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 ABSTRACT 

 This paper presents a finite element formulation for the dynamics analysis of the 

steady and transient states of a nonlinear piezoelectric beam. A piezoelectric beam 

with damping is studied under harmonic excitation. A numerical method is used for 

this analysis. In the paper, the central difference formula of four order is used and 

compared with the central difference formula of two order in the time response of the 

structure. The NPBDA program is developed with Matlab software. In this program, 

the Newmark technique for dynamic analysis is used, the Newton-Raphson iterative 

and Simpson methods are used for the nonlinear solution. To verify the NPBDA 

results, the experimental results of Malatkar are used for the nonlinear vibration 

analysis of a beam without piezoelectric properties. Then, the piezoelectric effect on 

the frequency mode values and the time response are obtained. Afterwards, the 

modulation frequency in the nonlinear beam and the piezoelectric effect in this 

parameter are verified. 

                                                 © 2016 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 HE dynamic loads of structures have an important effect on strength and control. Vibration analysis can be 

obtained through harmonic excitation. There are transient and steady states in the time response during 

harmonic excitation. The behavior of piezoelectric structures is extracted by the coupling of electrical and 

mechanical parameters. This model can be in the form of a flexible beam and can be used for large deformations. 

Large deformation and nonlinear material behavior can cause improper results when using linear theory. In this case 

nonlinear theory must be used. In order to study this model, the finite element method can be applied. Finite element 

formulations have been used for the modeling of piezoelectric structures in many studies. 
Ha used the 3D element for a multi-layer model and applied this element to the actuator and sensor ‎[1]. The 

results were compared with the Crawley research and the results were appropriate ‎[2]. Rao used the finite element 

formulation in regards to thermo-piezoelectric problems ‎[3]. In this work, the linear equations from Mindlin were 

used and applied to the sensor and actuator. Moetakef presented a tetrahedron element, which had 10 nodes for 
linear strain and 20 nodes for parabolic strain, and the experimental results were acceptable ‎[5],‎[6]. Suleman and 

Venkayya ‎[7],‎[8]used a bilinear shape function with a 4 node quadratic element. Zemcik developed a piezoelectric 

shell element and implemented it with ANSYS software ‎[9]. Lazarus presented a finite element model for the 

nonlinear vibrations of piezoelectric layered beams with application in NEMS ‎[10]. Ghayour and Jabbari presented 
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the effect of support and concentrated mass on the performance of a piezoelectric beam actuator and frequencies 
through finite element method ‎[11]. The element for the modeling of smart structures was studied by Kogl and 

Bucalem ‎[12]. This element was then used by Crawley and Lazarus ‎[2]. Piefort and Preumont used the Mindlin shell 

elements for piezoelectric materials ‎[13],‎[4]. The response can respond in the low amplitude solution to harmonic 

excitation;Sebald et al. suggested a method to excite the system to jump to the high amplitude solution for 

broadband piezoelectric energy harvesting[17]. Erturk and Inman investigated the dynamic response, including the 

chaotic response on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling[18]. 

Friswell et al.[12] proposed a cantilever beam with a tip mass that is mounted vertically and excited in the transverse 

direction at its base[19]. This device had highly non-linear with two potential wells for large tip masses, when the 

beam was buckled. Bendigeri et al. developed  finite element for the dynamic analysis of a structure with 

piezoelectric property[20]. An eight noded  isoparametric three dimensional hexahedral element was improved to 

model the coupled electro-mechanical behavior. In this work, the effects due to piezoelectric for the developed finite 

element explained. 

This research focuses on the study of the structural response of a nonlinear piezoelectric beam, under the 

influence of a harmonic excitation load. In this paper, the NPBDA program is developed and implemented for the 

dynamics analysis of the steady and transient states of a nonlinear piezoelectric beam.  The Newmark technique for 

dynamic analysis, and the Newton-Raphson iterative and Simpson methods for nonlinear solution are applied. The 

central difference formula of four order is used in the time response of the structure. The piezoelectric effect on the 

frequency mode values and the time response are obtained. The nonlinear state and the damping effect in the 

frequency results are presented. The voltage response of the piezoelectric beam is shown. The modulation frequency 

in the nonlinear beam and the piezoelectric effect in this parameter are verified. 

