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 ABSTRACT 

 In the present study, the effects of arrangement and distribution of multifarious types of 
defects on fundamental frequency of carbon nanotubes are investigated with respect to 
different chirality and boundary conditions. Interatomic interactions between each pair of 
carbon atoms are modeled using two types of non–linear spring–like elements. To obtain 
more information about the influences of defects; the effects of location, number and 
distribution (gathered or scattered defects) of two most common types of defects 
(vacancy and Stone–Wales defects) are examined on vibrational behavior of carbon 
nanotubes. Obtained results are in good agreement with the results reported in other 
literature. The results show that, gathered vacancy defects cause to a reduction in natural 
frequency of nanotubes, especially in the case of fix–fix boundary condition. It is also 
observed that the effect of defects depends on chirality intensively. In addition, the 
influence of the first vacancy defect is significantly more than the first Stone–Wales 
defect.                                                  

  © 2014 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 ARBON nanotubes (CNTs) which are considered by many researchers because of their prominent physical 
and chemical properties, have been discovered in 1991 by Iijima [1]. Among the interesting mechanical [2-5], 

thermal [5-7], and electrical [8, 9] properties of CNTs, high elastic modulus, excellent tensile strength, remarkable 
thermal and electrical conductivity, significant strength to weight ratio and temperature stability up to 2800ºC in 
vacuum [5, 10, 11] could be mentioned. Abundant applications of CNTs in industry [12, 13], medicine [14] and 
engineering [15] are consequent of these exclusive characteristics. 

Due to the high strength and low weight of CNTs, their vibrational frequencies are in order of GHz. In addition, 
abundant applications of this category of nano–materials such as producing nano–mechanical devices including 
oscillators, charge detectors, field emission devices and sensors [16], increase the necessity of investigation of their 
vibrational behavior. On another hand, the evaluation of effects of defects on properties of these nano–structures 
would be crucial because of the inevitable creation of defects during the synthesis and purification processes [17, 
18] and under mechanical strains [19]. Among structural defects, vacancy and Stone–Wales (S–W) defects [20] are 
more prevalent and their numbers and locations would be unclear and it is necessary to investigate their influences 
from different points of view. 

______ 
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Indeed, several quests have been performed in order to understand the vibrational behavior of CNTs. Duan et al. 
[21] examined natural frequencies of armchair single walled carbon nanotubes (SWCNTs) by molecular dynamic 
(MD) method and commercial MD software MATERIALS–STUDIO and used obtained results to estimate the 
effects of aspect ratio, boundary conditions and mode shapes on small scaling parameter (e0) in nonlocal 
Timoshenko beam theory. Hashemnia et al. [22] performed frequency analysis on SWCNTs and single layer 
graphene sheets (SLGSs) using beam element via MD method. Sakhaee–Pour et al. [23] offered simple and quick 
equation to predict natural frequencies according to geometric characteristics of SWCNTs (such as length and 
diameter). Also they evaluated natural frequencies and mode shapes of SWCNTs using 3D elastic beam element in 
finite element approach and regarded the influences of aspect ratio and boundary conditions. Georgantzinos and 
Anifantis [24] modeled multi walled carbon nanotubes (MWCNTs) using linear springs and point masses and solved 
an eigenvalue problem to gain natural frequencies and mode shapes of MWCNTs. In addition, they investigated the 
effects of aspect ratio, chirality and number of layers on natural frequency. Chowdhury et al. [25] studied natural 
frequencies of zigzag and armchair CNTs using molecular mechanics (MM) approach and found that natural 
frequency decreases when aspect ratio increases. Arghavan and Singh [26] analyzed free and forced vibration of 
SWCNTs and obtained natural frequencies and mode shapes by solving an eigenvalue problem. They considered 
different boundary conditions and observed that natural frequencies of armchair CNTs are lower than zigzag ones. 
Yan et al. [27] simulated CNTs using a space–frame model with flexible connections to determine fundamental 
frequencies with respect to different boundary conditions and aspect ratios. Joshi et al. [28] simulated CNTs by 3D 
elastic beam element and studied the efficacy of presence of vacancy defect on natural frequency for various size 
and chirality via finite element method. Also, the influence of number of defects was characterized and it was 
reported that by increasing the number of defects, natural frequency decreases. Parvaneh et al. [29] performed 
frequency analysis on zigzag SWCNTs using non–linear spring based model for different number of defects and 
boundary conditions. Ebrahim Zadeh et al. [30] used 3D elastic beam element to simulate CNTs and checked the 
effects of existence and position of vacancy defects on fundamental frequency. By assuming multifarious chirality 
and aspect ratio, it was observed that fundamental frequency decreases when aspect ratio and number of defects 
increase. Ansari et al. [31] investigated free vibration of SWCNTs and double walled carbon nanotubes (DWCNTs) 
using MD simulation. They considered different boundary conditions and dimensions and observed that by 
increasing the tube length, the natural frequency and its dependency on tube boundary condition is reduced. 
Ghavamian and Ochsner [32] studied vibrational behavior of CNTs with various numbers of layers using finite 
element method via MSC.Marc software. They evaluated the effects of three types of scattered defects (Si–doping, 
carbon vacancy and perturbation) and found that by increasing the number of scattered vacancy defects, frequency 
decreases. 

