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 ABSTRACT 

 The bending behavior of composites sandwich plates with multi-layered laminated face 

sheets has been investigated, using a new four-nodded rectangular finite element 

formulation based on a layer-wise theory. Both, first order and higher-order shear 

deformation; theories are used in order to model the face sheets and the core, 

respectively. Unlike any other layer-wise theory, the number of degrees of freedom in 

this present model is independent of the number of layers. The compatibility conditions 

as well as the displacement continuity at the interface ‘face sheets–core’ are satisfied. 

In the proposed model, the three translation components are common for the all 

sandwich layers, and are located at the mid-plane of the sandwich plate. The obtained 

results show that the developed model is able to give accurate transverse shear stresses 

directly from the constitutive equations. Moreover, a parametric study was also 

conducted to investigate the effect of certain characteristic parameters (core thickness 

to total thickness ratio, side-to-thickness ratio, boundary conditions, plate aspect ratio, 

core-to-face sheet anisotropy ratio, core shear modulus to the flexural modulus ratio 

and degree of orthotropy of the face sheet) on the transverse displacement variation. 

The numerical results obtained by our model are compared favorably with those 

obtained via analytical solution and numerical/experimental, results obtained by other 

models. The results obtained from this investigation will be useful for a more 

comprehensive understanding of the behavior of sandwich laminates. 

                                                 © 2016 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 URRENTLY, composite sandwich structures gained considerable attention and became increasingly 

important in different engineering fields (e.g. civil, aerospace, marine), due to their rigidity-and-resistance to 

weight ratios. However, there are still questions on the complexity of the behavior of these structures. The effect of 

shear deformation is quite significant which may lead to failure and becomes more complex in case of sandwich 

construction, as the material property variation is very large between the core and face layers [1]. Moreover, an 

accurate estimation of stress components, specifically the transverse shear stresses, plays an important role in 

reducing these failures [2].  

In the literature, several two-dimensional theories have been proposed to study the behavior of composite 

sandwich structures. Starting by the simple classical laminated plate theory (CLPT), based on the Kirchhoff’s 

assumptions [3], which does not includes the effect of the transverse shear deformation [4-6], the  first order  shear 
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deformation  theory (FSDT), where the effect of the transverse shear deformation is considered [7-10], but taken 

constant through the thickness, and the higher order shear deformation theories (HSDT) where a better 

representation of transverse shear effect can be obtained [11-16]. All these theories falls within the equivalent single 

layers (ESL) theories. 

However, the ESL approach is unable to predict accurately the local behavior (e.g. interlaminar stresses) of 

sandwich structures. For that reason, many researchers developed more accurate theories such as the zig–zag 

theories (ZZT) [1, 17-22] and the global-local higher order shear deformation theories (GLHSDT) [23-27]. 

Recently, various works have adopted the layer-wise theories (LW) [28-37] to assume separate displacement field 

expansions within each material layer, thus providing a kinematically correct representation of the strain field in 

discrete laminated layer, and allowing accurate determination of ply level stresses [38]. For more details the reader 

may refer to [38-43].  

In the finite elements development, many researchers have adopted the layer-wise theory for the sake of a good 

description of sandwich structures. On this topic, we can distinguish the work of Wu and Lin [35] where a two-

dimensional mixed finite element based on higher order layer-wise model is presented for the analysis of thick 

sandwich plates. The displacement continuity at the interface is satisfied as well as the interlaminar stresses. These 

authors proposed for each layer, a cubic and quadratic polynomial functions for in-plane and transverse 

displacements, respectively. Afterwards, Lee and Fan [28] describe a new model using the first order shear 

deformation theory for the face sheets, whereas the displacement field at the core is expressed in terms of the two 

face sheets displacements. In this model, the transverse shear strain varies linearly while the transverse normal strain 

is constant through the thickness of the core. They used a nine-nodded isoparametric finite element to study the 

bending and vibration of sandwich plates. On the other hand, a three-dimensional (3D), layer-

wise finite element model was developed by Oskooei and Hansen [31] to analyze the sandwich plates with 

laminated face sheets. They used the first order shear deformation theory for the face sheets, whereas for the core a 

cubic and quadratic, functions for the in-plane and transverse, displacements, was adopted. In addition, an eighteen-

node three-dimensional brick mixed finite element with six degrees of freedom (6 DOF) per node based on layer-

wise theory has been developed by Ramtekkar et al. [44, 45] for an accurate evaluation of transverse stresses in 

laminated sandwich. In this model, the continuity of displacements as well as the transverse stresses is satisfied. In 

the same context, Linke et al. [29] developed a three-dimensional displacement finite element containing eleven 

DOF at each node (each face-sheet contains five DOF per node and only one DOF in the core) for static and stability 

analysis of sandwich plates. The formulation of this element is based on the layer-wise approach, where the face 

sheets are represented as an elements of classical plate theory and the core is represented by the third order shear 

deformation theory (TSDT). The in and out-of, plane displacements of the core assume a cubic and quadratic 

variation, respectively. Later, a forty-five nodes triangular element having seven DOF per node was developed by 

Ramesh et al. [33] for accurate prediction of interlaminar stresses in laminated composite plates. The construction of 

this element is based on two theories; the third order shear deformation theory and the layer-wise plate theory of 

Reddy [34]. Recently, Mantari et al. [30] presented a new layer-wise model using a trigonometric displacement field 

for in-plane displacements and constant out-of plane displacements through the thickness. The authors used a C
0
 

four-node isoparametric quadrilateral element to study the bending of thick sandwich panels. 