2    NUMERICAL SOLUTION 

2.1 Finite element model of a nonlinear piezoelectric beam 

The beam model is a piezoelectric bimorph which can be used as an actuator and a sensor. The beam element is 

based on Euler-Bernoulli theory. It is supposed that the length of the beam is large compared with the thickness, in 

order that the shear deformation and rotary inertia effects into the model can be neglected.  

 The proposed element contains two nodes, and each node has two structural degrees of freedom  ,u  and two 

electrical degrees of freedom   and   (Fig.1). The deflection function  u x and electrical potential   across the 

beam length and thickness are evaluated by Eq. (1) [9]. 
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where  ˆ ,u  is the displacement vector of the nodes, ˆ ,  nodes potential, 
uN    the shape functions of structural 

degrees of freedom  ,u   and N    , the shape functions of electrical degrees of freedom  ,  . 

The strain S, and the electric field vector ,E  can be expressed as Eq. (2).  
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where
uB  

 
and B     are the shape function derivatives, t, thickness, h, element length. 

In this article, the element shape function uses the properties of the beam and shell elements. The motion 

equations of a piezoelectric structure are obtained through the Hamilton principle. Nonlinear behavior must be 

considered for highly flexible structures. The motion equation of a piezoelectric nonlinear structure with damping is 

presented by Eq. (5) [10,11].  
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where  M , is mass matrix,  C , damping matrix, uuK   , linear stiffness matrix, uK    , linear piezoelectric 

matrix, K    , dielectric matrix, uu

NK   , nonlinear stiffness matrix, u

NK    , nonlinear piezoelectric matrix, uf , 

mechanical force vector,  f  , electrical load vector, 
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uK    for the series connection of the piezoelectric layers is presented in Eq.(8). 
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uK    for the series connection of the piezoelectric layers is presented in Eq.(9). 
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 
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where Ec   , is elasticity tensor under a constant electric field,  e , piezoelectric stress matrix, s   , dielectric 

matrix,  , permittivity factor,  , mass density. 

In this equation, nonlinear geometry is applied in u

NK     and uu

NK   . Nonlinear stiffness matrix is the 

combination of uu

NEK    and uu

NMK   . Matrix uu

NEK    represents the curvature nonlinearity and uu

NMK    shows the 

inertia nonlinearity [14]. 
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where E, is the young module, I, inertia moment, A, section area, h, length element, 
1g  and 

2g , nonlinear functions. 

The piezoelectric nonlinear matrix is defined as: 
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where u, is transverse displacement in the y direction. 
The nonlinear damping matrix is calculated using proportional damping[21]. The damping matrix is the 

combination of the mass and the total stiffness matrix, especially in dynamic analysis [22]. 

 

     1 2C M K    (17) 

 

  uu uu

NK K K         (18) 

 

1 and 
2  can be simplified by using natural frequency  n  and damping ratio  n ‎[14]. 
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The vibration behavior of the nonlinear beam is studied by using the finite element method. The Galerkin 

weighted method is used in the finite element model. The Newmark procedure is applied for time response and 

Newton-Raphson iteration is implemented to obtain the nonlinear stiffness matrix and nonlinear response of 

piezoelectric beam. 

2.2 Nonlinear function 1g  

The calculation method of function 1g  influences the results. Function 1g  is obtained by the Newton-Raphson 

iteration technique for time step, and is then used in analysis. Function 1g  is defined by Eq. (20) ‎[14]. 
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where L, is beam length (Fig.2). 

In this article, two methods are presented to solve function 
1g . 

Method 1 

In method 1, function 
1g  is solved by using the central difference formula of two order for time step j. 
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Method 2 

In method 2, function 
1g  is solved by using the central difference formula of four order for time step j. 
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The integral of Eq. (23) can be calculated using Simpson’s rule ‎[16]. 
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where a, is the total number of calculated steps, n, the number of step, 
nx , the point position n. 

