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 ABSTRACT 

 The use of intelligent nanocomposites in sensing and actuation applications has become 

quite common over the past decade. In this article, electro-thermo-mechanical nonlinear 

dynamic buckling of an orthotropic piezoelectric nanocomposite (PNC) cylindrical shell 

conveying viscous fluid is investigated. The composite cylindrical shell is made from 

Polyvinylidene Fluoride (PVDF) and reinforced by zigzag boron nitride nanotubes 

(BNNTs) where characteristics of the equivalent PNC being determined using micro-

mechanical model. The poly ethylene (PE) foam-core is modeled based on Pasternak 

foundation. Employing the charge equation, Donnell's theory and Hamilton's principle, the 

four coupled nonlinear differential equations containing displacement and electric 

potential terms are derived. Harmonic differential quadrature method (HDQM) is applied 

to obtain the critical dynamic buckling load. A detailed parametric study is conducted to 

elucidate the influences of the geometrical aspect ratio, in-fill ratio of core, viscoelastic 

medium coefficients, material types of the shell and temperature gradient on the dynamic 

buckling load of the PNC cylindrical shell. Results indicate that the dimensionless critical 

dynamic buckling load increases when piezoelectric effect is considered.  

                                                   © 2014 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 UCKLING of cylindrical shell under various loads has been significant in different industries and hereby is 

investigated by numerical researchers. Buckling strength of the cylindrical shell and tank subjected to axially 

compressive loads was illustrated by Kim and Kim [1] and they showed that the buckling strength of the shell and 

tank decreases significantly as the amplitude of initial geometric imperfection increases. Some researches about 

buckling are done by Ghorbanpour Arani et al. [2-3]. Buckling and ultimate strength criteria of stiffened shells under 

combined loading for reliability analysis were investigated by Das et al. [4]. The buckling of long steel cylindrical 

shells subjected to external pressure was studied by Hubner et al. [5]. They compared numerical analyses with test 

results from publications in some cases of a buckling ring. Linear and nonlinear dynamic stability of cylindrical 

shell is considered by some researchers. Buckling and dynamic instability analysis of stiffened shell panels was 

studied by Patel et al. [6]. They applied the method of Hill’s infinite determinant to analyze the dynamic instability 
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regions. After that nonlinear dynamic buckling of functionally graded cylindrical shells subjected to time-dependent 

axial load was considered by Huang and Han [7]. Their work was illustrated by various effects of the 

inhomogeneous parameter, loading speed, dimension parameter, environmental temperature rise and initial 

geometrical imperfection on nonlinear dynamic buckling. 

Composites reinforced with nanotubes are new class of materials that applied in nano technology. These 

structures are used in airspace, oil and gas and other high technology industries. Dynamic buckling of fiber 

composite shells under impulsive axial compression was investigated by Bisagni [8]. He showed that with 

increasing the load duration, the dynamic buckling loads are decreased quickly and get significantly smaller than the 

static loads. Also he resulted that, since the common practice is to assume that dynamic bucking loads are higher 

than the static ones, which means that static design is safe, careful design is recommended. Nonlinear dynamic 

thermo-mechanical buckling analysis of the imperfect laminated and sandwich cylindrical shells based on a global-

local theory inherently suitable for non-linear analyses was done by Shariyat [9]. He applied a novel three-

dimensional high-order global-local theory to satisfy all the kinematic and the inter laminar stress continuity 

conditions at the layer interfaces. Effect of CNT length and CNT-matrix interphase in carbon CNT reinforced 

composites was investigated by Wan [10]. A micromechanics model was developed by Li and Saigal [11] for 

assessing the interfacial shear stress transfer in CNT reinforced composites. Many number of recent researches 

considered linear and nonlinear analysis of composite structure reinforced with nano tubes. 

Most of these nonlinear researches are done with numerical methods such as (HDQM). Geometrically nonlinear 

analysis of laminated composite thin shells using a modified first-order shear deformable element-based Lagrangian 

shell element are investigated by Han at al. [12]. Nonlinear stability analysis of thin doubly curved orthotropic 

shallow shells by the differential quadrature method (DQM) was studied by Wang [13]. Dynamic analysis of 

composite cylindrical shells using DQM was illustrated by Haftchenari et al. [14]. Alibeigloo [15] considered static 

and vibration analysis of axi-symmetric angle-ply laminated cylindrical shell using state space DQM. He 

investigated the effect of edges condition on the static and vibration behavior of shell. 

