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 ABSTRACT 

 In this study, the vibration behavior of circular and annular graphene sheet embedded in a Visco-

Pasternak foundation and coupled with temperature change and under in-plane pre-load is studied. 

The single-layered annular graphene sheet is coupled by an enclosing viscoelastic medium which is 

simulated as a Visco- Pasternak foundation. By using the nonlocal elasticity theory and classical 

plate theory, the governing equation is derived for single-layered graphene sheets (SLGSs). The 

closed-form solution for frequency vibration of circular graphene sheets has been obtained and 

nonlocal parameter, in-plane pre-load, the parameters of elastic medium and temperature change 

appears into arguments of Bessel functions. To verify the accuracy of the present results, the new 

version differential quadrature method (DQM) is also developed. Closed-form results are 

successfully verified with those of the DQM results. The results are subsequently compared with 

valid result reported in the literature. The effects of the small scale, pre-load, mode number, 

temperature change, elastic medium and boundary conditions on natural frequencies are 

investigated. The non-dimensional frequency decreases at high temperature case with increasing the 

temperature change for all boundary conditions. The effect of temperature change on the non-

dimensional frequency vibration becomes the opposite at high temperature case in compression 

with the low temperature case. The present research work thus reveals that the nonlocal parameter, 

boundary conditions, temperature change and initial pre-load have significant effects on vibration 

response of the circular nanoplates. The present analysis results can be used for the design of the 

next generation of nanodevices that make use of the thermal vibration properties of the graphene.    

                                                                         © 2013 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

N the new epoch, the investigation of the behavior of matters at the atomic scale of material is the focus of 

international scientific community. The growth of scientists at this length scale has concentrating on creating the 

nanotechnology phrase. Nanotechnology is studied one of the most encouraging technologies to be researched now. 

This technology could have enormous influence on information technology, aerospace, electronic devices, defense 

production and medical devices. Many endeavors have been made to construct nanodevices, expand and utilize 

matters on the nano scale [1]. Some encouraging utilization has commenced to appear. one of the best samples of 

novel nanostructures are carbon nanotubes (CNTs). CNTs are allotropes of carbon. These are derived by bottom-up 

chemical synthesis processes. In CNTs, the chemical compound and atomic bonding configuration is simple. To use 
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graphene sheets properly as nano electro-mechanical system design and micro electro-mechanical systems (NEMS 

and MEMS) component, their frequency response with small-scale effects should be investigated. 

Graphene is a truly two-dimensional atomic crystal with exceptional electronic and mechanical properties. Many 

nanostructures based on the carbon such as carbon nanotube [2], nanorings [3], etc. are considered as deformed 

graphene sheet. Hence, so analysis of graphene sheets is a basic matter in the study of the nanomaterials.  

Continuum modeling of CNTs has also increasing deal of attention of many researchers due to the fact that 

experiments in nanoscale are difficult [4] and molecular dynamic simulations are highly computationally expensive. 

There are various size-dependent continuum theories such as couple stress theory [5], strain gradient elasticity 

theory [6], modified couple stress theory [7] and nonlocal elasticity theory [8]. Among these theories, nonlocal 

elasticity theory, introduced by Eringen in 1983 [8], has been widely applied [9-22]. He modified the classical 

continuum mechanics for taking into account small scale effects. In this theory, the stress state at a given point 

depends on the strain states at all points, while in the local theory, the stress state at any given point depends only on 

the strain state at that point. As we have mentioned above, the mechanical behaviours of CNTs are investigated by 

many researchers. Mohammadi et al. [23] studied vibration of orthotropic rectangular graphene sheet under biaxial 

in-plane pre-load. They reported that Numerical results are presented using the nonlocal theories to bring out the 

effect of the nonlocal behavior on natural frequencies of rectangular SLGSs. Ke et al. [24] studied axisymmetric 

nonlinear free vibration of size-dependent functionally graded (FG) annular microplates. They considered that 

unlike homogeneous microplates, the FG material microplates display different vibration behavior at positive and 

negative amplitudes due to the presence of bending-extension coupling. A dynamical behavior of circular and 

annular FG material was studied using Reddy's plate theory [25]. Mohammadi et al. [26] investigated the buckling 

of rectangular SLGSs under shear in-plane load and in thermal environment. They showed that the critical shear 

buckling load of rectangular SLGSs is strongly dependent on the small scale coefficient. Civalek and Akgoz [27] 

analyzed the vibration behavior of micro-scaled sector shaped graphene surrounded by an elastic matrix. Murmu and 

Pradhan [28] employed the nonlocal elasticity theory for the vibration analysis of rectangular SLGSs embedded in 

an elastic medium. They have used both Winkler-type and Pasternak-type models for simulate the interaction of the 

graphene sheets with a surrounding elastic medium. They reported that the natural frequencies of SLGSs are 

strongly dependent on the small scale coefficients. Pradhan and Phadikar [29] investigated the vibration of 

embedded multilayered graphene sheets (MLGS) based on nonlocal continuum models. In their paper, they have 

shown that nonlocal effect is quite significant and needs to be included in the continuum model of graphene sheet. 

