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 ABSTRACT 

 In the present work, the mathematical model of a homogeneous, isotropic 

thermoelastic double porous micro-beam, based on the Euler-Bernoulli 

theory is developed in the context of Lord-Shulman [1] theory of 

thermoelasticity. Laplace transform technique has been used to obtain the 

expressions for lateral deflection, axial stress, axial displacement, volume 

fraction field and temperature distribution. A numerical inversion technique 

has been applied to recover the resulting quantities in the physical domain. 

Variations of axial displacement, axial stress, lateral deflection, volume 

fraction field and temperature distribution with axial distance are depicted 

graphically to show the effects of porosity and thermal relaxation time. Some 

particular cases are also deduced.                          

                                                © 2018 IAU, Arak Branch. All rights reserved. 

 Keywords: Double porosity; Thermoelasticity; Lord-shulman theory; Micro-

beam. 

1    INTRODUCTION 

ORES and fractures can be seen in engineering structures due to reasons like erosion, corrosion, fatigue or 

accidents which affect the dynamic behavior of the entire structure to a considerable extent. This leads to the 

development of double porosity model which has its applications in geophysics, rock mechanics and many branches 

of engineering like civil engineering, chemical engineering and the petroleum industry.  Biot [2] proposed model for 

porous media with single porosity. Later on Barenblatt et al. [3] introduced a model for porous media with double 

porosity structure. The double porosity model consists of two coexisting degrees of porosity in which one 

corresponds to porous matrix and other corresponds to fissure matrix. Aifantis [4-6] introduced a multi-porous 

system and studied the mechanics of diffusion in solids. Wilson and Aifanits [7] presented the theory of 

consolidation with the double porosity. Khaled et. al [8]  employed a finite element method to consider the 

numerical solutions of the differential equation of the theory of consolidation with double porosity developed by 

Wilson and Aifantis [7]. Beskos and Aifantis [9] presented the theory of consolidation with double porosity-II and 

obtained the analytical solutions to two boundary value problems. Khalili and Selvadurai [10] presented a fully 

coupled constitutive model for thermo-hydro –mechanical analysis in elastic media with double porosity structure. 

Various authors [11-13] investigated problems for elastic solids and thermoelastic solids in the theory of 

thermoelasticity with double porosity based on Darcy’s law. Nunziato and Cowin [14] developed a nonlinear theory 

of elastic material with voids. Later, Cowin and Nunziato[15] developed a theory of linear elastic materials with 
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voids for the mathematical study of the mechanical behavior of porous solids. Iesan and Quintanilla [16] derived a 

theory of thermoelastic solids with double porosity structure by using the theory developed by Nunziato and Cowin. 

Darcy’s law is not used in developing this theory. So far not much work has been done on the theory of 

thermoelasticity with double porosity based on the model proposed by Iesan and Quintanilla [16]. Recently 

investigations have been started in the theory of thermoelasticity with double porosity [16] which has a significant 

application in continuum mechanics.The demand for engineering structures is continuously increasing. Aerospace 

vehicles, bridges, and automobiles are examples of these structures. Many aspects have to be taken into 

consideration in the design of these structures to improve their performance and extend their life. One aspect of the 

design process is the dynamic response of structures. The dynamics of distributed parameter and continuous 

systems, like beams, were governed by linear and nonlinear partial differential equations in space and time. Micro-

scale mechanical resonators have high sensitivity as well as fast response and are widely used as sensors and 

modulators. Recently, micro- and nano-mechanical resonators have attracted considerable attention due to their 

many important technological applications. Accurate analysis of various effects on the characteristics of resonators, 

such as resonant frequencies and quality factors, is crucial for designing high-performance components. Micro beam 

resonators are gaining popularity in modern technologies, such as atomic force microscope, sensing sequence-

specific DNA, mass sensors, resonators, chemical sensors and pressure sensors [17-20]. Scientists have continuously 

investigated the potential of these devices to apply them for different applications. Nowadays, their existence 

became indispensable in many fields and the continuous development hopefully lead to more importance in future. 

