
 

© 2011 IAU, Arak Branch. All rights reserved.                                                                                                    

 

Journal of Solid Mechanics Vol. 3, No. 3 (2011) pp. 283-297 

On the Dynamic Characteristic of Thermoelastic Waves in 
Thermoelastic Plates with Thermal Relaxation Times 

K.L. Verma* 

Department of Mathematics, Government Post-Graduate College Hamirpur, (H.P.) 177005, India 

Received 31 July 2011; accepted 17 September 2011 

 ABSTRACT 

 In this paper, analysis for the propagation of general anisotropic media of finite thickness with two 
thermal relaxation times is studied. Expression of displacements, temperature, thermal stresses, 
and thermal gradient for most general anisotropic thermoelastic plates of finite thickness are 
obtained in the analysis. The calculation is then carried forward for slightly more specialized case 
of a monoclinic plate. Dispersion relations for symmetric and antisymmetric wave modes are 
obtained. Thermoelastic plates of higher symmetry are contained implicitly in the analysis. 
Numerical solution of the frequency equation for a representative plate of assigned thickness is 
carried out, and the dispersion curves for the few lower modes are presented. Coupled 
thermoelastic thermal motions of the medium are found dispersive and coupled with each other 
due to the thermal and anisotropic effects. Some special cases have also been deduced and 
discussed. 
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1    INTRODUCTION 

TUDIES of the propagation of elastic waves have long been of interest to researchers [1-6] in the fields of 
geophysics, acoustics, and nondestructive evaluation [7-10]. Fiber-reinforced composites have extremely 

advantageous engineering properties and applications including their relatively low weight, high stiffness and 
damage tolerance that make them very significant for aerospace and other recent structural applications. This 
interest has been encouraged by the recent expansion of the use of composite materials which are anisotropic in 
nature have wide variety of applications [11]. In comparison with the reasonable rich literature on the interaction of 
plane harmonic waves in anisotropic media, very little work is available on the response of such media to 
concentrated source loadings.  

Classical theory [12, 13] of thermal conduction, based on the Fourier law, implies an immediate response to a 
temperature gradient and leads to a parabolic differential equation for the evolution of the temperature. In contrast, 
when thermal relaxation effects are taken into account in the constitutive equation describing the heat flux, as, for 
instance, in the Maxwell Cattaneo equation, one has a hyperbolic equation which implies a finite speed for heat 
transport. Extensive literature survey on the subject can be found in the review articles by [14, 15]. While several 
models have been developed to incorporate the hyperbolic heat conduction equation into thermoelasticity theory 
[16], two models which are considered landmarks in the field of generalized thermoelasticity are described here.  

A single time constant to dictate the relaxation of thermal propagation, as well as the rate of change of strain rate 
and the rate of change of heat generation introduced in [17]. This coupled generalized thermoelasticity model as 
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described by Lord and Shulman, henceforth referred to as the LS Model, and on the other hand, [18] (referred to as 
the GL theory) extended the coupled theory of thermoelasticity by introducing two thermal relaxation times in the 
constitutive equations, in which the thermal and thermo-mechanical relaxations are governed by two different time 
constants. It can also be seen that not only does the mechanical field depend on the heat flux but also on the 
temporal gradient of heat flux. Therefore, the GL model predicts a finite wave propagation speed for both the 
thermal and mechanical fields. In comparison to the classical theory, there is a strong coupling between the thermal 
and mechanical fields.  

Generalized theory of thermoelasticity extended to anisotropic heat conducting elastic materials by [19] and [20], 
several others authors [21-27] have considered the propagation of generalized thermoelastic waves in plates with 
one or two thermal relaxation times.  The propagation of thermoelastic waves in anisotropic periodically laminated 
composites [28], considering a single thermal relaxation time is studied. Wave propagation in plates of general 
anisotropic media in generalized thermoelasticity considering with a single thermal relaxation time is studied in [29] 
and this work is extended to study the propagation of waves in layered anisotropic media [30]. Thermoelastic 
wave’s problems in thin plates considered with one or two thermal relaxation times by [31-32]. The generalized 
coupled thermoporoelasticity model of hollow and solid spheres under radial symmetric loading condition is 
considered by [33]. 