In the present paper, the bending behavior of sandwich plates with laminated composites face sheets has been 

investigated by using a new four-nodded rectangular finite element formulation based on a layer-wise theory. The 

face sheets are modeled based on the first order shear deformation theory, whereas the core is modeled using the 

third-order shear deformation plate theory. Unlike any other layer-wise theory, the number of degrees of freedom is 

independent of the number of layers. The performance of the proposed formulation is assessed by several study 

cases, considering different aspect ratios, loadings and boundary conditions. The obtained numerical results can be 

compared with the analytical solutions given by Pagano [46], the experimental results obtained by Kanematsu et al. 

[47] and the numerical results found by finite elements models [1, 17, 18, 22]. The second objective of this paper is 

to investigate the influence of material property parameters and plate geometry variables on the transverse 

displacement. 

2    MATHEMATICAL MODEL 

Sandwich plate is a structure composed of three principal layers, as shown in Fig.1, two face sheets (top-bottom) of 

thicknesses ( ), ( )t bh h respectively, and a central layer named core of thickness ( )ch  which is thicker than the 



                                                                            Bending Analysis of Composite Sandwich Plates with Laminated….                 282 

 

© 2016 IAU, Arak Branch 

previous ones. Total thickness ( )h  of the plate is the sum of these thicknesses. The plane ( , )x y  coordinate system 

coincides with mi-plane plate. 

 

   

 

 

 

 

 

 

 

Fig.1 

Geometry and notations of a sandwich plate. 

2.1 Kinematic assumptions for the core 

In the proposed model, the core is modeled using the third-order shear deformation theory (TSDT). The through-

thickness variation of in-plane displacements (u and v) and transverse displacement (w) may be expressed, 

respectively as follows: 
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where 
0 0,u v  and 

0w  are respectively,  in-plane and transverse displacement components at the mid-plane of the 

sandwich plate. ,c c

x y   represent normal rotations about the x and y axis respectively. The parameters , ,c c c

x y x     

and c

y  are higher order terms. 

The strain-displacement relationships can be written in the following form 
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   (3) 

2.2 Kinematic assumptions for the face sheets 

The face sheets are modeled using the first-order shear deformation theory (FSDT). The compatibility conditions as 

well as the displacement continuity at the interface (top face-sheet, core, bottom face-sheet), leads to the following 

improved displacement fields (Fig. 2) 
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a. Top face-sheet 
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where t

x and 
t

y  are the rotations of the top face-sheet cross section about the x and y axis, respectively. 

with, 
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Substitution of Eq. (5) into Eq. (4) leads to the following expression 
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b. Bottom face-sheet 

 

According to Fig. 2, the displacement field of the bottom face sheet can be written as: 
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where b

x and 
b

y  are the rotations of the bottom face-sheet cross section about the y and x axis respectively 

where, 
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Substituting Eq. (8) into Eq. (7), leads to the following expression 
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Fig.2 

Kinematics. 
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2.2.1 Strains 

The strain-displacement relationships of the top face-sheet are given by 
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The strain-displacement relationships of the bottom face-sheet can be written in the following form 
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2.3 Constitutive relationships 

In this paper, the two face sheets (top and bottom) are considered as laminated composite, as shown in Fig. 3. So, 

the stress-strain relationship of the thk  layer in the global coordinate system is given by 
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The core is considered as an orthotropic composite material, and the stress-strain relationships given by 
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The efforts resultants of the core are obtained by integration of the stresses through the thickness direction of 

laminated plate 
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where , ,N M N  and M , denote membrane, bending moment, higher order membrane and higher order moment 

resultants respectively. V  is the shear resultant; S and R are the higher order shear resultants. 

By introducing the constitutive equation in the expressions of the resultant stress (14) and (15), the generalized 

constitutive equations become 
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where          , , , , ,
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The elements of the reduced stiffness matrices of the core     ,  ,etc.A B  are defined by 
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and, 
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According to the first order shear deformation theory, the elements of reduced stiffness matrices of the face-

sheets are given by 
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Bottom face-sheet 
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Fig.3 

Coordinate locations of a sandwich plate having 

laminated composite faces. 

3    FINITE ELEMENT FORMULATION 

The present element, named RSFT52, is a 0C  continuous four-nodded Rectangular Sandwich plate element with 

thirteen DOF per node; based on the combination of the first order shear deformation theory and the third-order 

shear deformation plate theory. Each face-sheet has only two rotational DOF per node and the core has nine DOF 

per node: six rotational degrees and three translation components which are common for the all sandwich layers 

(Fig.4(a)). 

The nodal displacement vector of the present element is defined by 
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The field variables may be expressed as follows  
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b. Core 
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c. Top face-sheet 
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d. Bottom face-sheet 

 

       
4 4

1 1

, ,   , ,    ,                  b b b b

x i xi y i yi

i i

x y N x y x y N x y   
 

    
 

   (27) 

 

where
 iN

 
are the interpolation functions [48] associated with the node i (i = 1,2,3,4).  

For the core, the generalized strain vector of the Eq. (2) at any point of coordinates (x, y) can be expressed in 

terms of nodal displacements as follows: 
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where the matrices            0 1 2 3 0 1, , , , ,
s s

B B B B B B
     

                      and  2

s

B


   , are related the strains to nodal 

displacements.  

For the top face-sheet, the generalized strain–displacement matrices given by 
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In the same way, the generalized strain–displacement matrices for the bottom face-sheet are 
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Fig.4 

Geometry and corresponding degrees of freedom of the 

RSFT52 element. 

 

 

 

3.1 Stiffness matrix 

 

To establish the relationship between the forces and displacements, the principle of virtual work is used. 