One of the useful ways to study the micro beam resonators is the vibration response analysis. Vibration analysis can 

be used directly to quantify system performance and designing such devices. The vibration problems of uniform 

Euler- Bernoulli beams can be solved by analytical or approximate approaches [21, 22]. Boley [23] analyzed the 

vibrations of a simply supported rectangular beam subjected to a suddenly applied heat input distributed along its 

span. Manolis and Beskos [24] examined the thermally induced vibration of structures consisting of beams exposed 

to rapid surface heating. Huniti et al. [25] investigated the thermally induced displacements and stresses of a rod 

using the Laplace transformation technique. Biondi and Caddemi [26] studied the problem of the integration of the 

static governing equations of the uniform Euler-Bernoulli beams with discontinuities, considering the flexural 

stiffness and slope discontinuities. Fang et al. [27] analyzed the vibrations in micro beam resonators induced by 

laser. Sharma and Grover [28] analysed the thermoelastic vibrations in micro-/nano-scale beam resonators with the 

presence of voids. Esen [29] investigated the analysis of transverse and longitudinal vibrations of a thin plate which 

carries a load moving along an arbitrary trajectory with variable velocity. Kumar [30] studied the response of 

thermoelastic beam due to thermal source in modified couple stress theory. Various authors [31-36] investigated 

vibration analysis of micro beam in different theories of thermoelasticity. 

In the present paper, the mathematical model of a homogeneous, isotropic thermoelastic double porous micro 

beam, based on the Euler-Bernoulli theory is developed in the context of Lord-Shulman [1] theory of 

thermoelasticity. Laplace transform has been applied to find the expressions for lateral deflection, axial stress, axial 

displacement, volume fraction fields and temperature distribution. The resulting quantities are obtained in the 

physical domain by using a numerical inversion technique. Variations of axial displacement, axial stress, lateral 

deflection, and volume fraction field and temperature distribution with axial distance are depicted graphically to 

show the effects of porosity and thermal relaxation time. Some particular cases have also been deduced. 

2    BASIC EQUATIONS 

Following Iesan and Quintanilla [16] and Lord and Shulman [1]; the constitutive relations and field equations for 

homogeneous isotropic thermoelastic material with double porosity structure in the absence of body forces, extrinsic 

equilibrated body forces and heat sources can be written as: 

Equations of motion 

 

 2
, , , , ,i j ji i i i iu u b d T u              (1) 

 

Equilibrated stress equations of motion 

 
22

1 , 1 3 1 1 ,r rb bu T                 (2) 
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2
1 , 3 2 2

2
2 ,r rb du T                 (3) 

 

Equation of heat conduction 

 

 * *
0 0 , 1 0 2 0

21 j jT u T TT C T K
t

      
 

    
 

 
 

(4) 

 

 

Constitutive relation 

 

2ij rr ij ij ij ij ijt e e b d T            (5) 

 

where   and   are Lame’s constants,   is the mass density;    3 2 t     ; t  is the linear thermal 

expansion;
* C is the specific heat at constant strain,   iu  is the displacement components;  ijt  is the stress tensor; 

1 and 2  are coefficients of equilibrated inertia;  
 
is the volume fraction field corresponding to pores and   is 

the volume fraction field corresponding to fissures; 
*K  is the coefficient of thermal conductivity; 0 is the thermal 

relaxation time, 1  and 2  are coefficients of equilibrated inertia and 1 1 2, ,  , , ,b d b     are constitutive 

coefficients;   ij is the Kronecker’s delta; T is the temperature change measured form the absolute temperature 

 0 0 0T T  ; a superposed dot represents differentiation with respect to time variable t. 

3    FORMULATION OF THE PROBLEM 

Let us consider a thermoelastic double porous micro beam along the axial direction (x-axis) of the beam. The beam 

has cross- sectional area A, moment of inertia I, length L, width a and thickness h as shown in the Fig.1.  
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Fig.1 

Geometry of the beam. 

 

The micro beam undergoes bending vibrations of small amplitude about the x-axis such that the deflection is 

consistent with the linear Euler-Bernoulli theory. Therefore, the displacements can be written as: 

 

1 2 3, 0, ( , )
w

u u z u u w x t
x


    


 

 

(6) 

 

 

where w is the lateral deflection and u is the axial displacement.  The equation of motion of free flexural vibrations 

of the beam is given by 

 

2 2

2 2
0

M w
A

x t


  
     

 
 

(7) 
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where A ah  is the cross-section area and M the flexural moment of cross section of micro beam.  The flexural 

moment of the cross section of the beam is given by 

 

2 2

2

2

( , ) ( 2 )

h

x

h

T

w
M x t a t zdz I M M M

x
  




      

  

 

 

(8) 

 

where 
3 12I ah

 
is the moment of inertia of the cross-section and ,M M  are the volume fraction field moments 

and TM is thermal moment of the beam and are given by 

 

2 2 2

2 2 2

, ,

h h h

h h h

TM b a zdz M d a zdz M aTzdz   

  