In accomplished researches in this field, it is observed that usually MD method has been used to investigate 
vibrational behavior of CNTs, while in comparison with structural mechanics approach, it is an expensive method 
with high amount of computations and is applicable for limited scales. Also, in most of the researches which have 
been performed by FEM or structural mechanics approach, beam element has been used to simulate interatomic 
interactions while using beam or rod elements needs to define cross–section and inertia. In addition, the atomic mass 
of carbon atom which should be defined as point mass in the position of each carbon atom (node), has been assumed 
as the density of beam elements which causes errors especially for vibrational analysis (Fig. 1). On the other hand, 
the presence of defects in this category of nanostructures would be inevitable and investigating their mechanical 
behavior without taking it into account would be inappropriate. 
 
 
 

 

 
 
 
 
 
 

Fig. 1  
Schematic view of replacing employed element to 
simulate CNTs by the present study. 
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In this paper, natural frequencies and mode shapes of armchair and zigzag SWCNTs with different boundary 
conditions using non–linear mass–spring model developed by Golkarian and Jabbarzadeh [33, 34] are investigated. 
Utilization of non–linear mass–spring model leads to prevent from above problems and increases the accuracy of 
calculations. In addition, a comprehensive investigation is performed on the influence of vacancy and S–W defects 
(as two common types of defects) on the vibrational frequency of SWCNTs. For this purpose, the effects of number 
of defects, their distribution or centralization and defects location are investigated. The employed CNTs are zigzag 
(11, 0) and armchair (7, 7) nanotubes, with length to radius ratio higher than 10 [35]. Vibrational analyses on more 
than 130 fully non–linear models are performed via finite element ABAQUS software and obtained results are 
compared with the results of other studies. 

2    MODELING 

CNTs are the result of arranging carbon atoms in a regular lattice with hexagonal cells (Fig. 2). In this structure, 
each carbon atom with three nearest carbon atoms constitutes covalent bonds. Based on molecular mechanics theory, 
summation of bonded and non–bonded energies which lead to produce force field between carbon atoms can be 
explained by potential energy functions with following equation [36]: 
 

r vdWV V V V V V        (1) 

 
where Vr represents the bond stretching energy, Vθ the bond angle bending energy, V  the dihedral angle torsion 

energy, Vω the out–of–plane torsion energy and VvdW the non–bonded energies of van der Waals interactions (Fig. 3). 
In Eq. (1) most portion of energies are associated with bond stretching energy and bond angle bending energy and 
the effects of other energies would be negligible [37].

 Using Morse potential energy function [38], bond stretching energy can be stated by the following equation: 
 

0( ) 2{[1 ] 1}r r
r eV D e      (2) 

 
where De=6.03105×10–10, β=26.26 nm–1, r0=0.1421 nm and r is the current distance between two atoms. In addition, 
Morse potential offers following equation to obtain the bond angle bending energy: 
 

2 41
( ) [1 ( ) ]

2 sexticV k k        (3) 

 
where kθ=0.9×10–18 Nm/rad2, Δθ=θ–θ0, θ0=2.094 rad and ksextic=0.754 rad–4. 