In this manuscript, analysis for the propagation of generalized thermoelastic waves in thermoelastic plates of 
general anisotropic media of finite thickness in Lord and Shulman and Green and Lindasy theories of 
thermoelasticity is considered and studied. Expressions for displacements, temperature, thermal stresses, and 
thermal gradient for the case of most general anisotropic thermoelastic plates of finite thickness are obtained.  
Calculations are then carried forward for a more specialized case of a monoclinic plate and dispersion relations for 
this case in closed form and separate the mathematical conditions for symmetric and antisymmetric are obtained. 
Thermoelastic plates of orthotropic, transversely isotropic, cubic and isotropic are contained implicitly in the 
analysis Numerical solution of the frequency equations for plate of assigned thickness is carried out, and the 
dispersion curves for the few lower modes are presented for a representative thermoelastic plate. Coupled 
thermoelastic thermal motions of the medium are found dispersive and coupled with each other due to the thermal 
and anisotropic effects.  Some special cases such as coupled thermoelasticity and classical have also been deduced 
and discussed. 

2    MATHEMATICAL FORMULATION 

Consider an infinite, generally anisotropic thermoelastic plate at uniform temperature T0, having thickness 2d, whose 
normal is aligned with the x3- axis of a reference Cartesian coordinate system 1 2 3( , , ).ix x x x=  The mid-plane of the 

plate is chosen to coincide with the 1 2x x  plane. The basic field equation of generalized thermoelasticity with two 

thermal relaxation times in the absence of body forces and heat sources of the plate are [27] 
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Parameters in Eqs. (1) and (2) are:   is the density, t is the time, iu is the displacement in the  ix  direction,  ijK  

are the thermal conductivities,  eC  and 0 are respectively the specific heat at constant strain, and thermal relaxation 

time, ij  and ije  are the stress and strain tensor respectively; ij  are thermal moduli; ij  is the thermal expansion 

tensor; T is temperature; and the fourth order tensor of the elasticity ijklC  satisfies the (Green) symmetry conditions: 

 
, , .     jkl klij ijlk jikl ij ji ij jiC C C C K K  (4)
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The parameter 1  and 0  are the thermal-mechanical relaxation time and the thermal relaxation time of the GL 

theory and satisfy the inequality 1 0 0. ³ ³  

The thermal conductivity tensor Kij is symmetric and positive-definite. The thermoelastic coupling tensor ij is 
non-singular. The specific heat Ce at constant strain is positive. The isothermal linear elasticities are positive-definite 
in the sense that 

 
0.ijkl ij klC e e   (5)

 

3    ANALYSIS 

Assume that solutions of Eqs. (1) and (2) are expressed by 
 

[ ]1 1 2 2 3 3( , ) ( , , , ) exp i ( ) , i 1,   1,2,3.ju T U V W n x n x n x ct j= + + - = - =  (6)
 

 
where  is the wave number, c is the phase velocity (/),  is the circular frequency, ,  ,   U V W and   are the 
constants related to the amplitudes of displacement and temperature, n1, n2 , n3  are the components of the unit vector 
giving the direction of propagation. 

Substituting Eq. (6) into Eqs. (1) and (2), we have 
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and ik  is the Kronecker delta, and ik  is the isothermal acoustic tensor defined as follows: 
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Now Eqs. (7) and (8) provide a non-trivial solution for jU  and  if the determinant of their coefficients 

vanishes. This leads to 
 

{ }2 2 1 2 2 2
0det det[ ] det 0,ik ik e ik ik ik ikc c KC c c c           -é ù é ù- + - - - =ê ú ê úë û ë û  (11)

 

 
where 
 

0, .ip kq p q
ij j l ik ik

e

T n n
K K n n

C

 
 

 = = +
*

 (12)
 

 
Are the effective thermal conductivity for linear heat flow in the direction of n and the isentropic acoustical 

tensor [5] and in 2det[ ]ik ijA c - , 

 
or .ik ik ikA  =  (13)

 