 
  0 U W          (31) 

 

Herein U indicates the total strain energy in the sandwich and W represents the work done by the external forces. 

  denote the variation operator. 
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The total virtual strain energy of the three layers (top, core and bottom) may be written in the general form 
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The thickness of the sandwich plate is assumed to remain unchanged and, accordingly, 0z  . The expression 

for the strain energy (Eq. 33) simplifies to 

 

 

 

2

2

2

2

2

2

  

  

c

c

c

c

t

c

c

c

b

t

h

c c c c c c c c c c

xx xx yy yy xy xy xz xz yz yz
A

h

h
h

t t t t t t t t t t

xx xx yy yy xy xy xz xz yz yz
A

h

h

b b b b b b b b

xx xx yy yy xy xy xz xz

h
h

c

t

U dz dA

dz dA

          

         

        



 





 
 
 

    

   

   





 

 

    
b

b b

yz yz
A

bdz dA

 

 

 

 

 

 

   (34) 

 

The virtual work done by the external forces given by 

 

 ,   

b a

b a

W f x y w dxdy 
 

 

    
 

   (35) 

 

In which  ,f x y  is the transverse static load. 

 

a. Stiffness matrix of the core  

 

By substituting the expressions of the stress resultants (Eqs. (16) and (17)) into the strain energy expression, the 

principle of virtual work for the core becomes 
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with Eq. (28), the equilibrium equation can be expressed as follows 
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b. Stiffness matrix of the face sheets  

 

The same steps are followed to elaborate the stiffness matrix of the two face sheets, therefore: 

 

Top face-sheet 

 

        

 membrane  coupling membrane-bending   coupling bending-membrane

                          +

b a
T T T

t t t tt t t t t t

m m m f f m

e b a

f

K B A B B B B B B B

B

 

                    
                   

    

 bending

T T
t tt t t t

f c c c

shear

D B B A B dxdy          
          
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Bottom-face sheet 

 

        

 membrane  coupling membrane-bending  coupling bending-membrane

                          +

b a
T T T

b b b bb b b b b b

m m m f f m

e b a

b

f

K B A B B B B B B B

B

 

                    
                   

    

 bending

T T
b bb b b

f c c c

shear

D B B A B dxdy          
          
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Finally, the total stiffness matrix  TK  of the element is given by 

 

       t c b
TK K K K       

          
 

 

   (41) 
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4    NUMERICAL RESULTS AND DISCUSSIONS 

In this section, some problem of sandwich plates with laminated face sheets will be analyzed to assess the 

performance and applicability of the present finite element model. The obtained numerical results are compared with 

the analytical solutions given by Pagano [46], the experimental results obtained by Kanematsu et al. [47] and others 

finite elements numerical results found in literature. Table 1. shows the boundary conditions, for which the 

numerical results have been obtained, where CCCC, SSSS, CSCS and CFCF respectively indicate: clamped, simply 

supported, clamped-simply supported and clamped-free boundary conditions. 

The following non-dimensional quantities used in the present analysis are defined as: 

Non-dimensional transverse shear stresses 

 

   
0

, ,xz yz xz yz

h

q a
     

 

   (42) 

 

Non-dimensional transverse displacement 

 
3

2

4
0

100 E h w
w

a q

 
  
 
 

 
 

   (43) 

 

Table 1 

Boundary conditions used in this study. 

Boundary conditions Abbreviations Restrained edges 

Simply supported SSSS 
0

0

  0  
2

  0  
2

c c c t b

x x x x x

c c c t b

y y y y y

a
w at x

b
w at y

    

    

       

       

 

Clamped CCCC 
0 0

    0

c c c c

x y x y

c c t t b b

x y x y x y

w    

     

   

     


 

Clamped-Simply supported CSCS 

Clamped at 
2

a
x    

Simply supported at 
2

b
y    

Clamped-Free CFCF 

Clamped at 
2

a
x    

Free at 
2

b
y    

4.1 Square sandwich plate  0 / 90 / / 0 / 90C  having two-ply laminated stiff sheets at the faces with different 

boundary conditions 

 

In this example, an unsymmetrical square laminated sandwich plate, subjected to sinusoidal loading is studied. The 

thickness of each laminate layer is 0.05h, whereas the thickness of the core is 0.8h. The mechanical properties of 

materials used are listed in Table 2. Different thickness ratios (h/a = 0.01, 0.05, 0.1, 0.2, 0.25 and 0.5) and three 

types of boundary conditions (CCCC, SCSC and SSSS,) are taken into account. The values of non-dimensional 

transverse displacement and transverse shear stresses obtained in the present analysis are presented with those 

obtained from the literature [1, 18, 22, 49] in Table 3. The obtained results present a very good performance and also 

confirm the robustness of the RSFT52 element in terms of stability, rapidity of convergence and accuracy for both 

thin and thick plates. 

Moreover, we also note when 0.5h a  , the values of the transverse displacement are higher than those found 

with lower thickness ratios for both boundary conditions (CCCC and SCSC). This may be from the effect of 
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transverse flexibility of the core and shear deformation effects. Also, the thickness of the core (0.8h) which has an 

important role in the sandwich plates because, it considerably affects on the flexional rigidity. 

 
Table 2 

Material properties (normalized) used for laminated sandwiches plates. 