Yi-Ze Wang et al. [30] studied the vibration of double-layered nanoplate. In their research, thermal effect and 

nanoplate with isotropic mechanical properties was shown. It has been reported that graphene sheets have 

orthotropic properties [31]. Aksencer and Aydogdu [32] proposed levy type solution for vibration and buckling of 

nanoplate. In that paper, they considered rectangular nanoplate with isotropic property and without effect of elastic 

medium. Malekzadeh et al. [33] used the differential quadrature method (DQM) to study the thermal buckling of a 

quadrilateral nanoplates embedded in an elastic medium. Thermal vibration analysis of orthotropic nanoplates based 

on nonlocal continuum mechanics were studied by Satish et al. [34] who considerate two variable refined plate 

theory for thermal vibration of orthotropic nanoplate. In general, SLGSs are embedded in an elastic medium but they 

didn’t consider effect of elastic medium in that paper. On the other hand, they represented vibration frequency of 

rectangular nanoplate only for simply supported boundary conditions and they didn’t represent vibration frequency 

for other boundary conditions. Prasanna Kumar et al. [35] represented thermal vibration analysis of monolayer 

graphene sheet embedded in an elastic medium via nonlocal continuum theory. In their paper, they considered 

simply support boundary condition and they didn’t study other boundary condition. They investigated graphene 

sheet with isotropic property. Farajpour et al. [36] studied axisymmetric buckling of the circular graphene sheets 

with the nonlocal continuum plate model. In that paper, the buckling behavior of circular nanoplates under uniform 

radial compression is studied. Explicit expressions for the buckling loads are obtained for clamped and simply 

supported boundary conditions. It is shown that nonlocal effects play an important role in the buckling of circular 

nanoplates. In that paper, their results compared with the results obtained by molecular dynamic and it is observed 

that results predicted by nonlocal theory are in exact match with MD results. Thus the reliability of nonlocal theory 

and presented solution is demonstrated. Mohammadi et al [37] employed the nonlocal plate theory to analyze 

vibration of circular and annular graphene sheet. They founded that scale effect is less prominent in lower vibration 

mode numbers and is highly prominent in higher mode numbers.  

It is cleared that the natural frequency is easily affected by the applied temperature change. As a result, the effect 

of temperature change on the property of transverse vibration of graphene sheet is of practical interest. Thermal 

expansion is the tendency of matter to change in volume in response to a change in temperature [38].  When a 

substance is heated; its particles begin moving more and thus usually maintain a greater average separation. 

http://www.sciencedirect.com/science/article/pii/S0927025613002279
http://en.wikipedia.org/wiki/Volume
http://en.wikipedia.org/wiki/Temperature


307                   Temperature Effect on Vibration Analysis of Annular Graphene Sheet … 

© 2013 IAU, Arak Branch 

Materials which contract with increasing temperature are unusual; this effect is limited in size and only occurs 

within limited temperature ranges. The degree of expansion divided by the change in temperature is called the 

material's coefficient of thermal expansion and generally varies with temperature. A number of materials contract on 

heating within certain temperature ranges; this is usually called negative thermal expansion, rather than "thermal 

contraction". For example, the coefficient of thermal expansion of water drops to zero as it is cooled to 3.983 °C and 

then becomes negative below this temperature; this means that water has a maximum density at this temperature, 

and this leads to bodies of water maintaining this temperature at their lower depths during extended periods of sub-

zero weather. Fairly pure silicon has a negative coefficient of thermal expansion for temperatures between about 18 

and 120 Kelvin [39]. Jiang et al. [40] investigated thermal expansion for single wall carbon nanotubes (SWCNTs). 

They developed an analytical method to determine the coefficient of thermal expansion for SWCNTs in radial and 

axial directions with interatomic potential and the local harmonic model. They founded that all coefficient thermal 

expansions are negative at low and room temperature and become positive at high temperature. Alamusi et al. [41] 

predicted the thermal expansion properties of carbon nanotube with molecular dynamics simulation. They reported 

that within a wide low temperature range, axial coefficient thermal expansions of SWCNTs are negative. As the 

diameter of CNTs decreases, this temperature range for negative axial coefficient thermal expansions becomes 

narrow, and positive axial coefficient thermal expansions appear in high temperature range. Yao and Han [42] 

studied the buckling analysis of multi-walled carbon nanotubes (MWCNTs) under torsional load coupling and 

temperature change. They reported that the CNTs have a positive coefficient of thermal expansion for temperature 

above 200 Kelvin. 

It is clear that the natural frequency is easily affected by the applied in-plane pre-load and temperature change. 