As illustrated in Fig. 2, in the present model, two kinds of non–linear translational springs "A" and "B" are used 
to simulate bond stretching and bond angle bending, respectively. In order to define these two kinds of springs, it is 
necessary to determine their force–displacement behavior. Based on the proven principles of mechanics, the force–
displacement equation is derived from the first derivation of energy equation. Therefore the force–displacement 
behavior of springs group "A" which is used to simulate C–C bonds, derived from the first derivation of Eq. (2): 
 

( ) 2 (1 )r r
eF r D e e         (4) 

 
where Δr is the deviation of bond length from its equilibrium distance (r0). If instead of non–linear translational 
springs group "B", the non–linear torsional springs are used; their torque–angle deviation equation is derived from 
the first derivation of Eq. (3). But for more simplification, springs group "B" are assumed as translational springs. 
Therefore, their lengths variation (for small deformations) are related to the angles variation by the following 
equation [39]: 
 

0

2 R

r
 

   (5) 
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where ΔR is the length variation of springs group "B" from its equilibrium distance.
 
With substituting Eq. (5) in Eq. 

(3) and obtaining first derivation of Eq. (3), the force–displacement behavior of non–linear translational springs 
group "B" which is used to simulate interatomic interaction of two opposite carbon atoms in C–C–C bonds (Fig. 2) 
is derived: 
 

4
2 4

0 0

4 48
( ) [1 ( ) ]sexticF R k R k R

r r      (6) 

 
Force–displacement behavior of non–linear translational spring’s group "A" and "B" (Eq. (4) and Eq. (6)) are 

illustrated in Fig. 4. 
By description of behavior of spring–like elements, their dimension, coordinate systems, location of each carbon 

atom and the overall geometry of the models are programed in MATLAB software. Then, the geometry of the 
models as an output file is imported into the ABAQUS software. In ABAQUS software, boundary conditions, the 
mass of carbon atoms and the method of problem solving are determined and frequency analyses of the models are 
performed. Point masses equal to atomic mass of carbon atom (mC=1.9943*10–26 kg) are attached to each node as 
carbon atoms. Analysis are performed in finite element ABAQUS 6.10 software and connector elements CONN3D2 
are used to define non–linear springs. In order to create any kind of defects, necessary changes are employed into the 
initial geometry files. 
 
 

 

 
 
 
 
 
 
 
 

 
Fig. 2  
Finite element model of CNT. 

  

 
 

 
 
 
 
 
Fig. 3  
Schematic view of bonded and non–bonded energies 
in molecular mechanics theory: a) stretching, b) 
angle bending, c) dihedral angle torsion, d) out–of–
plane torsion and e) van der Waals interactions. 
 

3    DEFECTS DESCRIPTION 

The effects of two categories of defects are investigated in the present study: vacancy and S–W defects. Vacancy 
defects are created by missing one or more carbon atoms from the hexagonal lattice. To simulate each vacancy 
defect, that’s enough to eliminate one carbon atom (node) and subsequently three corresponding spring elements 
from group "A" and six spring elements from group "B" (Fig. 5(a)) from lattice structure. 

As it was mentioned, CNTs are a regular lattice with hexagonal cells but, as it is depicted in Fig. 5(b), sometimes 
due to the 90º rotation of C–C bonds, four hexagons which are associated with this bond, change to a pair of 
pentagon–pentagon and heptagon–heptagon cells which calls S–W defect. As it is obvious in Fig. 5(b), along with 
rotation of C–C bond, the length of C–C bonds remains constant in comparison with equilibrium distance (aC–C), but 
angles deviate from their equilibrium status (θ0) and consequently those springs which have been defined for 
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simulating the variations of these angles, will contain an initial tension or compression before applying any load or 
vibration. As a sample, when there is no S–W defect, if any load or vibration is applied on nanotube and leads to 
increase the size of an angle, the size of corresponding spring is also increased from its equilibrium point (point c in 
Fig. 4(b)) to a point like d. Now if due to presence of S–W defect, this spring contains an initial tension, its 
equilibrium point is depicted by point e (instead of point c) and by applying same load or vibration to the previous 
situation, point f will explain the status of mentioned spring. It’s clear that due to the non–linearity of springs group 
"B", their force–displacement behavior are different for perfect and defective situation (part c–d and e–f in Fig. 4(b)) 
and these differences are considered in the present model by defining four stretched and compressed springs which 
are illustrated in Fig. 5(b). 