With respect to developmental works on buckling of the cylindrical shells, it should be noted that none of the 

research mentioned above, have considered smart composites and their specific characteristics. Recently, electro-

thermo-mechanical torsional buckling of a piezoelectric polymeric cylindrical shell reinforced by BNNTs with an 

elastic core was investigated by Mosallaie Barzoki et al. [16]. They calculated the buckling load of the system based 

on Donnell theory and principle of minimum potential energy. Their results indicate that buckling strength increases 

substantially as harder foam cores are employed. After that, they [17] illustrated the nonlinear buckling response of 

embedded piezoelectric cylindrical shell reinforced with BNNT under electro–thermo-mechanical loadings using 

HDQM. Their results indicated critical buckling load increases when piezoelectric effect is considered. 

However, in the present work for the first time, the effect of partially filled poly ethylene (PE) foam core on the 

behavior of an isotropic and clamped supported PVDF cylindrical shell reinforced by BNNTs is analyzed using 

energy method. Finally, four coupled nonlinear equation are obtained and solved with HDQM in order to obtain the 

dynamic buckling load of the smart nanocomposite. The effects of geometrical aspect ratio, in-fill ratio of core, 

viscoelastic medium coefficients, material types of the shell and temperature gradient on the dynamic buckling load 

of the PNC cylindrical shell have been taken into account. 

2    BASIC EQUATIONS 

Fig. 1 shows a piezoelectric cylindrical shell reinforced with BNNTs embedded in a viscoelastic foundation which is 

simulated with spring constant of Winkler-type and shear constant of Pasternak-type as well as damping coefficient. 

Also, the radiuses of the shell and core are illustrated with R and length Rc, respectively.  

Constitutive equations are expressed in electro-thermo-mechanical coupled form, because the BNNTs and PVDF 

have piezoelectricity characteristics. In fact, any changes in mechanical strain leads to change in electrical field and 

vice versa. In piezoelectric materials, the constitutive equations may be arbitrarily combined as follows [18-20]: 
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where  ,  , D  and E  are stress, strain, electric displacement and electric field tensors, respectively. Also, 
ij

C , 

ij
e , ii

  ( , 1,...6i j  ) are elastic, piezoelectric and dielectric constants, respectively which can be obtained by 

micromechanical model for PNC [14], and ( , )
kk

k x  , T and xx
E representing respectively, thermal 

expansion coefficient, thermal gradient and electric field which the latter is defined as a function of electric 

potential, xx
  as below: 
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Based on Kirchhoff-Law assumptions, the displacement components of an arbitrary point may be written as [21]: 
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Using Donnell's theory, strains may be obtained by a combination of linear, nonlinear and curvature change 

terms as: 
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where x  and   denote axial and circumferential direction of coordinate system, respectively, z  is the distance from 

an arbitrary point to the middle surface. 

The total potential energy, V , of the piezoelectric polymeric cylindrical shell conveying fluid is the sum of strain 

energy, U , kinetic, K,  and the work done by the viscoelastic medium and fluid, W . Considering the governing (i.e. 

Eq. (1)) and strain displacement Eq. (4), and assuming longitudinally polarized PVDF (i.e. 0
z

E E   ), U and 

K may be expressed as [16]: 
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where dA  is cross section element. The Kinetic energy can be written as: 
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 where   is density of nano composite cylinder. The work done by the viscoelastic medium and fluid can be 

expressed as: 

 

( ) ,
fluid ve

W F F wdA                 (7) 

 

where 
vs

F  and fluid
F  are the applied force by viscoelastic and fluid, respectively. According to Navier-Stoks 

equation for viscous incompressible, we have:   
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f body
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where 
f

 ,  , F
body

 , V and P are density, viscosity, body forces, speed and pressure of fluid , respectively. 

Furthermore,   and 
2  are gradient and Laplasian operators, respectively and 

d

dt
 is perfect derivative which can 

be defined as below:  
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where  t  is time. Substituting Eq. (9) into Eq. (8) and neglecting the action of the body forces, yields to 
fluid

F  as:  
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In addition, the work due to viscoelastic foundation can be expressed as:  
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k , 

g
k  and v

c   are normal type of Winkler, shear type of Pasternak and dapping coefficient, respectively. 