Materials 
Elastic properties 

1E  2E  12G  13G  23G  12 13 23v    

Core 0.04E 0.04E 0.016E 0.06E 0.06E 0.25 

Face sheets 25E E 0.5E 0.5E 0.2E 0.25 

 
 

Table 3 

Normalized maximum deflection ( )w  
 
and stresses ( ,  )xz yz   at the important points of square sandwich plate with laminated 

facings (0/90/ /0/90)C  under distributed load of sinusoidal variation with different boundary conditions. 

h

a
  References FE Models   0, ,0

2
xz

b
  

 
 

   ,0,0
2

yz
a

  
 
 

 , ,0
2 2

w
a b 
 
 

 

Boundary condition: CCCC  

0.01 

 

 

 

 

 

 

Present (8×8) 

Present (12×12) 

Present (16×16) 

Khandelwal et al. [1] 

Pandit et al. [18] 

Singh et al. [49] 

Chalak et al. [22] 

RSFT52 

RSFT52 

RSFT52 

FEM-Q9-HZZTa 

FEM-Q9-IHZZT 

FEM-Q8-HZZT 

FEM-Q9-HZZT 

0.1877 

0.1981 

0.2008 

0.2198 

0.2189 

0.2348 

0.2171 

0.1877 

0.1981 

0.2008 

0.2190 

0.2189 

- 

0.2327 

0.1075 

0.1519 

0.1778 

0.2279 

0.2286 

0.2260 

0.2267 

0.05 

 

 

 

 

 

 

Present (8×8) 

Present (12×12) 

Present (16×16) 

Khandelwal et al. [1] 

Pandit et al. [18] 

Singh et al. [49] 

Chalak et al. [22] 

RSFT52 

RSFT52 

RSFT52 

FEM-Q9-HZZT 

FEM-Q9-IHZZT 

FEM-Q8-HZZT 

FEM-Q9-HZZT 

0.1639 

0.1694 

0.1682 

0.1661 

0.1828 

0.2004 

0.1568 

0.1639 

0.1694 

0.1682 

0.1661 

0.1828 

- 

0.2319 

0.4166 

0.4226 

0.4245 

0.4299 

0.4296 

0.4462 

0.4283 

0.1 

 

 

 

 

 

 

Present (8×8) 

Present (12×12) 

Present (16×16) 

Khandelwal et al. [1] 

Pandit et al. [18] 

Singh et al. [49] 

Chalak et al. [22] 

RSFT52 

RSFT52 

RSFT52 

FEM-Q9-HZZT 

FEM-Q9-IHZZT 

FEM-Q8-HZZT 

FEM-Q9-HZZT 

0.1518 

0.1513 

0.1474 

0.1380 

0.1587 

0.1651 

0.1308 

0.1518 

0.1513 

0.1474 

0.1383 

0.1586 

- 

0.2175 

1.0538 

1.0451 

1.0443 

1.0513 

1.0489 

1.0213 

1.0484 

0.2 

 

 

 

 

 

Present (8×8) 

Present (12×12) 

Present (16×16) 

Khandelwal et al. [1] 

Pandit et al. [18] 

Singh et al. [49] 

RSFT52 

RSFT52 

RSFT52 

FEM-Q9-HZZT 

FEM-Q9-IHZZT 

FEM-Q9-IHZZT 

0.1377 

0.1336 

0.1283 

0.1240 

0.1396 

0.1422 

0.1377 

0.1336 

0.1283 

0.1242 

0.1394 

- 

3.4824 

3.4560 

3.4501 

3.4741 

3.4521 

3.3421 

0.25 

 

 

 

 

Present (8×8) 

Present (12×12) 

Present (16×16) 

Khandelwal et al. [1] 

Chalak et al. [22] 

RSFT52 

RSFT52 

RSFT52 

FEM-Q9-HZZT 

FEM-Q9-HZZT 

0.1325 

0.1279 

0.1227 

0.1228 

0.1157 

0.1325 

0.1279 

0.1227 

0.1231 

0.1766 

5.2499 

5.2157 

5.2046 

5.2470 

5.2305 

0.5 
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Pandit et al. [18] 

Khandelwal et al. [1] 

Singh et al. [49] 

Chalak et al. [22] 

RSFT52 

RSFT52 

RSFT52 

FEM-Q9-IHZZTb 

FEM-Q9-HZZT 

FEM-Q8-HZZTc 

FEM-Q9-HZZT 

0.1147 

0.1107 

0.1068 

0.1227 

0.1264 

0.1325 

0.1182 

0.1147 

0.1107 

0.1068 

0.1217 

0.1265 

- 

0.1427 

18.9206 

18.7881 

18.7406 

18.3454 

19.1560 

18.3450 

19.0444 
a Nine-node quadratic finite element solution based on higher order zigzag plate theory. 
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Table 3 

Continued. 
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  References FE Models   0, ,0

2
xz

b
  

 
 

   ,0,0
2

yz
a

  
 
 

 , ,0
2 2

w
a b 
 
 

 

Boundary condition: SCSC 

0.01 

 

 

 

 

 

 

Present (8×8) 

Present (12×12) 

Present (16×16) 

Khandelwal et al. [1] 
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Singh et al. [49] 

Chalak et al. [22] 
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RSFT52 
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FEM-Q9-IHZZT 

FEM-Q8-HZZT 

FEM-Q9-HZZT 

0.0674 

0.0703 

0.0714 

0.0782 

0.0778 

0.0944 

0.0775 

0.2774 

0.2859 

0.2868 

0.3061 

0.3086 

- 

0.3311 

0.1622 

0.2297 

0.2689 

0.3451 

0.3453 

0.3920 

0.3430 

0.05 
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Singh et al. [49] 
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RSFT52 

RSFT52 

FEM-Q9-HZZT 

FEM-Q9-IHZZT 

FEM-Q8-HZZT 

FEM-Q9-HZZT 

0.0928 

0.0962 

0.0974 

0.1075 

0.1061 

0.1542 

0.1012 

0.2301 

0.2357 

0.2333 

0.2288 

0.2527 

- 

0.3209 

0.5827 

0.5935 

0.5975 

0.6053 

0.6052 

0.6080 

0.6022 

0.1 
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Present (12×12) 

Present (16×16) 

Khandelwal et al. [1] 

Pandit et al. [18] 

Singh et al. [49] 

Chalak et al. [22] 