      

 

 

(9) 

                         

Substituting Eq. (8) in Eq. (7), we get the equation of motion of the micro beam as: 

 
2 2 24 2

4 2 2 2 2
( 2 ) 0T

M M Mw w
I A

x t x x x

 
  

     
            

 
 

(10) 

Eqs. (2)- (4) with the aid of Eq.(6) can be written as: 

 

1 1 3

2 2 2

1 1

2 2 2

2 2 2 2 2 2

w
z

x z x z x t
b b T

    
      
   

           
 

     
 

      
 

 

(11) 

 

2 2 2 2 2 2

3 2 2 22 2 2 2 21 2
z

x z x z x t

w
b d T

    
      

   
           

 

     
 

      
 

 

(12) 

 

2 2 2
*

2

*
0 0 1 02 22 01 T T T C

T T w
K z

z x
T

t tx
     

    
   

    
                  

 

 

(13) 

4    SOLUTION OF THE PROBLEM 

For the present micro beam, we assume that there is no flow of heat and volume fraction fields across the surfaces  

( 2)z h   so that 0T z z z          at 2z h  . For a very thin beam, assuming that volume fraction 

fields and temperature increment in terms of  sin z h function along the thickness direction. Therefore, 

 

     ( , , ) ( , )sin , ( , , ) ( , )sin , ( , , ) ( , )sinx z t x t z h x z t x t z h T x z t x t z h        (14) 

 

Making use of Eq. (14) in Eq. (10) yields 

 
4 2 2 2 2 2 2 2

4 2 2 2 2 2 2 2

2 2 2
( 2 ) 0

w w abh adh a h
I ah

x t x x x


  

  

        
            

 
 

(15) 
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Multiplying Eqs. (11)- (13) by z  and integrating them with respect to z  from 2
h to 2

h , we get 

 

2 2 2 2 2 2 2

2 2 2 21 1 3 12 21
24

b wh

h h x
b

x x t

 
 


  

       
           

 


   

 
 

   
 

 

(16) 

 

2 2 2 2 2 2 2

3 2 2 21 2 2 2 2 2 224

d h

x h x h x t

w
b

 
    

       
           

 


   

 
 

   
 

 

(17) 

 

22 2 2
*

2

*0
1 020 02 21

24

T
T T C

t t t t

h w
K

tx h x


 


 

            
          

              

 

 

(18) 

 

Introducing non-dimensional variables as: 

 

' ' ' ' '1 1 1
,  ,  , , , x

x

t
x x u u w w t

L

L L L E 
       ' '1 1

0
'
0  ,  , ,,

L
t

LE

c c
t

L


 


         

 

(19) 

 

where 
 2

1

3 22
andc E

   

  


 


is Young’s Modulus.

 

Making use of Eq. (19) in Eqs. (15)- (18), we obtain 

 
4 2 2 2 2

1 2 3 44 2 2 2 2
0

w w
a a a a

x t x x x

        
           

 
 

(20) 

 
2 2 2 2

5 6 7 8 9 10 11 122 2 2 2
0

w
a a a a a a a a

x x x t

 
     

    
   

   
 

 

(21) 

 
2 2 2 2

13 14 15 16 17 18 19 202 2 2 2
0a a a a a a a a

x x

w

x t

 
     

    
   

   
  

 

(22) 

 

2 2

21 22 230 24 252 2
1

t t

w
a a a a a

tx x t t


    
     

     
     

       
 

 

(23) 

 

where 

 
2 2 2 2 2 2 2
1

1 2 3 4 5 62 2 2 2 2 2

1 1
9 10 11 12 132

1

1 1 1 1

22 2 2 32 2
31 1 1

7 8 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1

, , ,

2 2 2
, , , , , ,

( 2 ) ( 2 ) ( 2 ) ( 2

,
2

,
4

,

)

b b

ahc L ab h ad h ah EL L
a a a a a a

I I I I k c k c h

LL L EL bbh L

c k c h k c k c k c k c
a a a a a a a

k k

    

     





    

 



     
   

      

22 2 22 2 2 2
31 2

2 2 2 2 2 2 2
2 1 2 2 1 2 1 2 1 2 1

2
2 1

1

2 23 *2 2
0 1 0 1 1 0 2 12 1

21 22 23 24 252 2 * * *

4 15 16 17 18 192
1

*
2 1

20

,
24

, , , ,
24

,

, , , , ,

,

c

Lb L LL dh L

k c h c k c h k c k c k c

T hc T c T cEL C c LL

k

a a a a a a
k

a a a a a
c h EK EK EK

a
K

   



