hollow sphere. Also, it is observed from this figure that variation 
of non-dimensional temperature is approximately constant with increasing non dimensional radius. The variation of 
the non-dimensional electric displacement distribution along the radial direction of the FGPM hollow sphere for 
different values of material parameters m are demonstrated in Fig. 2. It can easily be seen from the curves that for a 
specific value of the position parameter r, the absolute non-dimensional electric displacement decreases with 
increasing the material parameter m. It is also seen that the absolute value of non-dimensional electric displacement 
decreases from the internal to external surface of the FGPM hollow sphere. 

Figs. 3 and 4 depict the distribution of non-dimensional radial and circumferential stresses along the radius for 
different values of material parameters, respectively. It is seen from the Fig. 3 that the non-dimensional radial 
stresses at the internal and external surfaces of the FGPM hollow sphere satisfy the given boundary conditions. The 
variation of absolute non-dimensional radial stress decreases with increasing m. Also, this value increases with 
increasing non-dimentional radius. As can be seen from Fig. 3, the non-dimensional radial stress distributions are 
good agreement with those of [9]. Hence, the correctness of the present solution can therefore be verified in this 
respect, too. It is seen from Fig. 4 that a positive m has more apparent effect on the distributions of non-dimensional 
circumferential stresses. Also, the non-dimensional circumferential stress decreases with increasing non-dimensional 
radius for a positive m. 

 
 

Fig. 1 
Temperature distributions in FGPM hollow sphere with 

various amounts of m , where 0.25 , 0.5a m b m    and 

0 300T K . 

  

  

 
 
 
Fig. 2 
Electric displacement distributions in FGPM hollow sphere 

with various amounts of m , where 0.25 , 0.5a m b m   and 

0 300 .T K  

  

 

 
 
 
 
 
Fig. 3 
Radial stress distributions in FGPM hollow sphere with various 
amounts of m , 0.25 , 0.5a m b m   and 0 300T K . 
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Fig. 4 
Circumferential stress distributions in FGPM hollow sphere with 
various amounts of m , 0.25 , 0.5a m b m   and 0 300 .T K  

Fig. 5 
Electric potential distributions in FGPM hollow sphere with 
various amounts of m, 0.25 , 0.5 a m b m  and 0 300 .T K  

 

 
 
 
 
 
 
Fig. 6 
Perturbation of magnetic field vector distributions in FGPM 
hollow sphere with various amounts of m, 0.25 , 0.5 a m b m  

and 0 300 .T K  

 
 
Figs. 5 and 6 show the non-dimensional electric potential and perturbation of magnetic field vector distributions 

in the FGPM hollow sphere, respectively. From Fig. 5 one knows, the non-dimensional electric potential satisfies 
the electric boundary condition and the absolute values of non-dimensional electric potential increases with 
increasing of material property m. Also, it is observed from the results that the maximum value of the absolute non-
dimensional electric potential is at range 0.3 to 0.5 of non-dimensional radius. Fig. 6 shows that for any negative or 
zero material parameters m, the perturbation of magnetic field vector distributions increases almost linearly along the 
thickness. But for any positive material parameters m, the perturbation of magnetic field vector distributions 
decreases along the thickness of FGPM sphere nonlinearly. 
 
Example 2.  
Considering electro-magneto-thermo-elastic stresses, electric potential, and perturbation of magnetic field vector of 
the FGPM hollow sphere at different thermal boundary condition T0 the inner radius a 0.1 m= , outer radius 
b 0.2 m=  and m1 is considered and all other conditions are similar to example 1. Figs.7-10 show the non-
dimensional perturbation of magnetic field vector, electric potential, radial and circumferential stresses of the 
proposed FGPM hollow sphere for various temperatures. Fig.7. shows that the non-dimensional perturbation of 
magnetic field vector at the same radial point decreases with increase of the temperature. Also, it is seen that non-
dimensional perturbation of magnetic field vector is maximum at internal surface. It can be concluded from Fig.8. 
that the electric potential completely satisfies the electric boundary conditions and its trend is similar to Fig. 5. Fig. 9 
shows the variation of non-dimensional radial stress along the thickness of the FGPM hollow sphere which satisfies 
the given mechanical boundary conditions and increases by increasing the temperature. It is found that the effect of 
temperature on non-dimensional radial stress is significant. Fig. 10 demonstrates that the non-dimensional 

circumferential stresses decreases in a specific radius by increasing the temperature and for 0 500T K  the non-

dimensional circumferential stress is negatively increased. 
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Fig. 7 
Perturbation of magnetic field vector distributions in FGPM 
hollow sphere with various amounts of T, where 

0.25 , 0.5a m b m   and 0 300 .T K  

   

 
 
 
 
 
Fig. 8 
Electric potential distributions in FGPM hollow sphere with 
various amounts of T, where 0.25 , 0.5a m b m  and 0 300 .T K  

 
 
 
 
 
 
 
 
 
Fig. 9 
Radial stress distributions in FGPM hollow sphere with various 
amounts of T, where 0.25 , 0.5a m b m   and 0 300 .T K  

  

 
 
 
 
 
Fig. 10 
Circumferential stress distributions in FGPM hollow sphere with 
various amounts of T, where 0.25 , 0.5a m b m   and 

0 300 .T K  

4    CONCLUSIONS 

Analytical solution for a FGPM hollow sphere in a uniform magnetic field, subjected to thermal, electrical and 
mechanical loads are obtained. All material parameters except Poisson’s ratio are assumed to have the same 
exponent-low dependence on the radial direction of the FGPM hollow sphere. The results show that the gradient 
index m and temperature have a significant effect on the electro-magneto-thermo-mechanical stresses, perturbation 
of the magnetic field vector, and electric potential and hence should be considered in optimum design. This is to say, 
the in-homogeneous constants presented here are useful parameters from a design point of view in that they can be 
tailored for specific applications to control the distributions of electro-magneto-thermo-mechanical stresses. The 
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technological implications of this study could be significant in applications such as reduction or neutralization of 
hoop stress resulting from electro-magneto-thermo-mechanical loads in a FGPM hollow sphere by a suitably applied 
electric field and material in-homogeneity.  
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