RSFT52 

RSFT52 

RSFT52 

FEM-Q9-HZZT 

FEM-Q9-IHZZT 

FEM-Q8-HZZT 

FEM-Q9-HZZT 

0.1248 

0.1288 

0.1302 

0.1437 

0.1418 

0.1523 

0.1366 

0.1893 

0.1881 

0.1830 

0.1711 

0.1967 

- 

0.2696 

1.2998 

1.2961 

1.2964 

1.3039 

1.3026 

1.3096 

1.2994 

0.2 
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Khandelwal et al. [1] 

Pandit et al. [18] 

Singh et al. [49] 

RSFT52 

RSFT52 

RSFT52 

FEM-Q9-HZZT 

FEM-Q9-IHZZT 

FEM-Q9-HZZT 

0.1483 

0.1530 

0.1546 

0.1708 

0.1683 

0.1620 

0.1524 

0.1476 

0.1418 

0.1369 

0.1539 

- 

3.8333 

3.8112 

3.8053 

3.8288 

3.8087 

3.8500 

0.25 
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Present (16×16) 

Khandelwal et al. [1] 

Chalak et al. [22] 

RSFT52 

RSFT52 

RSFT52 

FEM-Q9-HZZT 

FEM-Q9-HZZT 

0.1515 

0.1563 

0.1579 

0.1747 

0.1667 

0.1436 

0.1384 

0.1326 

0.1327 

0.1907 

5.6655 

5.6329 

5.6225 

5.6638 

5.6453 

0.5 

 

 

 

 

 

 

Present (8×8) 

Present (12×12) 

Present (16×16) 

Pandit et al. [18] 

Khandelwal et al. [1] 

Singh et al. [49] 

Chalak et al. [22] 

RSFT52 

RSFT52 

RSFT52 

FEM-Q9-IHZZT 

FEM-Q9-HZZT 

FEM-Q8-HZZT 

FEM-Q9-HZZT 

0.1490 

0.1538 

0.1555 

0.1691 

0.1744 

0.1721 

0.1659 

0.1223 

0.1178 

0.1135 

0.1296 

0.1338 

- 

0.1512 

20.0912 

19.9625 

19.9181 

19.5512 

20.3055 

19.5800 

20.1918 
b Nine-node quadratic finite element solution based on improved higher order zigzag plate theory. 
c Eight-nodes quadratic finite element solution based on higher order zigzag plate theory. 

Table 3 

Continued. 
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 
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   ,0,0
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a

  
 
 
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2 2

w
a b 
 
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Boundary condition: SSSS 

0.01 

 

 

 

 

Present (8×8) 

Present (12×12) 

Present (16×16) 

Pagano [46] 

Khandelwal et al. [1] 

RSFT52 

RSFT52 

RSFT52 

Elasticity solution 

FEM-Q9-HZZT 

0.1787 

0.1797 

0.1791 

0.1773 

0.1878 

0.1787 

0.1797 

0.1791 

0.1773 

0.1812 

0.4285 

0.6010 

0.6996 

0.8888 

0.8782 
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0.1 
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Pagano [46] 

Khandelwal et al. [1] 

Pandit et al. [18] 

Chakrabarti and Sheikh [17] 

Chakrabarti and Sheikh [17] 

RSFT52 

RSFT52 

RSFT52 

Elasticity solution 

FEM-Q9-HZZT 

FEM-Q9-IHZZT 

FEM-T6-RHZZT 

FEM-T6-HZZT 

0.1677 

0.1725 

0.1742 

0.1770 

0.1909 

- 

- 

- 

0.1677 

0.1725 

0.1742 

0.1770 

0.1883 

- 

- 

- 

1.7108 

1.7148 

1.7162 

1.7272 

1.7177 

1.7252 

1.7249 

1.6738 

0.2 
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Pagano [46] 

Pandit et al. [18] 

Chakrabarti and Sheikh [17] 

Chakrabarti and Sheikh [17] 

RSFT52 

RSFT52 

RSFT52 

Elasticity solution 

FEM-Q9-IHZZT 

FEM-T6-RHZZT 

FEM-T6-HZZT 

0.1666 

0.1715 

0.1732 

- 

- 

- 

- 

0.1666 

0.1715 

0.1732 

- 

- 

- 

- 

4.2552 

4.2380 

4.2320 

4.2447 

4.2517 

4.2420 

3.9798 

0.25 

 

 

 

 

Present (8×8) 

Present (12×12) 

Present (16×16) 

Pagano [46] 

Khandelwal et al. [1] 

RSFT52 

RSFT52 

RSFT52 

Elasticity solution 

FEM-Q9-HZZT 

0.1659 

0.1707 

0.1725 

0.1756 

0.1901 

0.1659 

0.1707 

0.1725 

0.1756 

0.1888 

6.1457 

6.1151 

6.1044 

6.1105 

6.1342 

4.2 A square sandwich plate ( / 90 / / / 90)C      with an angle-ply laminated stiff  sheets at the two faces 

subjected to uniformly distributed load 

 

The same the geometrical and mechanical properties from the previous example has been adopted. The plate has a 

stratification of ( / 90 / / / 90)C      and subjected to a uniformly distributed load. In this example, three 

different types of meshes (8 × 8, 12 × 12 and 16 × 16) and three thickness ratios (h/a = 0.2, 0.1 and 0.05), are 

considered. The non-dimensional results of transverse displacement at the center of the plate 

( 2,  2 et 0)x a y b z   , the transverse shear stresses ( ) xz  at the center of the left edge 

( 0,  2 et 0.4 )x y a z h     and the transverse shear stresses ( ) yz at the center of the bottom edge 

( 2,  0 et 0.4 )x a y z h     of the plate, obtained in the present analysis, for three orientation angles on the face 

sheets (0 ,  30  and 45 ) , are tabulated in Table 4. The results obtained by the present element RSFT52 are in 

excellent agreement with those obtained by Chakrabarti and Sheikh [17] et Khandelwal et al. [1]. 