      



     

      

 

 

 

 

 

 

(24) 
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5    INITIAL AND BOUNDARY CONDITIONS 

The initial conditions of the problem are assumed to be homogeneous and are taken as: 

 

0 0
0 0

0 0
0 0

( , ) ( , )
( , ) 0 ( , ) 0

( , ) ( , )
( , ) 0 ( , ) 0

t t
t t

t t
t t

w x t x t
w x t x t

t t

x t x t
x t x t

t t

 
 

 
 

 
    

 

 
     

 

 

 

 

(25) 

 

These initial conditions are supplemented by considering that the two ends of the micro beam are clamped: 

 

0.
0,

( , )
( , ) 0

x L
x L

w x t
w x t

x



 


 

 

(26) 

 

We also assume that the volume fraction fields and the temperature should satisfy the following relation: 

 

00, 0, 0
( , ) 0, ( , ) 0, ( , ) ( ), ( , ) 0.

x L x L x x L
x t x t x t H t x t

   
         (27) 

 

6    SOLUTION IN THE LAPLACE TRANSFORM DOMAIN

 

Applying the Laplace transform defined by 

 

   
0

[ ( )] stf s L f t f t e dt



    

 

(28) 

On the Eqs. (20)- (23) under the initial conditions (25), after some simplifications, we obtain
 

 

 
10 8 6 4 2

1 2 3 4 510 8 6 4 2
, , , 0

d d d d d
B B B B B w

dx dx dx dx dx

 
          

 
 

 

(29) 

 

1 2 3 4 5, , , ,B B B B B , are given in the Appendix A.  

The solution of the Eqs.(31), in the Laplace transform domain can be written as: 

 

    
5

1 2 3 5

1

, , , 1, , , i ix x
i i i i i

i

w g g g D e D e
 





      
 

(30) 

 

1 2 3, , ;( 1,2,3,4,5)i i ig g g i  are given in the Appendix B.  

Here , 1,2,3,4,5i i  are the roots of the characteristic equation 
 

 
10 8 6 4 2

1 2 3 4 5 0B B B B B           (31) 

     

On using Eqs. (31) in Eqs. (5) and with the help of Eqs. (14) and (19), we obtain the corresponding expressions 

for axial displacement and axial stress in the Laplace transform domain as: 
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 
5

5

1

i ix x
i i i i

i

u z D e D e
  





     
 

(32) 

 

    
5

2
1 2 1 3 2 3 5

1

sin i ix x
x i i i i i i

i

t P z z h P g P g g D e D e
   





     
   

 

(33) 

 

The boundary conditions (26), (27) in the Laplace transform domain take the form as: 

 

0. 0,
0,

( , )
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(34) 

 

In order to determine the unknowns parameters, substituting Eqs.(30) in the boundary conditions (34), we obtain  

a system of ten linear equations in the matrix form as: 
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(35) 

   

On solving the above system of Eqs. (35), we obtain the values of unknown parameters , 1,2,...,10iD i  . This 

completes the solution of the problem in Laplace transform domain. 

7    PARTICULAR CASES 

If 0 0  , in Eqs. (30) along with Eqs. (35) yield the corresponding expressions for a thermoelastic  double porous 

micro beam  in the context of  coupled theory (CT) of thermoelasticity. These results are same if we solve the 

problem directly. 

If 1 3 2 2 0b d          in Eqs. (30) along with Eqs.(35), we obtain the corresponding expressions  for 

a thermoelastic micro beam with single porosity (thermoelastic micro beam with voids) which is same as 

investigated  by Sharma and Grover [28]. 

8    INVERSION OF THE LAPLACE DOMAIN 

To determine the displacement, stresses and temperature distribution in the physical domain, we will adopt a 

numerical inversion method given by [37]. In this method, Laplace domain ( )f s can be inverted to time domain 

( )f t as: 
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where Re is the real part and l is the imaginary number unit. The value of N is chosen sufficiently large and it 

represents the number of terms in the truncated Fourier series such that   
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1 is a prescribed small positive number. Also, the value of   should satisfy the relation 4.7t   for the 

faster convergence [38]. 