The dimensionless parameters are defined as: 
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where hc and hs are thickness of core and shell, respectively. Applying Hamilton principle 

(
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t t

K U W dt K U W dt           ), integrating by parts and setting the coefficient of mechanical 

displacement and electric potential to zero lead to the following four coupled dimensionless equations: 

 
2 2 2 2

2 12

11 2 2

2 2 2 2 2 2

66

12 2 2

2

66

( ) c s c c

c s c s

c s c c c c

s s s s

s s s

Cu w w v w w w
C

Cv w w w u v w w w w w
C

u
C

  
  

         

    
  

                 

 

         
       

          

            
         

               




2 2 2 2 2

112 2 2 2
,c

s s c s c c s

s

v w w w w w u u
e C

t t


     

         

           
         
             

 

 

 

              
     

(13) 

       
  

 



269                   Nonlinear Dynamic Buckling of Viscous-Fluid-Conveying PNC Cylindrical Shells … 

© 2014 IAU, Arak Branch 

2 2 2 2 2 2

12 22

12 2 2 2

2 2 2 2 2 2
2

22 662 2 2 2

c c c s c c

s s

c c c

s s s c c

C Cu w w u w w v w w w
C

v w w w u v w w w w
C C

   


               

  
  

             

              
           

                 

           
       
           

2 22 2 2

66 2 2 2
,s s s c

s s c s

s

u w wv w w v v
C C

t t

   
  

       





        
       

          

 

 

 

   

(14) 

 
2 2 24 4 4 4 4

2 2 2 2 66

12 12 224 2 2 2 2 4 2 2

2 2

1212 22

2

1

12 12 3

1

3 3 2 2

s

s s s c

s s s s s s s s

s s s sc c c c c c s

Cw w w w w
C C C

CC C wu w v w

  
    

       

      

      

         
          

            

        
                   

4

2

222 2

22

22 2

2
2 211 12

122 2 2

2 2

11 12

2 2

s sc c s

s s s

c

s c c xc s c c c

s xs s s s

s xs c s c xc s s s c s

C wv w v w
C w

R

C C w
C T

C C








  
 

     

     
   

  

        

  
     

        
                      

  
       

    

   

2

12 2

2 2 2 3 3 3 3
2 2

2 2 2 3 2 2 2

2 2 2
2 2 *

02 2 2

2

c c

c s c

c c s c s s c s

s

c

w s w c g s g c s s s x c s

s

w
C T

w w w w w w w
V V V V

tt t t

w w w w
K K w K K N C

t




  
        

        


    

  




 

          
          

             

    
         

    

2

2
.,

w

t

 



 

 

 

 

 
 

          

 

 

           

                   

    (15) 

 

 
2 2 2

112 2 2
0.

c c

u w w
e 

  

     
   

   
 

                

       (16) 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 
 

(b) 

Fig. 1  

a) Geometrical 3D view of nano composite cylindrical shell reinforced by BNNTs. B) Cut view of nano composite cylindrical 

shell conveying viscous fluid embedded in a visco-elastic medium.   
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3    HDQM 

These four governing equations (Eqs. (13)–(16)) are discetized using HDQM, so that they are solved considering the 

associated boundary conditions to obtain vibration and instability of the viscose-fluid-conveying cylindrical shell 

made from PVDF. The HDQM approximates the partial derivative of a function F (representing u , v , w  and  ), 

with respect to two spatial variables (   and  ) at a given discrete point ( , )
i i
  , as a weighted linear sum of the 

function values at all discrete points chosen in the solution domain ( 0 L  , 0 2   ) with N N  grid 

points along   and   axes, respectively. Then, the n
th

-order partial derivative of ( , )F   with respect to  , the m
th

-

order partial derivative of ( , )F    with respect to   and the (n + m)
th

-order partial derivative of ( , )F   with 

respect to both   and   is expressed discretely at the point ( , )
i i
  as [17, 22, 23]: 

 

 

where 
( )n

ik
A  and 

( )m

jl
B  are the weighting coefficients associated with n

th
-order partial derivative of ( , )F    with 

respect to   at the discrete point i
  and m

th
-order derivative with respect to   at 

i
 , respectively, whose recursive 

formulae can be found in [23].  

The associated mechanical clamped and free electrical boundary conditions at both ends of the shell, in HDQM 

form, may be written in dimensionless form as: 

 

 

Applying these boundary conditions into the above four governing equations, Eqs. (13)-(16), results governing 

equations in HDQM form as shown in Appendix A. Rearranged governing equations in matrix form yields:   

 

 

where [M], [C], [K], [KG] are mass, viscose, stiffness and geometric stiffness matrixes, respectively. 
*

xSt
N  is the 

static component of dimensionless harmonic axial load, *

x Dy
N  is its dynamic component and  is the coefficient of 

dynamic load. Furthermore, q can be expressed as: 

 

 

In the above equation, subscript b denotes boundary points and other points are indicated by subscript d . Finally, 

applying the boundary conditions into Eq. (21) yields the dynamic buckling load.  
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4    NUMERICAL RESULTS AND DISCUSSION 