 
Table 4 

Normalized maximum deflection ( )w  and transvers shear stresses ( ,  )xz yz   at the important points of a simply supported square 

sandwich plate with angle-ply laminated faces ( / 90/ / / 90)C      under uniformly distributed load. 

h

a
 References FE Models  xz   yz   w  

0   

0.2 

 

 

 

 

 

 

Present  (8×8) 

Present  (12×12) 

Present  (16×16) 

Pagano [46] 

Khandelwal et al. [1] 

Khandelwal et al. [1] 

Chakrabarti and Sheikh [17] 

RSFT52 

RSFT52 

RSFT52 

Elasticity solution 

FEM-Q9-HZZT (Const)* 

FEM-Q9-HZZT (Equil)** 

FEM-T6-HZZT 

0.3033 

0.3242 

0.3343 

0.3436 

0.3982 

0.3455 

0.3482 

0.3033 

0.3242 

0.3343 

0.3413 

0.3993 

0.3332 

- 

6.3228 

6.2940 

6.2909 

6.2981 

6.3001 

6.3001 

6.3016 

0.1 

 

 

 

 

 

 

Present  (8×8) 

Present  (12×12) 

Present  (16×16) 

Pagano [46] 

Khandelwal et al. [1] 

Khandelwal et al. [1] 

Chakrabarti and Sheikh [17] 

RSFT52 

RSFT52 

RSFT52 

Elasticity 

FEM-Q9-HZZT (Const) 

FEM-Q9-HZZT (Equil) 

FEM-T6-HZZT 

0.3110 

0.3337 

0.3447 

0.3496 

0.4142 

0.3489 

0.3612 

0.3110 

0.3337 

0.3447 

0.3503 

0.4366 

0.3397 

- 

2.6104 

2.6149 

2.6168 

2.6168 

2.6295 

2.6168 

2.6296 
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0.05 

 

 

 

 

 

 

Present  (8×8) 

Present  (12×12) 

Present  (16×16) 

Pagano [46] 

Khandelwal et al. [1] 

Khandelwal et al. [160] 

Chakrabarti and Sheikh [17] 

RSFT52 

RSFT52 

RSFT52 

Elasticity 

FEM-Q9-HZZT (Const) 

FEM-Q9-HZZT (Equil) 

FEM-T6-HZZT 

0.3176 

0.3408 

0.3522 

0.3560 

0.4515 

0.3663 

0.3732 

0.3176 

0.3408 

0.3522 

0.3563 

0.5230 

0.3612 

- 

1.6419 

1.6766 

1.6891 

1.7107 

1.6957 

1.6957 

1.7126 

30   

0.2 

 

 

 

 

 

Present  (8×8) 

Present  (12×12) 

Present  (16×16) 

Khandelwal et al. [1] 

Khandelwal et al. [1] 

Chakrabarti and Sheikh [17] 

RSFT52 

RSFT52 

RSFT52 

FEM-Q9-HZZT (Const) 

FEM-Q9-HZZT (Equil) 

FEM-T6-HZZT 

0.3185 

0.3382 

0.3472 

0.4376 

0.3064 

0.3762 

0.3185 

0.3382 

0.3472 

0.4321 

0.2951 

- 

5.9480 

5.9326 

5.9308 

5.9579 

5.9579 

5.9463 

0.1 

 

 

 

 

 

Present  (8×8) 

Present  (12×12) 

Present  (16×16) 

Khandelwal et al. [1] 

Khandelwal et al. [1] 

Chakrabarti and Sheikh [17] 

RSFT52 

RSFT52 

RSFT52 

FEM-Q9-HZZT (Const) 

FEM-Q9-HZZT (Equil) 

FEM-T6-HZZT 

0.3211 

0.3406 

0.3503 

0.4280 

0.3275 

0.3659 

0.3211 

0.3406 

0.3503 

0.4409 

0.3200 

- 

2.2081 

2.2137 

2.2176 

2.2322 

2.2322 

2.2237 

0.05 

 

 

 

 

 

Present  (8×8) 

Present  (12×12) 

Present  (16×16) 

Khandelwal et al. [1] 

Khandelwal et al. [1] 

Chakrabarti and Sheikh [17] 

RSFT52 

RSFT52 

RSFT52 

FEM-Q9-HZZT (Const) 

FEM-Q9-HZZT (Equil) 

FEM-T6-HZZT 

0.3261 

0.3465 

0.3570 

0.4637 

0.3592 

0.3603 

0.3261 

0.3465 

0.3570 

0.5097 

0.3480 

0.3603 

1.2028 

1.2199 

1.2270 

1.2450 

1.2450 

1.2381 
* Values of transverse shear stresses obtained from constitutive relation. 

** Values of transverse shear stresses obtained from equilibrium equations. 

 

Table 4 

Continued. 

h

a
 References FE Models  xz   yz   w  

45   

0.2 

 

 

 

 

 

Present  (8×8) 

Present  (12×12) 

Present  (16×16) 

Khandelwal et al. [1] 

Khandelwal et al. [1] 

Chakrabarti and Sheikh [17] 

RSFT52 

RSFT52 

RSFT52 

FEM-Q9-HZZT (Const) 

FEM-Q9-HZZT (Equil) 

FEM-T6-HZZT 

0.2955 

0.3144 

0.3231 

0.4612 

0.3399 

0.2197 

0.2955 

0.3144 

0.3231 

0.4484 

0.3187 

- 

5.6998 

5.6615 

5.6516 

5.6329 

5.6329 

5.6079 

0.1 

 

 

 

 

 

Present  (8×8) 