9    NUMERICAL RESULTS AND DISCUSSION 

Numerical computations have been done for thermoelastic material with double porosity structure with the 

following mechanical and thermal properties. The material parameters are taken as in [39, 40] 

 
10 2 * 3 2 2 1 10 2 * 2 1 12.17  10 ,  1.04 10 , 1.639 10 , 1.7 10 ,Nm C m s K Nm K Ns K               

3 3 5 1 10 5
0 0  298  , 1.74 10 10 , 0.09 10 , 1.3 10, 3. ,688tT K Kgm K s N               

10 2 10 2 5 5 2 5
2 3 1 12.4  10 , 2.5  10 , 1.1 10 , 0.16 10 , 0.12 10Nm Nm N Nm b N                  

10 2 5 2 12 2 2 10 2
2 10.1 10 0.219 10 , 0.1456 10 , 0. 0, 9 1d Nm Nm Nm s b Nm              

10 2 12 2 2
1 22.3 10   ,   0.1546 10Nm Nm s        

 

 

 

The aspect ratio of the beam is fixed as 310, 0.5, 6L h a h x h   .The software MATLAB has been used to 

find the values of lateral deflection, axial stress, axial displacement, volume fraction field and temperature 

distribution. The variations of these quantities with respect to axial distance have been shown in Figs. 2- 6 to show 

the effect of porosity. In Figs. 2- 6, solid line corresponds to thermoelastic double porous micro beam (TDP) and 

small dashes line corresponds to thermoelastic single porous micro beam (TSP). Also, the effect of thermal 

relaxation time is depicted graphically in Figs.7-11. In Figs. 7- 11, solid line corresponds to Lord-Shulman (LS) 

theory of thermoelasticity and small dashes line corresponds to coupled (CT) theory of thermoelasticity. 

9.1 Effect of porosity 

Fig.2 shows the variation of lateral deflection w with respect to axial distance x. It is found that for TDP, the value of 

lateral deflection w initially increases for the region1 2.0x  , decreases for 2.0 3.0x   and then increases 

afterwards as 3.0x  . In case of TSP, value of w initially decreases for the region1 2.0x  , increases for 

2.0 3.8x   and becomes almost stationary for the remaining region. Due to effect of porosity, the magnitude 

values remain more for TSP in comparison to that of TDP for all the values of x. Fig.3 depicts the variation of  axial 

stress xt  with respect to axial distance x. It is evident that the value of axial stress xt  initially decreases for 

1 2x   and then increases for the remaining region as 2x   for both TDP and TSP. The trend and behavior of 

variation is similar for both TDP and TSP with difference in the magnitude values only.  The values are higher for 

TSP than that of TDP for all the values of x due to the effect of porosity.  

Fig. 4 shows the variation of volume fraction field  with respect to axial distance x. It is clear from figure that 

for TDP, the value of volume fraction field   decreases initially and then increases slowly and steadily as 2x   

whereas in case of TSP,   increases for the region 1 2x  , decreases for 2 3x  and  then become almost 
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stationary as 3x   .It is also found that due to porosity effect , the value of   remain more for TSP as  compared to 

that of the values of TDP. 

Fig.5 represents the variation of temperature distribution T with respect to axial distance x. It is noticed that for 

TDP, the value of temperature distribution T initially decreases  for 1 2x  and then increases monotonically with 

increase in the value of  x  whereas for TSP , it increases for the region 1 2x   and then start decreasing as 2.x    

The trend and behavior of variation is opposite to each other for all the values of x and the magnitude values of T are 

higher in case of TDP than that of the values of TSP due to the effect of porosity. Fig.6 depicts the variation of axial 

displacement u with respect to axial distance x.  It is found that the value of axial displacement u increases for the 

region1 2x  , decreases for 2 3x  and then become almost stationary in the subsequent region for both TDP 

and TSP. Although, similar type of pattern of variation is shown by both TDP and TSP, but the magnitude values are 

more for TSP in comparison to TDP due to the effect of porosity. 

 

 

2 4 6 8 10

x

-3

-2

-1

0

1

w

TDP

TSP

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Variation of lateral deflection w w.r.t. axial  distance x.  
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Fig.3 

Variation of axial stress xt  w.r.t. axial distance x. 
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Fig.4 

Variation of volume fraction field   w.r.t. axial distance x. 
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Fig.5 

Variation of temperature distribution T w.r.t. axial distance x.                                 
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Fig.6 

Variation of axial displacement u  w.r.t. axial  distance x. 

9.2 Effect of thermal relaxation time  

Fig.7 depicts that the value of lateral deflection w increases for the region 1 2x  , decreases for 2 3x  and 

increases afterwards with  the increase in the value of axial distance x. Due to effect of relaxation time parameter, 

the values of w are more for CT theory of thermoelasticity in comparison to the values for LS theory of 

thermoelasticity. Fig.8, it is noticed that the value of axial stress xt  initially decreases for 1 2x   and then 

increases in the remaining region as 2x  . The trend and behavior of variation is similar for LS and CT theories of 

thermoelasticity but the magnitude values are higher in case of LS theory due to effect of relaxation time parameter. 