As a result, the effect of in-plane pre-load on the property of transverse vibration of graphene sheet is of practical 

interest. Researches that investigated on the nonlocal annular graphene sheets are very limited in number with 

respect to the case of rectangular nanoplate. To the best knowledge of authors, it is the first time the nonlocal 

elasticity theory has been successfully applied to investigate the vibration frequency of annular graphene sheets 

embedded in a Visco-Pasternak elastic medium under thermal environment. The influence of the surrounding elastic 

medium on the frequency vibration of the annular SLGSs is investigated. In the present paper, the effect of the in-

plane pre-load and temperature change on the vibration frequency of single layered annular graphene sheet is 

investigated. The governing equation of motion is derived using the nonlocal elasticity theory. Exact solution for the 

frequency equations of annular nanoplate with simply supported, clamped boundary conditions and mix of them are 

derived and nonlocal parameter, in-plane pre load and temperature change appears into arguments of Bessel 

functions. From the results, some new and absorbing phenomena can be observed. To suitably design nano electro-

mechanical system and micro electro-mechanical systems (NEMS/MEMS) devices using graphene sheets, the 

present results would be useful. 

2    DIFFERENTIAL EQUATIONS FOR NANOPLATES 

The governing differential equation for vibration analysis nanoplate surrounded by Visco-Pasternak foundation is 

[43] 
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(1) 

 

Here, , ,  C ,  ,  d w Gf K K  are distributed transverse load acting on the nanoplate per unit area of the nanoplate, 

density, Damper modulus parameters, Winkler modulus and the shear modulus of the surrounding elastic medium, 

respectively. The dimensions of Winkler modulus, Shear modulus of the surrounding elastic medium and damper 

http://en.wikipedia.org/wiki/Negative_thermal_expansion
http://en.wikipedia.org/wiki/Density
http://en.wikipedia.org/wiki/Kelvin
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modulus are 
3 2,   and .N m N m N s m  respectively [44, 45]. It is assumed that the nanoplate is free from any 

transverse loadings ( 0)f . The terms ,  ,  xx xy yyM M M  are stress resultants that they are defined as [35] 
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(2) 

 

where 
0 ie l  and w are nonlocal parameter and transverse displacement, respectively. D is flexural rigidity of the 

nanoplate  and it is defined as [35] 
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We can express stress resultants in terms of lateral deflection on the classical plate theory as follows  
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thermal elasticity mechanics, the resultant thermal stress can be written as [35] 

 

 1
 


temp

E
N h T




 

 

(5) 

 

So we have using Eq. (4) and Eq. (2) into Eq. (1) we have the following governing equation of motion in terms 

of the displacements for the present analysis 
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(6) 

 

where 2  is laplacian operator in polar coordinate, the two-dimensional Laplace operator is given 

by            2 2 2 2 2 21 1         r r r r  . For free vibration, we can write the motion of the plate in 

polar coordinates as
 
[37]

 
 

( , , ) ( , ) i tw r t W r e    (7) 

 

where  is the natural frequency and 1 i . By inserting Eq.(7) into Eq.(6) yields a four order partial differential 

equation involving natural mode ( , )W r 
 

 2 2 2 2 4 0     W W W  (8) 
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where 
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(9) 

3    EXACT SOLUTIONS 

Using Laplacian operator in polar coordinates, the complete solution to the above equation Eq. (8) can be obtained 

by superimposing the solutions of the two following Bessel equations 
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We will put ( , ) ( ) ( ),W r R r    in the Eq. (10) and (11), afterwards these equations are written by multiplying 

with 2 ( ) ( )r R r    
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Eqs. (12) and (13) are satisfied only if each expression in the above is equal to constant 2 . Thus, we obtain 

three ordinary differential equations as:  
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The solution of Eq. (14) will become 

 

( ) cos( ) sin( ) A B     (17) 
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Here, A and B are constants and depend on the boundary conditions. Since ( , )W r   has to be a continuous 

function, ( )   must be a periodic function with a period of 2 so that ( , ) ( , 2 ) W r W r   . Thus,  must be an 

integer  

 

     0,1,2,... m m  (18) 

 

Eq. (15) is recognized as forms of Bessel's equation of order  m  with the argument r whose solution is 

given by 
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where the constants (4) (3) (2) (1), , , , , 

m m m m m mB A A A A A  and ,   depend on the boundary conditions of the nanoplate. 

3.1 Clamped boundary condition in outer and inner radius 

Let us consider an annular nanoplate as shown in Fig.1, where r  is the radius of nanoplate. An annular plate 

consists of a circular outer boundary and a concentric circular inner boundary. Throughout this work the radius 

a and b will define the outer and inner boundaries, respectively. We consider an annular graphene sheet with 

clamped boundary condition on outer and inner edges of the plate. Now, we will substitute the solution Eq. (21) into 

the clamped boundary conditions at r a  and r b . So, we will have 
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Fig. 1  

A continuum plate model of the annular graphene sheet. 