Present  (12×12) 

Present  (16×16) 

Khandelwal et al. [1] 

Khandelwal et al. [1] 

Chakrabarti and Sheikh [17] 

RSFT52 

RSFT52 

RSFT52 

FEM-Q9-HZZT (Const) 

FEM-Q9-HZZT (Equil) 

FEM-T6-HZZT 

0.3025 

0.3223 

0.3320 

0.4445 

0.3375 

0.2203 

0.3025 

0.3223 

0.3320 

0.4592 

0.3232 

- 

2.0132 

2.0035 

2.0019 

1.9950 

1.9950 

1.9764 

0.05 

 

 

 

 

 

Present  (8×8) 

Present  (12×12) 

Present  (16×16) 

Khandelwal et al. [1] 

Khandelwal et al. [1] 

Chakrabarti and Sheikh [17] 

RSFT52 

RSFT52 

RSFT52 

FEM-Q9-HZZT (Const) 

FEM-Q9-HZZT (Equil) 

FEM-T6-HZZT 

0.3034 

0.3215 

0.3311 

0.4621 

0.3419 

0.2197 

0.3034 

0.3215 

0.3311 

0.5309 

0.3335 

- 

1.0615 

1.0671 

1.0697 

1.0773 

1.0773 

1.0615 

4.3 Comparison with experimental results CFRP-faced rectangular sandwich plates 

 

The objective of this problem is to describe the practical application of the present element with the experimental 

results available in the literature. Kanematsu et al. [47] have performed out experiments on rectangular 

(450 300 )mm mm  sandwich plates composed of CFRP face sheets and aluminum honeycomb core, for clamped 
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edge conditions. Each face sheet is symmetrically laminated with three carbon-epoxy layers, where the thickness of 

each layer is 0.125 mm. The mechanical properties of the plate are presented in Table 5. In this study, four different 

types (designated as SPl, SP2, SP3 and SP4) of stacking sequences, as shown in Fig. 5, for the faces of sandwich 

plate, are considered. The stacking sequences are:      30 30 30 ,  0 0 0 ,  30 30 30  and  0 90 0 , respectively, 

for SPl, SP2, SP3 et SP4. The thickness of the core is 10 mm for specimens SP1 and SP2, and 7 mm for specimens 

SP3 and SP4. The plate is subjected to a uniformly distributed load P = 1,010 KPa. This load is controlled by a 

manometer and the transverse displacement of the plate was measured with a linearly variable differential transducer 

(LVDT). A holographic technique is used in order to visualize the transverse displacement modes.  

Furthermore, the authors also have provided analytical solutions, based on the Rayleigh-Ritz method, for the 

same problem of plate, using two types of boundary conditions, simply supported (SSSS) and clamped (CCCC). The 

results of transverse displacement ( )w , obtained from the present element, are presented in Table 6., using a mesh 

size of (16 × 16). The comparison was made with the analytical solutions given by Kanematsu et al. [47], the 

solutions based on experimental works presented by the same authors [47], as well as with the finite element models 

of Lee et Fan [28] and Nayak et al.[13]. The results of the comparison show the effectiveness and reliability of the 

present element in the analysis of this type of structures. 

 
Table 5 

Material properties for Sandwich plates. 

Materials 
Elastic properties (GPa) 

1E
 
 2E  12G  13G  23G  12 13 23v    

Carbon/epoxy 105 8.74 4.56 4.56 4.56 0.327 

Al/Honeycomb 0.0686 0.0686 0.0264 0.103 0.621 0.3 
 

Table 6 

Deflexion ( )w  of three-layer rectangular sandwich plates under uniform load. 

Reference FE Models 
Central displacement , ,0

2 2

a b
w
 
 
 

(mm) 

SP1 SP2 SP3 SP4 

Boundary condition: CCCC 

Present element RSFT52 0.04906 0.05647 0.07506 0.05525 

Nayak et al.[14] FEM-Q9-HSDTd - 0.05248 - 0.05797 

Kanematsu et al. [47] Analytical solution 0.05040 0.05400 0.07720 0.06130 

Kanematsu et al. [47] Experimental solution 0.06900 0.08500 0.09400 0.09000 

Lee et Fan [28] FEM-Q9-LWT 0.05190 0.05524 0.07834 0.06216 

Boundary condition: SSSS 

Present element RSFT52 0.1160 0.1733 0.1695 0.2010 

Nayak et al.[14] FEM-Q9-HSDT - 0.1754 - 0.2111 

Kanematsu et al. [47] Analytical solution 0.1173 0.1829 0.1794 0.2206 

Lee et Fan [28] FEM-Q9-LWTe 0.1213 0.1774 0.1729 0.2138 
d Nine-node quadratic finite element solution based on higher order shear deformation plate theory 
e Nine-node quadratic finite element solution based on layer wise plate theory 
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Fig.5 

Sandwich plate cross sections. 
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4.4 Influence of the material and geometric properties on the transverse displacement 

 

After verifying the accuracy and efficiency of the element against the known cases in the literature, we present 

below a parametric study to further understand the bending behaviour of sandwich plates having laminated 

composites face sheets.  

This study aims to demonstrate the influence and evolution of different parameters (core thickness, side-to-

thickness ratio, boundary conditions, aspect ratio, core-face sheet anisotropy ratio and degree of orthotropy of the 

face sheet) on the transverse displacement. The analysis is carried out for a square sandwich plate 

 0 / 90 / 0 / / 0 / 90 / 0C  subjected to sinusoidal loading and a thickness ratio ( 10)a h  , where h is the total 

thickness of the plate. The core is made of HEREX-C70.130 closed-cell PVC (polyvinyl chloride) foam and the face 

sheets are made of glass fiber in polyester resin. The mechanical properties of the face sheets and the core can be 

found in Table 7. [50]. The thickness of the core is 7 mm, while the face sheets are considered as symmetric cross-

ply laminates  0 90 0 , where the thickness of each layer is 0.125 mm. 