Fig.9 shows that the values of volume fraction field   initially decreases and then increases slowly and steadily 

as 2x  . It is also found that relaxation time effect decreases the magnitude values of   for LS theory as compared 

to CT theory of thermoelasticity. Fig.10  represents that the value of temperature distribution T initially decreases for 

the region 1 2x  and then increases monotonically with increase in the value of x.  The trend of variation is of 

similar type but the magnitude values are more for LS theory than that of CT theory of thermoelasticity due to the 

effect of relaxation time. Fig.11, it is evident that value of axial displacement u increases for the region 1 2x   

and then decreases afterwards in the remaining region. Although, the trend and behavior of variation remains the 

same with the difference in magnitude values only. The relaxation time parameter decreases the magnitude values of 

u for LS theory as compared to CT theory of thermoelasticity.  
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Fig.7 

Variation of lateral deflection w  w.r.t. axial  distance x.  
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Fig.8 

Variation of axial stress xt  w.r.t. axial distance x.  
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Fig.9 

Variation of volume fraction field   w.r.t. axial distance x.             
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Fig.10 

Variation of temperature distribution T w.r.t. axial distance x.                 
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Fig.11 

Variation of axial displacement u w.r.t. axial distance x.                             
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10    CONCLUSIONS 

In the present work, vibration analysis of a thermoelastic double porous micro beam based on the Euler-Bernoulli 

theory, in the context of Lord-Shulman theory of thermoelasticity has been studied. Variations of axial 

displacement, axial stress, lateral deflection, volume fraction field and temperature distribution with axial distance 

are depicted graphically to show the effects of porosity and thermal relaxation time. It is found that porosity has a 

significant effect on the all the physical quantities. It has both increasing as well as decreasing effect on the resulting 

quantities. It is observed that due to effect of porosity, the values of axial displacement, axial stress, lateral 

deflection and volume fraction field are more for thermoelastic micro beam with single porosity in comparison to 

the values for thermoelastic micro beam with double porosity whereas an opposite trend and behavior of variation is 

noticed in case of temperature distribution. Also, all the field quantities are observed to be very sensitive towards the 

thermal relaxation time parameter. The thermal relaxation time parameter decreases the magnitude values of axial 

displacement, lateral deflection and  volume fraction field for LS theory in comparison to CT theory of 

thermoelasticity whereas trend gets reversed in case of axial stress  and temperature distribution which shows that it 

is very important to take into account the thermal relaxation time parameter. 

This type of study is useful due to its physical application in geophysics, rock mechanics, mechanical 

engineering, civil engineering and industrial sectors. The results obtained in this investigation should prove to be 

beneficial for the researchers working on the theory of thermoelasticity with double porosity structure. The 

introduction of double porous parameter to the thermoelastic medium represents a more realistic model for further 

studies. 

APPENDIX A 

 

       
26 0 27 0 22 28 0 23 29 0 24 30 21 0 25

2 2

1 6 10 2 8 11 3 18 14 4 16 19

1 5 15 7 13 2 5 15 30 4 13 2 1 15 7 13 30 3

3 1

(1 ), (1 ) , (1 ) , (1 ) , (1 ) ,

, , , ,

, ( ) ( ),

a s s a s s a a s s a a s s a a a s s a

n a a s n a a n a a n a a s

r a a a a r a a a n a n n a a a a n

r n

                  

             

       

 15 30 4 5 4 30 20 29 7 3 30 20 28 2 13 30 3 12 13 29 15 28

4 1 4 30 20 29 12 3 29 4 28 2 20 28 3 30 5 9 15 7 17

6 9 15 30 4 7 17 30 20 27 2 17 12 15 27

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ), ,

( ) ( ) ,

a a n a n a a a a n a a a n a a n a a a a a

r n n a a a a n a n a n a a n a r a a a a

r a a a n a a a a a n a a a a

r

        

       

     

7 9 4 30 20 29 12 17 29 4 27 2 17 30 20 27( ) ( ) ( ),a n a a a a a a n a n a a a a     

 