 
For an infinite anisotropic body, when ni  are given, four phase velocities can be obtained by Eq. (11). For the 

finite thickness plate, we can obtain n3 from Eq. (11), when n1 and n2 are given. On the other hand, this equation can 
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be written as bi-quadratic polynomial equation in n3. Designate roots of this Eq. (11) as 2m  2
31 2 3 4( , , , )m n= =  

and write the displacements and temperature as follows: 
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where 3 3exp( ),  exp( ),m m m mE i n E i n + -= = - ( 1,2,3, 4)m =  and ( ) ( ) ( ) ( ), ,  and  i i i iU V W  , ( 1,2,...8)i =  are disposable 

constants. The sets of eight disposable constants for ( ) ( ) ( ) ( ), ,   and  i i i iU V W   are not independent as they are coupled 
through the equation of motion and the equation of heat conduction. Using Eqs. (7) and (8) we obtain 
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where 
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Now Eqs. (15) and (16) satisfy Eq. (7) and contain eight undefined constants. From Eqs. (15) and strain tensors 

can be expressed as follows: 
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The stress tensor and temperature gradient are 
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It should also be noted that triclinic materials (and indeed all materials) are, of course, invariant under the 

identity operation. 

4    MATERIAL SYSTEMS OF ADVANCED SYMMETRY 

Monoclinic materials are materials having one plane of mirror symmetry. For a heat conducting monoclinic 
materials having x1-x2 as a plane of mirror symmetry, and x1-x3 as the plane of incidence, then via the equation of 
motion and heat conduction for monoclinic plate, solutions of Eqs. (6) with 1 3 1( ,0, ) ( ,0, ),n n n =  where 1n sin,  

is an angle of incidence and   is still an unknown parameters, , ,   and  U V W  are respectively the amplitudes of 

the displacements 1 2 3, ,u u u  and temperature T. Although solutions are explicitly independent of x2, an implicit 

dependence is contained in the transformation and the transverse displacement component u2 is non-vanishing in 
Eqs. (7). The choice of solutions leads to four coupled equations  
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For Eq. (23) have a non-trivial solution if the determinant of the coefficients of , ,   and  U V W   vanishes, which 

yields an algebraic equation relating   to c. We obtain an eighth-degree polynomial equation in   which can be 
written as 
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where C0, C1, C2 , C3 and C4  are coefficients of polynomial. Eq. (26) admits eight solutions for   (having the 
properties) 
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Specializing the equation for thermoelastic monoclinic material, we have 
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Incorporating Eqs. (27) in (29) and inspecting the resulting relations, we conclude that monoclinic symmetry 

implies the further restrictions. 
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5    DISPERSION RELATIONS 

The dispersion relation associated with the plate is now derived from Eqs. (20) and (21) by applying traction free 
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On simplifying above equations we have 
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The symmetry of the plate allows us to simplify the system of eight homogeneous equations in eight unknowns 

into two systems of four equations in four unknowns, which on employing straight forward algebraic manipulations, 
yield the following relations associated with the plate 
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within which  
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The condition that the system of Eqs. (34) and (35) admit a non-trivial solution give rise to the dispersion 

relations associated extensional with and flexural waves respectively. 

6    ANTISYMMETRIC DISPERSION RELATION 

The dispersion relation associated with anti symmetric waves is obtained by taking ( 2 1) ( 2 ) ,m mV V- =  thus 
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Therefore, system of Eqs. (34)-(35) admit a non-trivial solution provided the determinant of coefficients 

associated with these equations vanishes, which after a little and straight forward algebraic manipulation, may cast 
in the form 
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Corresponding to symmetric and anti symmetric thermoelastic modes, respectively, with 
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Thus far we have obtained characteristic Eq. (38) associated with flexural waves monoclinic materials in 
generalized thermoelasticity with two thermal relaxation times. These results are also valid for higher symmetry 
classes, such as orthotropic, transversely isotropic, cubic and isotropic. 

7    SYMMETRIC DISPERSION RELATION 

The dispersion relation associated with symmetric waves equation is obtained by taking (2 1) (2 ),m mV V- =-  and 
determinant of coefficients of Eqs. (34)-(35) yields the dispersion relation associated with extensional waves, 
namely 
 

1
1

2
33( )

1,3,5,7

( 1) cot( ) 0.
j

j k j
j

r G 
æ ö+ ÷ç ÷-ç ÷ç ÷çè ø

=

- =å  (41)
 

 

Thus 1 3,u u  and T  have the form 
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where 1 3 5 7, ,  an d  G G G G , are defined in Eqs. (39). Thus so far we have obtained characteristic Eq. (41) 

associated with extensional waves monoclinic materials in generalized thermoelasticity with two thermal relaxation 
times. These results are also valid for higher symmetry classes, such as orthotropic, transversely isotropic, cubic and 
isotropic. 