 

 

This will give four homogeneous equations in four unknowns (1) (2) (3), ,m m mA A A  and (4)

mA . Similar to the complete 

circular plates in the previous section for a nontrivial solution, the determinant of coefficient will be zero. The 

frequency determinant will consist of Bessel function of higher orders. 
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(24) 

3.2 Simply supported boundary condition in outer and inner radius 

For annular nanoplate with simply supported boundary conditions on outer and inner radius of the plate, the 

boundary conditions are defined as below 
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By inserting Eq. (21) into Eqs. (25-27), one can write them in the matrix form similar to previous section. To 

determine nontrivial solutions of the above system of homogeneous equations, it is necessary to equate its 

determinant to zero. The frequency equation of annular nanoplate with simply supported boundary condition on the 

outer and inner radius can be written as follows 
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where 
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Note that the above equations are for ,  ,  ,   J Y I K . For other boundary conditions of annular nanoplate, 

frequency equations are derived similarly. 

The geometric properties of the graphene sheet are denoted by outer radius a, inner radius b, thickness h. For 

convenience and generality, we introduce the following non-dimensional parameters 
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(31) 

4    NEW VERSION OF DQM FOR ANNULAR NANOPLATE 

In this section, for the solution of Eq.(6) the new version DQM [46, 47] is employed. The new version DQM is an 

efficient numerical method for the solution of partial and ordinary differential equations. Wang and Wang [46] 

extended the new version of DQM for free vibration analyses of classical sector plates. They presented details 

formulation of the new version DQM. They showed numerical results indicate that convergence can be achieved 

with increasing in number of grid points and accurate results could be obtained with 9 9  gird or even higher grid 

by using the extended DQ method for the cases considered. In this article [46] some other advantages of the new 

version of DQM technique are also reported. Since DQ technique provides simple formulation and low 

computational cost, it has been widely used for the analysis of mechanical behaviors of the structural elements at 

large scale, such as dynamic and stability problems. In recent years, many researchers used DQ approach in solving 

the governing equations of nanostructures.  

Wang et al. [48] employed Timoshenko beam model and DQ method to analyze the vibration behavior of multi-

walled carbon nanotubes. Farajpour et al. [19] used DQM for the buckling of orthotropic micro/nanoscale plate 

under linearly varing in-plane load. In addition, Danesh et al. [10] used DQM for the vibration analysis of tapered 

nanorod with different boundary conditions. In another work, the nonlocal elastic plate model was developed and 

applied to the vibration analysis of orthotropic graphene sheets by using DQM [49]. 

The ordinary DQM is based on a simple mathematical concept that a partial derivative of a function with respect 

to a space variable at a discrete mesh point (grid point) in domain can be approximated by taking a weighted linear 

sum of the functional values at all grid points in the whole domain. In the ordinary DQ method, the k-th order 

derivative of the solution function ( )k

iw at grid point i can be computed by [50] 

 

( ) ( )

1
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j
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(32) 

 
( )k

ijC  represents the respective weighting coefficient related to the k-th-order derivative and is obtained as 

follows: 

If k= 1, namely, for the first order derivative, 
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For i j  we have 
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where (1) ( )M x  is the first order derivative of ( )M x and they can be defined as: 

 

(1)

1 1,( )

( ) ( ),     ( ) ( )
  

    
N N

j k k j

j j j k

M x x x M x x x  
 

(35) 

 

If  k > 1, the weighting coefficients of the second, third and forth derivatives, may be computed by 
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(36) 

 

In the new version DQM, the weighting coefficients of the first and second order derivatives the same as the 

ordinary DQM are defined. In this method, Wang and Wang [46] considered two degrees of freedom at each end 

point, (1)

1 1,  w w and (1),  N Nw w  in the   direction but in the r direction only two degrees of freedom, (1),  wN Nw  at points 

on the outer boundary are defined. Therefore in this method, the third and fourth order derivative in the   direction 

are defined by [46] 
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where 

 

(2) (2) (2) (2)

1 1

(2) (2)

C C ,   C C       j=1,2,...,N

C             (i=2,3,...,N-1,  j=1,2,...,N)

   



 



j j Nj Nj

ij ijC

 

 

 

(38) 

 

And the weighting coefficient in the r direction are defined as follow 
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Here 
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(40) 

 

In terms of new version of DQM, the governing differential equations Eq. (16) at inner grid points for vibration 

analysis embedded elastic medium and for free vibration analysis of thin circular nanoplates become 
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(41) 

 

where * r a . The 
( )C m

ij


is the new version of DQ weighting coefficients of the m-th order derivative in the   

direction and 
( )C n

ij


is the new version of DQ weighting coefficients of the n-th order derivative in the direction. 

Eq.(41) can be solved by new version DQM approach for various boundary conditions. 