 
8 9 13 5 17 9 9 13 30 3 1 17 5 17 30 20 27 12 10 27

10 9 3 30 20 28 1 30 17 27 20 12 17 28 3 27

11 27 5 12 7 13 12 9 13 29 15 28 5 4 27 17 29 27 1 15 3 13

7

, ( ) ( ) ,

( ) ( ) ,

( ), ( ) ( ) ( )

r a a a a r a a a n n a a a a a a a a a

r a n a a a n a a a a a a a n a

r a a a a a r a a a a a a n a a a a n a g a

a

       

     

       

 17 28 3 27 13 9 3 29 4 28 1 17 29 4 27 2 17 28 3 27( ), ( ) ( ) ( ),a a n a r a n a n a n a a n a n a a n a      

 

   

     

2

1 2 2 5 3 8 4 11 1 2 1 1 2 6 3 9 4 12 3 1

2 2 2

3 1 3 2 7 3 10 4 13 4 1 4 1 3 1 5 1 4 1

, ,

, ,

B r a r a r a r r B a r s a r a r a r r r

B a r s a r a r a r r r B a r s r B a r s r

        

      
 

1 2 3

( 2 )
, ,

b d
P P P

E EL EL

   
     

 

 

APPENDIX B 

       

   

6 4 2 6 4 2 6 4 2 6 4 2

1 5 6 7 1 2 3 4 2 8 9 10 1 2 3 4

6 4 2 6 4 2

3 11 12 13 1 2 3 4

, ,

; 1,2,3,...,5

i i i i i i i i i i i i i i

i i i i i i i

g r r r r r r r g r r r r r r r

g r r r r r r r i

           

     

            

       
 

 

 



283                                Mathematical Modeling for Thermoelastic Double….   
 

© 2018 IAU, Arak Branch 

REFERENCES 

[1] Lord H., Shulman Y., 1967, A generalized dynamical theory of thermoelasticity, Journal of the Mechanics 

and Physics of Solids 15: 299-309.  

[2] Biot M. A., 1941, General theory of three-dimensional consolidation, Journal of Applied Physics 12: 155-164. 

[3] Barenblatt G. I., Zheltov I. P., Kochina I. N., 1960, Basic concept in the theory of seepage of homogeneous liquids in 

fissured rocks (strata), Journal of Applied Mathematics and Mechanics 24: 1286-1303. 

[4] Aifantis E. C., 1977, Introducing a multi –porous medium, Developments in Mechanics 8: 209-211. 

[5] Aifantis   E. C., 1979, On the response of fissured rocks, Developments in Mechanics 10: 249-253. 

[6] Aifantis E. C., 1980, On the problem of diffusion in solids,  Acta Mechanica 37: 265-296. 

[7] Wilson R.K., Aifantis E.C., 1984, On the theory of consolidation with double porosity, International 

Journal of Engineering Science 20(9):1009-1035. 

[8] Khaled M .Y., Beskos D. E., Aifantis E.C., 1984, On the theory of consolidation with double porosity-III, International 

Journal for Numerical and Analytical Methods in Geomechanics 8: 101-123. 

[9] Beskos D.E., Aifantis E.C., 1986, On the theory of consolidation with double porosity-II, International 

Journal of Engineering Science 24: 1697-1716. 

[10] Khalili N., Salvadorian  A. P .S., 2003, A fully coupled constitutive model for thermo-hydro –mechanical analysis in 

elastic media with double porosity, Geophysical Research Letters 30: 2268-2271. 

[11] Svanadze M., 2005, Fundamental solution in the theory of consolidation with double porosity, Journal of the 

Mechanical Behavior of Materials  16: 123-130. 

[12] Svanadze M., 2012, Plane waves and boundary value problems in the theory of elasticity for solids with double 

porosity,  Acta Applicandae Mathematicae 122: 461-470. 

[13] Straughan B., 2013, Stability and uniqueness in double porosity elasticity, International Journal of Engineering 

Science 65: 1-8. 

[14] Nunziato J.W.,  Cowin S.C., 1979, A nonlinear theory of elastic materials with voids, Archive for Rational Mechanics 

and Analysis 72: 175-201. 

[15] Cowin S.C., Nunziato J.W.,  1983, Linear elastic materials with voids, Journal of Elasticity 13: 125-147. 

[16] Iesan D., Quintanilla R., 2014, On a theory of thermoelastic materials with a double porosity structure, Journal 

of Thermal Stresses 37: 1017-1036. 

[17] Fritz J., Baller M.K., Lang H.P., Rothuizen H., Vettiger P., Meyer E., Gntherodt H.J., Gerber C., Gimzewski J.K., 

2001,Translating bio-molecular recognition into nanomechanics , Science 288: 316-318. 