A circular embedded PNC cylindrical shell with a foam core, which is assumed to have the length, 0.2L m , length 

to shell radius ratio, / 2L R  , shell thickness to shell radius ratio,  / 0.01
s

h R  , core radius to shell radius ratio, 

/ 0.5
c

R R  . The applied forces on the PNC are combination of fluid pressure, elastic foundation and axial dynamic 

harmonic force where the latter is time depended. In order to obtain the nonlinear dynamic critical buckling load  

( *cr

Dy
N ) for PNC cylindrical shell, HDQM is used in conjunction with a program being written in MATLAB. The 

effects of dimensionless parameters such as aspect ratios of thickness to radius of the shell, (
s

 ), in-fill ratio of core 

  (corresponding to the thickness of the foam core), aspect ratios of thickness to length of the shell, (
s

 ),  Winkler, 

(
W

K ) and Pasternak,(
g

K ) modules as well as the material types of the shell for illustrating piezoelectricity influence 

and temperature gradient, ( T ), were investigated. Mechanical, electrical and thermal characteristics of PVDF 

matrix, BNNTs reinforce, and PE foam core are presented in Table 1. [16]. It should be noted that in the following 

figures, the dimensionless fluid velocity is considered 0.1V   [21]. 

Figs. 2 and 3 demonstrate the effects of geometrical aspect ratio on the critical dynamic buckling load ( *cr

Dy
N ) 

versus dimensionless maximum transverse displacement (
max

/
s

W h ). It should be noted that in Figs. 2 and 3 the 

aspect ratio is defined as thickness to length of the shell (
s

 ) and thickness to radius of shell (
s

 ), respectively. It is 

obvious that without static terms, with increasing the dynamic buckling load, 
max

/
s

W h  is equal to zero because 

buckling didn’t occur. In specific value of it, suddenly 
max

/
s

W h  is started to increase with very sharply rate. This 

value might be critical dynamic buckling load. As can be seen, changing aspect ratios has a significant effect on 

dynamic buckling load of the system. Increasing 
s

  and 
s

 leads to increase system stiffness and, however, dynamic 

critical buckling load is increased and transverse deflection is decreased. Difference between two geometrical aspect 

ratios is in amount of *cr

Dy
N . Waxing of 

s
  have more effect on amount of dynamic buckling than 

s
  but its effect on 

changing of 
max

/
s

W h  is less than 
s

 . Fig. 4 illustrates the effect of foam core thickness ( ) on dynamic nonlinear 

buckling load. It can be found that the *cr

Dy
N  is decreased with increasing  , because stiffness of system is gotten 

more with increasing foam core thickness. Furthermore, for the cases of shell without any foam core (i.e. 1  ) 

such as pipes conveying viscous fluid and shell with full foam core (i.e. 0  ), the *cr

Dy
N  is minimum and maximum, 

respectively.  

 

 
Table 1  

Mechanical, electrical, and thermal properties of PVDF, BNNT and PE. 
PE BNNT PVDF 

125(GPa)E   1.8(TPa)E    
11

238.24(GPa)C   

                 0.30                         0.34 
 

 
                 22

23.6(GPa)C   

                
31.45(kg/ m )                         

2

11
0.95(C/ m )e   

                 12
3.98(GPa)C   

 
                     

61.2 10 (1 / K)
x

  
                 66

6.43(GPa)C 
 

 
                     

60.6 10 (1 / K)
   

                
2

11
0.135(C/ m )e    

  
                

2

12
0.145(C/ m )e  

 
  

                
81.1068 10 (F/ m) 

 
  

               
57.1 10 (1 / K)

x
    

  
               

57.1 10 (1 / K)
   
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Fig. 2  

Effect of shell length aspect ratio (
s

 ) on the nonlinear dynamic 

critical buckling load versus dimensionless transverse displacement.  

  

 

 

 

 

 

 

 

 

 

Fig. 3  

Effect of shell thickness aspect ratio (
s

 ) on the nonlinear dynamic 

critical buckling load versus dimensionless transverse displacement.  

  

 

 

 

 

 

 

 

 

 

Fig. 4 

Effect of core aspect ratio ( ) on the nonlinear dynamic critical 

buckling load versus dimensionless transverse displacement.  

 

Figs. 5 and 6 illustrate the influence of elastic medium, including Pasternak and Winkler modules, respectively 

on *cr

Dy
N , versus dimensionless transverse displacement. As can be seen, the elastic medium has a significant effect 

on nonlinear critical dynamic buckling load due to high stability of the composite shell however, for higher 

dimensionless spring constants, the effect of Pasternak and Winkler becomes more considerable. The higher the 

Winkler and Pasternak constants, the higher is the *cr

Dy
N . 