The clamped boundary condition in terms of new version DQM are mathematically represented as: 
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The simply supported boundary condition in terms of new version DQM can be written as: 
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(43) 

 

The grid point distribution in the   and   direction is [51] 
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Using the new version of DQM Eq. (41) can be reduced to an eigenvalue problem as: 
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(45) 

where the subscript b stands for the elements related to the boundary points while subscript d is associated with the 

remainder elements.The    ,  K C and   M are the stiffness, damping and mass matrixes, respectively. For solving 

the Eq. (39) and reducing it to the standard form of eigenvalue problem, it is convenient to rewrite Eq. (39) as the 

following first order variable as:  

 

    Z A Z  (46) 

In which the state vector Z and state matrix  A are defined as: 
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where  0  and  I are the zero and unitary matrices, respectively. However, the frequencies obtained from the 

solution of Eq. (41) are complex due to the damping. Hence, the results are containing two real and imaginary parts. 

The real part is corresponding to the system damping, and the imaginary part representing the system natural 

frequencies. 

5    RESULTS AND DISCUSSION 

Effect of temperature on the vibration of annular nanoplate under in-plane pre- load investigated in this paper. We 

assumed that the scale coefficients are smaller than 2.0 nm because these values for a CNT were                            

taken by Wang and Wang [20]. The properties are considered same as indicated in the reference [33-

35]. 1060 Gpa,E 30.25,   = 2250  . kg m  The temperature dependence of radial and axial coefficient of 

thermal expansion of SWCNTs is investigated in [40] and concludes that the very tiny thermal expansion coefficient 

of the tube diameter reflects the strong in-plane C–C bonds in nanotubes. The various values of the thermal 

expansion coefficients affect the temperature dependence of the observed phonon modes. Also, considerable strain 

is introduced when nanotubes are mixed with other constituents to form composites for various applications, 

because of the very different thermal expansion properties of SWNTs and other materials. Moreover, all coefficients 

vary nonlinearly with temperature and are negative at low or room temperature and become positive at high 

temperature. Thus, researchers usually use the constant value of 6 11.6 10   K    for coefficient of thermal 

expansions at low or room temperatures [20, 33-35 and 42] and use the constant value of 6 11.1 10   K    for 

coefficient of thermal expansion at high temperatures. The Winkler and Pasternak coefficients are taken according to 

[37, 53]. Also, the damping modulus damper is taken according to [43]. These values were used for CNTs [44, 45]. 

Single layered annular graphene sheets have been considered for the present nonlocal analyses. Following four 

boundary conditions have been investigated in the vibration analysis of the annular graphene sheets. 

SS: Annular graphene sheet with simply supported outer and inner radius.  

CS: Annular graphene sheet with clamped outer and simply supported inner radius. 

SC: Annular graphene sheet with simply supported outer and clamped inner radius. 

CC: Annular graphene sheet with clamped outer and inner radius. 

As the results of DQ procedure depend on the number of grid points [46], a convergence test is carried out. The 

non-dimensional frequencies of circular nanoplate are tabulated in Table 1 for various numbers of grid points and 

some values of nonlocal parameter. The table is written to obtain the minimum number of grid points required to 

determine accurate results. The radius of circular nanoplate and aspect ratio are considered 10 nm and 0.5, 

respectively. Also, the nonlocal parameter 1 nm and low temperature case are considered. It can be easily seen form 

Table 1 that twelve number of grid points along the r and   axes is sufficient in order to gain converge solution. 

The non-dimensional natural frequency becomes equal zero when the in-plane compressive pre-loads achieve 

their critical value and the mode of vibration is buckled. We compared the results of annular nanoplates with 

published data. As shown in Table 2. results of Karamoz and Shahidi [52], compared to results obtained by present 

work for the critical compressive pre-load of annular nanoplates without thermal change and elastic medium.\ 

 

 
Table 1 

Validation and convergence study of new version DQM. 

grid 
point 

 (K)T  

SS boundary condition SC boundary condition CS boundary condition CC boundary condition 

0 50 100 0 50 100 0 50 100 0 50 100 

6 31.7124 32.9823 33.7629 43.7624 46.1295 46,2348 44.3795 47.1287 49.6581 70.2341 71.2139 71.2371 
8 29.5128 30.2215 31.8325 42.3416 44.9835 44.7692 42.7681 45.8723 49.6581 67.1479 67.2187 69.5481 

10 28.1476 29.1810 30.2560 41.8293 42.7368 43.6275 41.9207 43.1294 43.5681 64.7746 66.0981 67.2573 

12 28.1476 29.17810 30.2722 41.8293 42.7368 43.6102 41.9207 42.7683 43.5681 64.7746 66.0981 67.2573 
14 28.1476 29.1810 30.2722 41.8293 42.7368 43.6102 41.9207 42.7683 43.5681 64.7746 66.0981 67.2573 
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Table 2 

Comparison of results for vibration of the graphene sheet. 
Boundary Conditions References 

0  (nm)ie l  

0 0.5 1 1.5 2 

SS 
Karamoz [52] 41.38 40.89 39.52 38.15 36.76 

Present 41.2546 40.7435 39.3812 38.0190 36.6569 

SC 
Karamoz [52] 92.25 81.59 70.97 60.34 49.72 

Present 92.1265 81.4818 70.8371 60.1924 49.5478 

CS 
Karamoz [52] 70.35 63.04 55.73 48.43 41.12 
Present 70.2654 62.8956 55.5258 48.1560 40.8763 

CC 
Karamoz [52] 159.76 135.07 110.39 85.71 61.02 

Present 159.4326 134.7906 110.1486 85.5066 60.8645 

 

 
Table 3 

Comparison of results for vibration of the annular graphene sheet. 