8    MATERIALS OF ADVANCED SYMMETRY CLASSES 

Higher symmetry class’s materials, such as orthotropic, transversely isotropic, cubic and isotropic, possess two 
orthogonal axes of symmetry in the plane of the plate, therefore taking advantage of simplifications in the 
definitions of the ijM  in Eq. (24), characteristic equation for higher symmetry classes are obtained as special cases. 

For off-principal axes propagation, one needs to assume that further appropriate restrictions on the number of non-
zero thermoelastic constants of the monoclinic case. If x1 and x2 are chosen to coincide with the in-plane principal 
axes for orthotropic symmetry, then we have 
 

6 45 120, 0, 0. ( 1,2,3)jc c j= = = =  (43)
 

 
Results for possessing transverse isotropy, whose x1 axis is normal to the plane of isotropy, can be easily 

obtained by the additional conditions imposed by symmetry for cubic symmetry and finally, for the isotropic case. 
Particularizing ijM  of Eq. (24) for orthotropic media in this case, inspection of the resulting entries leads to the 

conclusion that, for propagation along rotational symmetry axes, the matrix elements c16, c26, c36, c45 and 12 also 
vanish. This simplification of the thermoelastic constants has implications for the analysis commencing at Eq. (24). 
Of greatest importance is the fact that M12, M23 and M42 in Eq. (24) Vanish. This means that SH wave motion 
decouple from the rest of the motion, as a consequence, Eq. (23), to reduces to  
 

6 4 2
1 2 3 0,A A A  ¢ ¢ ¢+ + + =  (44)

 

 
and 
 

2 2
3 6 0.c c  + - =  (45)
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Notice that roots of Eq. (33) correspond to the SH motion, gives a purely transverse wave, which is not affected 
by the temperature. This wave propagates without dispersion or damping. Eq. (45) corresponds to the sagittal plane 
waves, and has been studied in detail Verma and Hasebe [34].  

The results of Eqs. (38) and (41) constitute the characteristic equations for anti symmetric and symmetric modes 
for waves propagating in thermoelastic plate in generalized thermoelasticity with two thermal relaxations time. The 
wave types uncouple since the wave vector is along the axis of symmetry. Furthermore, the relation Eqs. (38) and 
(41) implicitly includes corresponding results for higher materials, one only needs to exploit the appropriate 
restrictions on the thermoelastic properties . 

9    SPECIAL CASES 

Classical case: In this case the thermo-mechanical coupling constant 1  is identically zero, and therefore from Eq. 

(31) we have 
 

41 42 43 0.M M M= = =  (46)
 

 
The Eq. (31) with the help of Eq. (46) reduces to, 

 
6 4 2

44 1 2 3( ) 0,E E E EM A A A   + + + =  (47)
 

 
where 1 2, , E E EA A  and 3EA  are defined in the Appendix, and Eq.(47) gives us 
 

2 2 2
44 1 1 0,M n K  *= - + =  (48)

 

6 4 2
1 2 3 0.E E E EA A A   + + + =  (49)

 

 

Eq. (48) implies 2 2 2
1 1 0,n K  *- + =  which corresponds to the pure thermal wave, evidently it is influenced 

by the thermal relaxation time 0  only and not based on LS theory. Secular Eq. (49) corresponds to the purely 
anisotropic elastic material, which is obtained and discussed by [34]. In the case of orthotropic materials, Eq. (44) 
reduces to, 

 
4 2 2

1 2 2 33 1 11 13 11 33( ) 0,c c c F c F F F F + - - + =  (50)
 

2 2 2
1 1 0,n K  *- + =  (51)

 

 
which corresponds to the thermal wave and is the same as above. Clearly, this again is influenced by the thermal 
relaxation time 0 only of LS theory and not 1 concerned in the GL theory, and Eq. (50) is a secular equation 
corresponds to a purely orthotropic elastic material [35].  

Coupled thermoelasticity: when 0 1 0, = =  and hence we have /g i  = = . This is the case of coupled 

thermoelasticity, proceeding on the same lines; we again arrived at frequency equations of the form that is in 
agreement with the corresponding result [1, 36]. If 1 0 0, = ¹  become the frequency equations in the theory of 

generalized thermoelasticity with one thermal relaxation time [35] for anisotropic media. 