In this paper, the effects of vacancy and S–W defects on the natural frequencies of zigzag and armchair CNTs 
are investigated from two different points of view by considering different boundary conditions. At first, the 
influence of position of one defect is examined. For this purpose, for free–fix boundary condition a vacancy defect 
moves along five different locations (Fig. 6) and the effect of this movement on the natural frequency is obtained. In 
addition, for fix–fix boundary condition, according to the symmetry of CNTs, locations 1 to 3 are investigated as 
illustrated in Fig. 6. In the second stage, the effect of increase in the number of defects and distribution of the defects 
(gathered or scattered defect) are explored. For this purpose, as is depicted in Fig. 7, initially one defect is created in 
location 1 and after that second to sixth defects added to their related positions, respectively and thereby the efficacy 
of increase in the number of defects from 1 to 6 defects on the natural frequency is evaluated, assuming all defects 
are concentrated in the center of the CNT. Then the same process is repeated when the defects are widely and 
randomly scattered in different locations of the CNT (Fig. 8). It should be noticed that the influence of S–W defects 
is checked in the same way. All the figures are schematically and related to the armchair CNTs and in the case of 
zigzag ones, each case would be same. 
 
 

  
Fig. 4 
Force–displacement behavior of non–linear spring’s group a) "A" and b) "B". 
 
 

 
(a) 

 

 
(b) 

Fig. 5 
Introducing a) vacancy defect and b) S–W defect. 
 

 

 

 
Fig.6 
Selected locations of the defects. 
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Fig. 7 
The order of introducing six gathered defects in the center of 
CNT. 

 
 

 

 
 
Fig. 8 
The order of introducing six scattered defects in the CNT.

 
 

4    NUMERICAL RESULTS AND DISCUSSION 

In order to validate the present method, at first natural frequencies of perfect CNTs for various dimensions and 
boundary conditions are obtained and compared with the results of other researches. Then the study in the case of 
defective CNTs is continued. Table 1 shows agreement of obtained results with other references. 

In the present study two types of nanotubes with the same numbers of carbon atoms and different chiralities are 
used to investigate the effects of defects and their geometry, aspect ratio and fundamental frequency are shown in 
Table 2. As a sample, for fix–fix boundary condition, first mode shape of defective zigzag CNTs with six numbers 
of vacancy and S–W defects are illustrated in Figs. 9 and 10, respectively. Table 3. and Table 4. present obtained 
results related to the influence of location of one defect with respect to the chirality, defect type and boundary 
conditions and demonstrate that, CNTs with different chirality have completely different behavior. As it can be seen, 
for free–fix boundary condition, by increasing the distance between the location of vacancy defect and support, 
natural frequency of defective armchair CNT decreases while natural frequency of defective zigzag CNT increases. 
Almost the same trends is observed in the case of S–W defect with fix–fix boundary condition. In the case of free–
fix boundary condition, vacancy and S–W defects have totally different effect on the natural frequency of armchair 
CNTs. From the results, it could be deduced that vacancy defects are more effective than S–W defects and extent of 
this effect depends on chirality, intensively. 
 
 
Table 1 
Presenting fundamental frequency of perfect CNTs in order to validate the model 

Type of 
CNT 

Aspect 
ratio 

Boundary 
condition 

Fundamental 
frequency 
(GHz) [21] 

Fundamental 
frequency 
(GHz) [22] 

Fundamental 
frequency 
(GHz) [25] 

Fundamental 
frequency 
(GHz) [27] 

Fundamental 
frequency 
(GHz) [31] 

Fundamental 
frequency 

(GHz) 
Present model 

(5,5) 5.44 Free–fix 200 – 207.5 – 208 222 
(5,5) 5.44 Fix–fix – – – 620 – 681 
(6,6) 5.44 Free–fix – 160 – – – 187 

 
 
Table 2  
Properties of employed CNTs 

Type of CNT 
Dimensions (nm) 

Aspect ratio 
Fundamental frequency 
for free–fix B.C. (GHz) 

Fundamental 
frequency for fix–fix 

B.C. (GHz) Diameter Length 
(7,7) 0.9499 5.1686 5.44 143.472 373.148 

(11,0) 0.8618 4.7603 5.52 168.659 534.727 
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Table 3 
The variation of fundamental frequency versus the defect location for free–fix boundary condition 