In realizing the influence of material type, Fig. 7 shows how *cr

Dy
N  changes versus 

max
/

s
W h the shell for four 

different nanocomposites. For both smart matrix (PVDF) and smart reinforcement (BNNTs), the *cr

Dy
N

 
is higher than 

non smart composites, i.e. when PE and CNT are used as matrix and reinforcement, respectively. This is most likely 

due to the fact that in piezoelectric material, the direction of polarization for both reinforcements and matrix was the 

same. It should be noted that effect of matrix type on dimensionless dynamic critical buckling load is higher than the 

nanotube type. In other word, change of matrix is very significant on *cr

Dy
N  and move it very much but change the 

stringers (nanotube) don’t have influence on the dynamic critical buckling load and just have effect on 
max

/
s

W h . 

This is perhaps because changing of nanotubs don’t have effect on cylindrical shell’s stiffness.  
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Fig. 5  

Effect of Pasternak constant (
g

K ) on the nonlinear dynamic critical 

buckling load versus dimensionless transverse displacement. 

  

 

 

 

 

 

 

 

 

Fig. 6  

Effect of Winkler constant (
W

K )on the versus dimensionless 

transverse displacement. 

  

 

 

 

 

 

 

 

 

Fig. 7 

The value of nonlinear dynamic critical buckling load for four 

different composite materials. 

 

Fig. 8 demonstrates the influence of thermal gradient T on the dynamic critical buckling load, *cr

Dy
N . Changing 

temperature gradients ( T ) alters the position of critical load. It could be mentioned however, that the *cr

Dy
N  

decreases as T  is increased. The reason is that the equivalent stiffness in eigenvalue problem decreases with 

increasing temperature gradient. The effects of geometrical aspect ratios (i.e. 
s

 and 
s

  ) on the critical dynamic 

buckling load ( *cr

Dy
N ) versus dimensionless shell length ( /x L ) are illustrated in Figs. 9 and 10. It can be found that 

with increasing 
s

  and 
s

 , critical dynamic buckling load increases. Furthermore, for lower shell length the 

geometrical aspect ratios have not significant effects on critical dynamic buckling load however, for longer shell 

length the effects of geometrical aspect ratios become considerable. In other words, with increasing shell length, the 

effects of geometrical aspect ratios on the critical dynamic buckling load become remarkable.  

In the absence of similar publications in the literature covering the same scope of the problem, one can not 

directly validate the results found here. However, the present work could be partially validated based on a simplified 

analysis suggested by Mosallaie Barzoki et al. [17] on nonlinear buckling response of embedded piezoelectric 

cylindrical shell reinforced with BNNT in which the coefficient of dynamic load ( ), PE foam-core, viscous fluid 

and dapping coefficient ( C ) in this paper were ignored. The results of validation are shown in Fig. 11 in which the 

dimensionless nonlinear critical buckling load (
*cr

NL
N ) versus shell length ( /x L ) is plotted for different values of 

dimensionless Pasternak coefficient ( g
K ). As can be seen the two analyses agree well and show similar results, 

indicating validation of our work. 
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Fig. 8 

Effect of thermal gradient ( T ) on the nonlinear dynamic 

critical buckling load versus dimensionless transverse 

displacement. 

 

 

 

 

 

 

 

 

 

Fig. 9  

Effect of shell length aspect ratio (
s

 ) on the critical dynamic 

buckling load versus dimensionless shell length. 

 

  

 

 

 

 

 

 

 

 

Fig. 10 

Effect of shell thickness aspect ratio (
s

 ) on the critical dynamic 

buckling load versus dimensionless shell length. 

  

  

 

 

 

 

 

 

 

 

Fig. 11 

Dimensionless nonlinear critical buckling load versus shell 

length for different values of dimensionless Pasternak 

coefficient. 

5    CONCLUSIONS 

Buckling response of PNCs conveying fluid have applications in designing many NEMS/MEMS devices such as 

strain sensor, mass and pressure sensors, medical fields, oil and gas as well as other high technology industries. 

Dynamic buckling analysis of a viscous-fluid conveying PNC cylindrical shell with foam core resting on visco-

Pasternak medium was the main contribution of the present paper. Using HDQM the derived governing equations 

were solved to obtain the critical dynamic buckling load so that the effects of geometrical aspect ratio, in-fill ratio of 

core, viscoelastic medium coefficients, material types of the shell and temperature gradient were considered. Results 
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indicated that with increasing geometrical aspect ratio the critical dynamic buckling load of the PNC cylindrical 

shell increases. It was also found that the critical dynamic buckling load is decreased with increasing core thickness. 

Furthermore, the critical dynamic buckling load increases when piezoelectric effect is considered. 
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