10    NUMERICAL DISCUSSION 

Numerical illustrations of the analytical characteristic equations are presented in the form of dispersion curves. 
Dispersion and Damping curves are plotted wave number Vs phase velocity. To find the numerical solutions of a 
characteristic equation, analytic function is solved by assuming physical reference [36] of the numerical constants:  
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11 -2 11 -2 11 -2
11 12 13

11 -2 11 -2 3 -3
33 44

6 -2 -1 6 -2 -1 2 -1
1 3

1.628 10 N m ,   0.362 10 N m ,   0.508 10 N m ,

0.627 10 N m ,  0.385 10 N m ,  7.14 10   kg m ,

5.75 10 N m  deg ,   5.07 10 N m  deg ,  3.9 10  J kg m  deg,  e

c c c

c c

C

K



 

= ´ = ´ = ´

= ´ = ´ = ´

= ´ = ´ = ´
2 -1 -1 2 -1 -1

1 3 0 11.24 10 W m  deg ,   1.24 10 W m  deg ,  296 ,   = 0.0221.K T K = ´ = ´ =

  

 
Dispersion curves in the forms of variations phase velocity (dimensionless 11/ /d c = ) versus frequency 

(dimensionless / 2d = ) are constructed at different values of times relaxation time ratios 
7 7 7 7

1 04.0 10 s,  10.0 10 s,  20.0 10 s and 2.10 s, - - - -= ´ ´ ´ =  considering 1 0 0, ³ ³  for the first six lower modes of 

zinc  plate in Figs. 1-12 in the generalized theories (Green and Lindasy (GL) & Lord and Shulman (LS)) of 
thermoelasticity and Figs. 13 and 14 in the classical theory (CT) of thermoelasticity (no relaxation time). 

Dispersive character of quasi-longitudinal(QL), quasi-transverse(QL), and quasi-thermal(T-mode), wave modes 
are demonstrated in  Figs. 1, 5 and 9 for anti symmetric modes, and in Figs. 3, 7 and 11 for symmetric modes in the 
Green and Lindasy GL) theory of thermoelasticity on considering  the thermal relaxation time 

7 7 7
1 4.0 10 s,  10.0 10 s,  and 20.0 10 s - - -= ´ ´ ´  and 7

0 2.10 s, -=  respectively. Likewise, in Figs. 2, 6, and 10 for 

anti symmetric, and in Figs. 4, 8 and 12 for symmetric modes, thermoelastic dispersive character of quasi-
longitudinal, quasi-transverse and quasi-thermal waves are demonstrated on account of  the Lord  and Shulman (LS) 
theory  of thermoelasticity. When 0 1 and    are set equal to zero (no relaxation time), Figs. 13 for anti symmetric 

thermoelastic and Fig. 14 for symmetric thermoelastic modes are demonstrated in the classical theory (CT) of 
thermoelasticity. From the Figs it is observed that three waves namely, quasi-longitudinal (QL), quasi-transverse 
(QT) and quasi-thermal (T-mode) of the medium are found coupled with each other due to the thermal and 
anisotropic effects. The wave-like behavior of the quasi-thermal modes is characterized in the thermoelasticity 
theory in both theories. Lower symmetric and anti symmetric modes are found more influenced by the thermal 
relaxation times at low values of wave number. The effect of thermal relaxation times is observed to be small as the 
inclusion of thermal relaxation times increases the amount of dissipation. It is also observed that both the anti 
symmetric and symmetric wave’s mode have certain features in common with their equivalents and these modes 
tend to uncoupled as the lower order anti symmetric and symmetric modes for large wave number and  approach to 
the Rayleigh velocity, while higher modes asymptote to shear velocity for large wave number.  
 
 

 
 

Wave Number (Non-dimensional) 

Fig. 1 
Dispersion of anti symmetric wave modes in GL theory of 

generalized thermoelasticity when 7
0 2 10 s    and 

7
1 4 10 s. -= ´  

   

 
 

Wave Number (Non-dimensional)

Fig. 2 
Dispersion of anti symmetric wave modes in LS theory of 

generalized thermoelasticity when 7
0 2 10 s.    
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Wave Number (Non-dimensional)

Fig. 3 
Dispersion of symmetric wave modes in GL theory of  

generalized thermoelasticity when 7
0 2.10 s    and 

7
1 4.10 s  . 