[18] Sidles J. A., 1991, Noninductive detection of single proton-magnetic resonance, Applied Physics Letters 58: 2854-

2856. 

[19] Nabian A., Rezazadeh G., Haddad-derafshi M., Tahmasebi A., 2008, Mechanical behavior of a circular micro plate 

subjected to uniform hydrostatic and non-uniform electrostatic pressure, Microsystem Technologies 14: 235-240. 

[20] Fathalilou M., Motallebi A., Rezazadeh G., Yagubizade H., Shirazi K., Alizadeh Y., 2009, Mechanical behavior of an 

electrostatically-actuated microbeam under mechanical shock, Journal of Solid Mechanics 1: 45-57. 

[21] Dimarogonas A., 1996, Vibration for Engineers, Prentice-Hall, Inc. 

[22] Meirovitch L., 2001, Fundamentals of Vibrations, McGraw-Hill, International Edition.  

[23] Boley B.A., 1972, Approximate analyses of thermally induced vibrations of beams and plates, Journal of 

Applied Mechanics 39: 212-216. 

[24] Manolis G.D., Beskos D.E., 1980, Thermally induced vibrations of beam structures, Computer 

Methods in Applied Mechanics and Engineering 21: 337-355. 

[25] Al-Huniti N.S., Al-Nimr M.A., Naij M., 2001, Dynamic response of a rod due to a moving heat Source under the 

hyperbolic heat conduction model, Journal of Sound and Vibration 242: 629-640. 

[26] Biondi B., Caddemi S., 2005, Closed form solutions of Euler-Bernoulli beams with singularities, International 

Journal of Solids and Structures 42: 3027-3044. 

[27] Fang D.N., Sun Y.X., Soh A.K., 2006, Analysis of frequency spectrum of laser-induced vibration of micro beam 

resonators, Chinese Physics Letters 23: 1554-1557.  

[28] Sharma J.N., Grover D., 2011. Thermoelastic vibrations in micro-/nano-scale beam resonators with voids, Journal of 

Sound and Vibration 330: 2964-2977. 

[29] Esen I., 2015, A new FEM procedure for transverse and longitudinal vibration analysis of thin rectangular plates 

subjected to a variable velocity moving load along an arbitrary trajectory, Latin American Journal of Solids 

and Structures 12: 808-830. 

[30] Kumar R., 2016, Response of thermoelastic beam due to thermal source in modified couple stress theory, 

Computational Methods in Science and Technology 22(2): 95-101. 

[31] Ghadiri M., Shafiei N., 2016, Vibration analysis of rotating functionally graded Timoshenko micro beam based on 

modified couple stress theory under different temperature distributions, Acta Astronautica 121: 221-240. 

[32] Zenkour A. M. , 2016,  Free vibration of a microbeam resting on Pasternak's foundation via the GN thermoelasticity 

theory without energy dissipation, Journal of Low Frequency Noise, Vibration and Active Control 35(4): 303-311. 

http://cmst.eu/


R. Kumar et al.                          284 

© 2018 IAU, Arak Branch 

[33] Kaghazian A., Hajnayeb A., Foruzande H., 2017, Free vibration analysis of a piezoelectric  nanobeam using nonlocal 

elasticity theory , Structural Engineering and Mechanics 61(5): 617-624. 

[34] Ebrahimi F., Barati M.R., 2017, Vibration analysis of embedded size dependent FG nanobeams based on third-order 

shear deformation beam theory , Structural Engineering and Mechanics 61(6): 721-736. 

[35] Zenkour A. M., 2017, Thermoelastic response of a micro beam embedded in Visco-Pasternak’s medium based on GN-

III model, Journal of Thermal Stresses 40(2): 198-210.  

[36] Arefi M.,  Zenkour A.M., 2017,  Vibration and bending analysis of a sandwich micro beam with two integrated piezo-

magnetic face-sheet, Composite Structures 159: 479-490.  

[37] Honig G., Hirdes U., 1984, A method for the numerical inversion of the Laplace transforms, Journal of Computational 

and Applied Mathematics 10: 113-132.  

[38] Tzou D., 1996, Macro-to-Micro Heat transfer, Taylor& Francis, Washington DC. 

[39] Sherief H., Saleh H., 2005, A half space problem in the theory of generalized thermoelastic diffusion,  International 

Journal of Solids and Structures 42: 4484-4493. 

[40] Khalili N., 2003, Coupling effects in double porosity media with deformable matrix, Geophysical Research Letters 

30(22): 2153-2155.  