Boundary Conditions References 0  (nm)ie l  

0 0.5 1 1.5 2 

SS 

Mohammadi et al.  [37] 39.3885 35.9875 28.0736 22.7692 19.5262 

DQ solution 39.4623 36.0087 28.1476 22.8014 19.7246 
Exact solution 39.3885 35.9875 28.0736 22.7692 19.5262 

SC 

Mohammadi et al.  [37] 59.7495 56.3934 41.8278 33.7176 20.4236 

DQ solution 60.0021 56.8926 41.8293 33.9247 20.8971 
Exact solution 59.7495 56.3934 41.8278 33.7176 20.4236 

CS 

Mohammadi et al.  [37] 63.5146 53.7851 41.9183 34.0531 27.7024 

DQ solution 63.9126 54.2005 41.9207 34.0849 27.9461 
Exact solution 63.5146 53.7851 41.9183 34.0531 27.7024 

CC 
Mohammadi et al.  [37] 89.2507 76.5525 64.7592 62.3113 46.7565 
DQ solution 89.7242 76.9142 64.7746 62.5123 46.9214 

Exact solution 89.2507 76.5525 64.7592 62.3113 46.7565 

 

 

Axisymmetric problem  0m , here, is considered and outer radius of annular nanoplate is given 20 nm. It can 

be observed that represented results exactly match with other results reported. 

For further validations, the present results are compared to that obtained based on nonlocal elasticity theory for 

annular nanoplate solutions. We compared the results of annular nanoplates with published data. As shown in Table 

3 results of Mohammadi et al. [37], compared to results obtained by present work (Exact solution and DQM results) 

for the non-dimensional natural frequency of annular nanoplate solutions without in-plane pre-loads and temperature 

changes. Values of outer radius of annular nanoplate 10 nma  and aspect ratio of annular nanoplate 0.5 b a  

have been used in this analysis. It can be observed that represented results exactly match with other results reported. 

The results of reference [37] are precisely the same with exact solution because the reference [37] solved the free 

vibration of annular nanoplate by the same method (Bessel function). So, it is normal that the results of two studies 

(exact solution of this paper and the results of reference [37]) are similar for annular nanoplate without effect of in-

plane pre-load and temperature change. 

The frequency difference percent is defined as: 

 

  0 

0

Difference percent= 100 
  

 




TT T K

T

frequency frequency

frequency
 

 

 

 

Fig. 2 shows the frequency difference percent with respect to nonlocal parameter. It is seen that the frequency 

difference percent increases with the increase of the temperature change. Also, the results show that the difference 

percent increases monotonically by increasing the nonlocal parameter. In other words, that nonlocal solution for 

difference percent is larger than the local solutions. In Fig.2, the gap between low and high temperature cases 

increases with increasing the temperature change. 
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Fig. 2  

Variation of difference percent with nonlocal parameter 

for the cases low and high temperature and various 

changes temperature. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 

Change non-dimensional frequency with temperature 

change for various boundary conditions in the case of 

low and high temperature. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 

Change difference percent with radius of circle for 

various temperature changes. 

 

 

 

The relationships between non-dimensional frequency versus temperature change for different boundary 

condition and low and high temperature case are demonstrated in Fig. 3. From Fig. 3 it is observed that the non-

dimensional frequency of the low temperature case is always larger than that of high temperature case. It is 

demonstrated that the non-dimensional frequency decreases as the change in temperature increases at higher 

temperature but increases as the change in temperature increases at room or low temperature. Furthermore, the gaps 

between the two curves (high and low) increases with increasing the temperature change. In other words, the 

difference between the non-dimensional natural frequencies calculated by high temperature and low temperature 

decreases with decreasing temperature change. The temperature change is important for graphene sheet with simply 

supported boundary condition on outer and inner edge, because the slope of curve with simply supported boundary 

conditions is more than clamped boundary condition curves.  

Fig. 4 shows the difference percent versus outer radius of annular nanoplate. It is cleared that the difference 

percent increases with increase in temperature. It is demonstrated that as the radius of circle increases the difference 

percent also increases. In other words, at larger radius of circular nanoplate, the effect of temperature change is more 

important.  



M. Mohammadi et al.                   318 

© 2013 IAU, Arak Branch 

Table 4 

Change of dimensionless frequency parameters for the four cases different boundary conditions and different temperature change. 