   
   

 
 

Wave Number (Non-dimensional)

Fig. 4 
Dispersion of symmetric wave modes in LS theory of 

generalized thermoelasticity when 7
0 2 10 s. -= ´  

   

   

 
 

Wave Number (Non-dimensional)

Fig. 5 
Dispersion of anti symmetric wave modes in GL theory of 

generalized thermoelasticity when 7
0 2 10 s -= ´  and 

7
1 10 10 s. -= ´  

   

   

 
 

Wave Number (Non-dimensional)

Fig. 6 
Dispersion of anti symmetric wave modes in LS theory of 

generalized thermoelasticity when 7
0 4 10 s. -= ´  
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Wave Number (Non-dimensional)

Fig. 7 
Dispersion of symmetric wave modes in GL theory of 

generalized thermoelasticity when 7
0 2 10 s -= ´  and 

7
1 10 10 s. -= ´ . 

   

 
 

Wave Number (Non-dimensional)

Fig. 8 
Dispersion of symmetric wave modes in LS theory of 

generalized thermoelasticity when 7
0 4 10 s -= ´ . 

   

   

 
 

Wave Number (Non-dimensional) 

 

 
 
 
 
 
 
 
 
Fig. 9 
Dispersion of anti symmetric wave modes in GL theory of 

generalized thermoelasticity when 7
0 2 10 s -= ´  and 

7
1 20 10 s. -= ´  

   

 
 

Wave Number (Non-dimensional) 

 

 
 
 
 
 
 
 
 
 
Fig. 10 
Dispersion of anti symmetric wave modes in LS theory of 

generalized thermoelasticity when 7
0 10 10 s. -= ´  
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Wave Number (Non-dimensional)

Fig. 11 
Dispersion of anti symmetric wave modes in GL theory of 

generalized thermoelasticity when 7
0 2 10 s -= ´  and 

7
1 20 10 s. -= ´  

   

   

 
 

Wave Number (Non-dimensional) 

Fig. 12 
Dispersion of symmetric wave modes in LS theory of 

generalized thermoelasticity when 7
0 10 10 s. -= ´  

   
   

 
 

Wave Number (Non-dimensional)

Fig. 13 
Dispersion of anti symmetric wave modes in CT theory of 
thermoelasticity (no thermal relaxation time). 

   

   

 
 

Wave Number (Non-dimensional)

Fig. 14 
Dispersion of symmetric wave modes in CT theory 
of thermoelasticity (no thermal relaxation time). 
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11    CONCLUSIONS 

In this article, exact formal solution for the displacements, temperature and thermal stresses, temperature gradient in 
an infinite plate of arbitrary anisotropy of finite thickness are derived for the generalized theory of thermoelasticity 
with two thermal relaxation times. Dispersion relations are derived for thermoelastic waves for more specialized 
case of a monoclinic plate, dispersion relations for symmetric and anti symmetric are then derived in separate form. 
Results for thermoelastic plates of higher symmetry materials are implicitly contained in the analysis.  The SH wave 
gets decoupled from the others motion and is not affected by thermal variations, if propagation occurs along an in-
plane axis of symmetry and propagates without dispersion or damping. It is observed that GL, and LS theories, 
derived from distinctively different physical assumptions and physical laws, the spectral behaviors described by both 
theories is qualitatively similar. They resolve three waves, quasi-longitudinal (QL), quasi-transverse (QT) and quasi-
thermal (T-mode). 
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APPENDIX  

2 2 2
1 1 6 11 6 13 5 13 23 5 33 2 23 1 5 12 5 21 23 2 6 33( 2 ),EA c c F c F c F F c F c F c c F c F F c c F= - + - - - + +  (A.1) 

2 2 2
2 11 23 13 22 6 11 33 1 11 22 1 12 12 13 23 5 12 33 2 22 33( 2 2 ),EA F F F F c F F c F F c F F F F c F F c F F= - + + - + + +   (A.2) 

2 2
3 11 22 12 33 2 6 5 1( ) , ( ) ,E EA F F F F c c c c= - = -   (A.3) 

2 2 2 2 2 2 2
11 1 12 4 1 13 7 1 22 3 1 23 8 1 33 2 1, , , , , .F n F c n F c n F c n F c n F c n   = - = = = - = = -   (A.4) 
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