Defect’s location 
   Armchair natural frequency (GHz)    Zigzag natural frequency (GHz) 

Vacancy defect S–W defect Vacancy defect S–W defect 
1 143.247 143.377 165.275 168.878 
2 143.365 143.418 166.947 168.718 
3 143.278 143.572 168.099 168.640 
4 142.807 144.200 168.732 168.594 
5 141.485 145.197 169.036 168.629 

 
 
Table 4 
The variation of fundamental frequency versus the defect location for fix–fix boundary condition 

Defect’s location 
   Armchair natural frequency (GHz)    Zigzag natural frequency (GHz) 

Vacancy defect S–W defect Vacancy defect S–W defect 
1 372.085 373.464 533.951 533.854 
2 372.143 373.550 529.987 531.178 
3 370.558 373.719 526.600 529.856 

 
 
The variations of frequency versus number of defects for free–fix boundary condition are illustrated in Figs. 11 

and 12. In comparison with perfect CNT, by increasing the number of vacancy defects, natural frequency decreases 
for both chiralities and especially due to existence of six numbers of gathered vacancy defects, natural frequency of 
zigzag CNT decreases about 23 GHz. Although in the case of S–W defects, by increasing the number of defects, 
frequency increases for both chiralities and particularly due to presence of six numbers of scattered S–W defects, 
natural frequency of armchair CNT increases about 13 GHz. Also, unlike to armchair CNT, vacancy defects are 
more effective than S–W defects in zigzag one. Consequently it should be noticed that in this case, chirality is an 
important factor in determining the effects of defects on natural frequency, too. 

In the case of fix–fix boundary condition, the influences of number of different defects on natural frequency are 
depicted in Figs. 13 and 14. Vacancy defect leads to a reduction in frequency for both chiralities, while S–W defects 
leads to increase in the frequency of armchair CNTs and a reduction in the case of zigzag ones. Also, for both zigzag 
and armchair CNTs, effect of vacancy defects would be more significant than S–W defects. Gathered vacancy 
defect, leads to decrease about 86 GHz in natural frequency of zigzag CNT for six numbers of defects. As a 
consequent, it could be stated that the effects of scattered vacancy and S–W defects on natural frequency of zigzag 
CNT almost are the same and in the case of armchair CNT the effect of distributed vacancy defects is negligible. 

 
 

 
Fig.9  
First mode shapes of defective zigzag CNT with six numbers of a) gathered and b) scattered vacancy defects. 

 
 

 

 
Fig.10  
First mode shapes of defective zigzag CNT with six numbers of a) gathered and b) scattered S–W defects. 
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Fig. 11  
Fundamental frequency of armchair CNT versus the number 
of defects for free–fix boundary condition. 
 

 
 

 

 

 
 
 
 
 
 
 
 
Fig. 12 
Fundamental frequency of zigzag CNT versus the number of 
defects for free–fix boundary condition. 

  
 

 

 
 
 
 
 
 
 
 
Fig. 13 
Fundamental frequency of armchair CNT versus the number 
of defects for fix–fix boundary condition. 

  
 
 
 
 
 
 
 
 
 
Fig. 14 
Fundamental frequency of zigzag CNT versus the number of 
defects for fix–fix boundary condition. 

5    CONCLUSIONS 

In the present study CNTs are simulated using non–linear mass–spring model. Also the effects of location, number 
and arrangement of vacancy and S–W defects on natural frequency of CNTs are examined with respect to chirality 
and boundary conditions. The most important obtained results are: 
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 Natural frequency of perfect and defective zigzag CNTs are higher than armchair ones. 
 For both zigzag and armchair CNTs, natural frequency of fix–fix boundary condition is higher than free–

fix state. 
 The effect of defects on the natural frequency depends on chirality and boundary conditions intensively. 
 For one defect, vacancy defect is more effective than S–W defect on the natural frequency of CNTs. 
 For free–fix boundary condition, by increasing the number of vacancy defects, frequency decreases while 

presence of S–W defects leads to an increase in frequency. 
 Due to presence of gathered vacancy defects, natural frequency of zigzag CNTs reduced. 
 In the case of fix–fix boundary condition, a few number of distributed vacancy defects have a negligible 

effect on natural frequency of armchair CNTs. 
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