 2

0,  20 ,  0.5 e 1 nm   ia h D a nm b a l   

Boundary Condition Thermal Case 
Temperature Change 

0 20 40 60 80 100 

CC 
room or low temperature case 76.5525 77.8325 79.1066 80.3738 81.6336 82.8852 
high temperature case 76.5525 75.6695 74.7852 73.8997 73.0137 72.1283 

SS 
room or low temperature case 35.9875 37.7473 39.2251 40.4844 41.5775 42.5442 

high temperature case 35.9875 34.5823 33.0095 31.2912 29.4905 27.7019 

CS 
room or low temperature case 53.7851 55.5609 57.34 59.115 60.8793 62.6257 

high temperature case 53.7851 52.5694 51.3603 50.1594 48.9681 47.7875 

SC 
room or low temperature case 57.814 58.233 58.678 59.1565 59.6778 60.2523 
high temperature case 57.814 57.5377 57.2685 57.006 56.7471 56.4914 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5  

Change non-dimensional natural frequency with change 

temperature for various aspect ratios. 

 

 

Table 4. presents the change of the frequency parameters with temperature change for the annular nanoplates 

with 0.3 . To illustrate the effect of boundary condition and thermal case on frequency response, in this section 

we tabulate the lowest six temperature change for different thermal case and four cases different boundary 

conditions of annular nanoplate. In this investigation, we consider the non-dimensional frequency of first mode 

number, the outer radius of the annular nanoplate 20 nm and the nonlocal parameter is 1 nm. From this table it is 

seen that frequency parameters increase with increase of temperature change for all boundary condition and room or 

low temperature case. In the other hand, it is observed that the effects of the temperature change on the non-

dimensional frequency are different for the case of low and high temperature. This table shows the important 

influence of temperature change, in the cases low and high temperature case on the non-dimensional frequency of 

annular graphene sheet.  

To illustrate the effect of aspect ratio on the non-dimensional frequency, in this section, the non-dimensional 

frequency versus temperature change of annular nanoplate for different aspect ratio is plotted in Fig. 5.  

Fig. 5 shows the important influence of aspect ratio on the natural frequency of annular graphene sheet with CC 

boundary conditions and low temperature case. The radius of circular nanoplate r=10 nm and nonlocal parameter 

eoli=1 nm are considered. It is found that the non-dimensional frequency increases with increase of aspect ratio from 

0.1 to 0.5 and temperature change in low temperature case. Similarly, these phenomena are observed for annular 

nanoplate with different boundary conditions. 

The effect of temperature change on the frequency of annular graphene sheet embedded in an elastic medium is 

studied. The dimensionless Winkler constant WK , for the surrounding polymer matrix is taken in the range of         

0–400, dimensionless shear modulus GK is varied in the range 0-10 [53]. Similar values of modulus parameter were 

also applied by Liew et al [54]. Also, the dimensionless damping modulus is taken in the range of 0-200 [43, 44]. 

The relationships between frequency difference percent versus dimensionless Winkler constant WK , dimensionless 

shear modulus GK and the dimensionless damping modulus dC
 
for different temperature changes and low and high 

temperature case are demonstrated in Figs. 6 (a), (b) and (c) . A scale coefficient  0l  = 2.0ie  nm is used in the 

analysis. As can be seen, the Winkler constant or shear modulus decreases then the effect of temperature on the 

difference percent increases. It can be seen that the difference percent increases with increasing the temperature 

change.  For larger temperature change, the decline of difference percent is quite important. Also, the difference 
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percent for low temperature case is larger than that for case of high temperature. Furthermore, the decline for the 

high temperature case is much less than that for case of low temperature. These plots show the important influence 

of temperature change, in the cases low and high temperature case on the non-dimensional frequency of embedded 

graphene sheet.  In Figs. 6(a), (b) and (c) the gap between low and high temperature cases increases with increasing 

the temperature change. 

In Fig. 7, the plot of non-dimensional natural frequency with respect to outer radius of annular nanoplate is 

demonstrated. All of pre-loads in this paper are dimensionless and are introduced in Eq.(31). These results are 

plotted here for the annular nanoplate under non-dimensional compressive pre-load, the case of annular nanoplate 

without in-plane pre-load and different values of nonlocal parameter. The clamped boundary condition and first 

mode number is considered. From Fig. 7 it is observed that decreasing the nonlocal parameter yields to increase the 

natural frequency. This indicates that increasing the nonlocal parameter leads to decrease in the stiffness of body. 