 

Table 7 

The material properties of glass fiber and ester resin matrix. 

Materials 
Elastic properties (GPa)  

1E
 
 2E  12G  13G  23G  12 13     (Kg/m3) 

Glass / polyester 24.51   7.77 3.34 3.34 1.34    0.078   1800 

HEREX-C70.130 foam     0.1036   0.1036 0.05 0.05 0.32 0.3 130 

 

The curves of Fig.6 show the effect of the relative thickness of the core ( )ch , represented by the ratio ( )ch h , 

on the non-dimensional transverse displacement ( )w , with different type of boundary conditions (SSSS, CCCC, 

CFCF and CSCS). It can be seen that the values of transverse displacement increases with increasing ( )ch h  ratio, 

whatever boundary conditions. This elevation is probably due to the decrease of the flexural rigidity.  

The variation of the non-dimensional transverse displacement ( )w  with different thickness ratios ( / )a h  , has 

been plotted as shown in Fig.7, for the two cases of boundary conditions; simply supported (SSSS) and clamped 

(CCCC). It was seen that, for both boundary conditions, the values of transverse displacement decreases with 

increased a h  ratio up to 20a h   and then varies constantly in all cases. This can be explained by the effects of 

shear deformation and transverse flexibility of the core, which are more significant when the thickness increases. 

Furthermore, the core occupies major portion (90%) of the plate thickness, so the core compressibility plays very 

important role for highly thick plates.  

The influence of aspect ratio ( )a b  on the non-dimensional transverse displacement of a simply supported 

sandwich plate, is presented in Fig. 8. It is found that the variation of the transverse displacement decrease with 

increase in aspect ratio.  

The next part concerns the study of the effect of the core-to-face sheet anisotropy ratio 1( )cE E , of one part, 

and the ratio of the core shear modulus to the flexural modulus ( )c cG E , of the other part, on the non-dimensional 

transverse displacement of a simply supported sandwich plate. In this study, the Young's modulus of the core ( )cE  

has been varied for each test, while the Young's modulus of the face sheet 1( )E is fixed. As shown in Fig. 9, the 

curves demonstrated that the transverse displacement is affected considerably by the variation of the modular 

ratio 1( )cE E . It observed that, the values of the transverse displacement increase when the values of the anisotropy 

ratio increases, whatever the ( )c cG E ratio. This increase is probably due to the decrease in flexural stiffness caused 

by excess material of the core. 

Fig.10 shows the effect of the degree of orthotropy of the faces ( 1 2E E ) and the ratio ch h , on the non-

dimensional transverse displacement ( )w , of a simply supported sandwich plate. From Fig. 10, it can be seen that, 

for different core thickness ( ch h ), the non-dimensional central deflection decrease with increase of the degree of 

orthotropy of the faces. It is a well-known fact, from the literature, that an increase in the stiffness of a sandwich 

plate leads to a decrease in its transverse displacement. A stiffness increase could be due to a decrease in the relative 

thickness of the core or to an increase in the degree of orthotropy of the faces.  
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Fig.6 

Effect of core thickness on the non-dimensional 

transverse displacement, of a sandwich plate 

(0 90 0 0 90 0)C  with different boundary conditions. 

  

 

 

 

 

 

Fig.7 

Effect of plate side-to-thickness ratio, a h , on the non-

dimensional transverse displacement, of a sandwich plate 

(0 90 0 0 90 0)C  with two types of boundary conditions 

(SSSS and CCCC). 

  

 

 

 

 

 

 

Fig.8 

Effect of plate aspect ratio, a b , on the non-dimensional 

transverse displacement, of a simply supported sandwich 

plate (0 90 0 0 90 0)C . 

  

 

 

 

 

 

 

Fig.9 

Effect of  the modulus ratio, 1 cE E , and ratio c cG E , 

on the non-dimensional transverse displacement, of a 

simply supported sandwich plate (0 90 0 0 90 0)C . 

  

 

 

 

Fig.10 

Effect of the degree of orthotropy of the face sheet, 

1 2E E , and ratio ch h , on the non-dimensional 

transverse displacement, of a simply supported sandwich 

plate (0 90 0 0 90 0)C . 

 

 



                                                                            Bending Analysis of Composite Sandwich Plates with Laminated….                 298 

 

© 2016 IAU, Arak Branch 

5    CONCLUSIONS 

In this paper, a study of bending behaviour of composites sandwich plates with laminated face sheets has been 

undertaken, using a new four-nodded rectangular finite element formulation based on a layer-wise theory. The 

model is based on a proper combination of higher order and first order, shear deformation theories. Compatibility 

conditions as well as continuity of displacements, at the interface have been explicitly satisfied in the present 

formulation. Although the model is a layer-wise one, the number of unknowns is independent of the number of 

layers. Thus, the plate theory enjoys the advantage of a single-layer plate theory, even though it is based on the 

concept of a layer-wise plate approach. The results obtained for the transverse displacement and the transvers shear 

stresses, of a composite sandwich plate show very good performance of the present formulation. Hence, the potential 

of the element can be used to generate a number of new results, which are expected to be useful to the future 

research in this field. 

In addition, the parametric effects of core thickness, side-to-thickness ratio, boundary conditions, plate aspect 

ratio, core-to-face sheet anisotropy ratio, core shear modulus to the flexural modulus ratio and degree of orthotropy 

of the face sheet, on the transverse displacement are discussed. The results reaffirm that these effects play an 

important role in the transverse displacement of composite sandwich plates with laminated face sheets.  
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