Furthermore, the non-dimensional natural frequency increases the radius of the nanoplate increases. It is clear as a 

matter of fact that, the influence of nonlocal effect reduces by increasing of radius. Furthermore, with further 

increase of radius the curves become smooth in nature. Approximately, at 50 nma  all results converge to the 

classical frequencies  0l  = 0ie . This insinuates that the nonlocal effect decreases with growth of the plate radius and 

disappears after a certain radius. This may be explained that the wave length gets larger by decreasing of radius 

which increases the effect of the small scale parameter. Moreover, the non-dimensional natural frequency for 

annular nanoplate with in-plane pre-load is smaller than that without in-plane pre-load. The influence of nonlocal 

parameter is larger for annular nanoplate with in-plane pre-load in comparison with annular nanoplate without in-

plane pre-load. Further, at annular nanoplate with in-plane pre-load all results converge to the local frequency 

 0l  = 0ie  at higher radiuses. It is seen that influence of nonlocal effect is higher for annular nanoplate with in-plane 

pre-loads. 

 

 

 

 
(a) 

 
(b) 

 
(c) 

 

Fig.6 

Change difference percent frequency of circular nanoplate versus a) dimensionless Winkler elastic factor, b) dimensionless shear 

elastic factor, c) dimensionless damping modulus for low and high temperature case and various temperature changes. 
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Fig. 7 

Variation of non dimensional frequency with outer radius of 

an annular graphene sheet for various nonlocal parameters 

with non-dimensional in-plane pre-load and without in-

plane pre-load. 

 

 

Fig.8 shows the comparison of the non-dimensional frequency parameters for four boundary conditions of 

annular nanoplates. To illustrate the effect of boundary condition on frequency response, in this section we plot the 

non-dimensional natural frequency parameters for different nonlocal parameters and four cases different boundary 

conditions of annular nanoplate. Here, the outer radius of annular nanoplate and aspect ratio are 10 nm and 0.5 

respectively. From this figure it is seen that frequency parameters increase with decrease of nonlocal parameter for 

all boundary conditions. As seen from Fig. 8, the small scale effect also depends on the boundary conditions. As the 

boundary conditions became flexible, the small scale effect kept on decreasing. The small scale effect for SS case is 

much less than that for CC case. Furthermore, effects of small scale on the frequency of the annular nanoplate for 

CC, CS, SC and SS boundary conditions are in decreasing order. Therefore, in the vibration analyses it is needful to 

include the nonlocal elasticity theory for stiffer boundary conditions.  

We introduce a term ‘frequency shift percent’ (FSP) for the present study. Frequency shift percent is defined as: 

 

 elastic medium  elastic medium

 elastic medium

 shift percent= 100
 




with without

without

frequency  
 

 

 

Variation of frequency shift percent with nonlocal parameter is shown for first mode of vibration Fig.9. The non-

dimensional parameter of elastic medium such as shear modulus parameter GK , Winkler modulus parameter WK  

and damping modulus of damper Cd
 for the surrounding polymer matrix is gotten 10, 400 and 100 respectively. The 

value of damping modulus damper was applied by Ghorbanpour arani et al. [43, 44]. The curves show that the 

frequency shifts are sensitive to the modulus of the surrounding elastic medium. Also, the frequency shift of shear 

and spring mediums are maximum and minimum, respectively and visco-Pasternak case located between. As can be 

seen, the frequency shift increases by increasing the elastic foundation stiffness and decrease as nonlocal parameter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 

Change of dimensionless frequency parameters for the four 

cases different boundary conditions and nonlocal parameter. 
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Fig. 9 

Effect of elastic medium on the frequency shift percent for 

different nonlocal parameter. 

6    CONCLUSIONS 

This study illustrates the significance of small scale effects on the vibration behavior of SLGSs under in-plane pre-

stressed via nonlocal continuum mechanics. The closed form solutions for the free vibration nanoscale annular 

nanoplates are obtained. Results for annular graphene sheets with simply supported and clamped edges are 

presented. From the results, the following conclusions are noticeable: 

 By increasing in-plane tensile pre-stress the natural frequencies increases and the higher in-plane 

compressive pre-stress leads to lower natural frequencies. 

 In the case of compressive in-plane pre-stressed the frequency fraction will increase with the radius of 

nanoplate increasing and in-plane pre-stressed. 

 At smaller radius of annular nanoplate, the effect of in-plane pre-stressed is more important. 

 By increasing radius, the influence of nonlocal effect reduces. 

 The influence of nonlocal effect is higher for annular nanoplate with in-plane pre-stressed. 

 The non-dimensional natural frequency decreases at high temperature case with increasing the temperature 

change. 

 The effect of temperature change on the non-dimensional frequency vibration becomes the opposite at low 

temperature case in comparison with the high temperature case. 

 The nonlocal effect also depends on the temperature change. The influence of nonlocal effect for higher 

temperature case is much more than that for room temperature case. 

 The effect of nonlocal parameter increases with increasing the temperature change. 

 The difference percent increases monotonically by increasing the nonlocal parameter. 

 The difference between low and high temperature cases increases with increasing the temperature change. 

 The effect of temperature on the frequency vibration increases with increasing the radius of annular 

nanoplate. 

 The effects of small length scale and surrounding elastic medium are significant to the mechanical behavior 

of nanoplates or SLGSs and cannot be ignored. 
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