Function 
1g  is referred to as 

oldg  in method 1 and 
newg  in method 2. The function 

oldg was used in previous 

papers[11,14].   

3    VIBRATION ANALYSIS RESULTS 

The developed finite element program has been named Nonlinear Piezoelectric Beam Dynamic Analysis (NPBDA). 

The NPBDA program is applied for the nonlinear piezoelectric beam. 

To verify the NPBDA results, the experimental results of Malatkar and the numerical results of Delgado[14] are 

used for the nonlinear vibration analysis of a beam without piezoelectric properties. First, the experimental results of 

Malatkar‎[15]for the steady state response of a beam without piezoelectric properties are shown. The corresponding 

numerical results from the NPBDA program are compared with the experimental results of Malatkar for a beam 

without piezoelectric properties. Then, the NPBDA program is applied to compute transient and steady time 

response of piezoelectric beam under the influence of a harmonic excitation load (Fig. 1). The harmonic excitation 

load is P by Eq. (26) [15]. 
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dP P cos t  (26) 

 

where Pd, is  the amplitude of load,  , excitation frequency, t, time. The amplitude of load is considered 0.15g [14]. 

This piezoelectric beam has two layers. The series connection of the piezoelectric layers represents opposite 

polarities. The piezoelectric layer is taken to be PZT-5A[18]. The properties of the piezoelectric material are shown 

in Tables 1, 2. In this study, the condition of the series connection is used in the model (Fig. 2). The Newton-

Raphson iterative and Simpson methods for nonlinear solution are used. Time step is applied for the Newton-

Raphson iterative method. Number of element and time step are important for convergence of nonlinear vibration 

results, so the results of frequency analysis are shown with a change in number of element and the time step in Figs. 

3 , 4. The time step of 0.001sec and number of element of 20 obtain the converged results, so a time step of 0.001sec 

is considered. 

The nonlinear displacement vector is calculated using iterative method. This method obtains the converged 

results by Eq.(27) [14].  
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where i

Ljv , is the linear displacement vector of element i, i

Njv , the nonlinear displacement vector of element i, N, the 

total number of elements. If the error   exceeds tolerance, Njv is assigned to Ljv and a new Njv is calculated. This 

procedure is repeated until convergence is obtained. 

 

  

 

 

 

 

 

 

 

 

 

Fig.1 

a)The finite element model of piezoelectric beam  b) Nodes 

potential degrees of freedom c) Nodes  displacement degrees of 

freedom. 

  

 
 

 

 

 

 

 

Fig.2 

Series connection of the piezoelectric layers.  

  

 

 

 

 

 

 

 

 

 

 

Fig.3 

Change in the first frequency with change in number of element. 
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Fig.4 

Change in the first frequency with change in the time step. 

 

 
Table 1 

The properties of the piezoelectric beam dimensions. 

L(m) b(m) t(m) 

662*10-3 12.71*10-3 0.55*10-3 

 

 

Table 2 

The properties of the piezoelectric material. 

Piezoelectric stress matrix  
2c m e   

Dielectric permittivity matrix  

 F m 

Elasticity constant 

 E GPa   

Poisson 

ratio  v   

Mass density 
3kg m    

0 0 0

10.4 10.4 0

 
 
 

 

9

0 0 0

0 0 0

0 0 13.3*10

 
 
 
  

 
 

165.5 

 

0.3 

 

7400 

3.1 Numerical results of natural frequencies 

The stiffness matrix of the piezoelectric model is dependent on the electrical boundary conditions, and the 

piezoelectric coupling parameter can affect Eigen frequencies. Numerical results showed that the presence of 

piezoelectric properties affected the increase of the first and second frequency of a nonlinear beam. However, the 

effect on later modes is less, which can be stated as a 72% increase in the first frequency and a 57% increase in the 

second frequency.  

In this study, nonlinear conditions are considered and frequency results are obtained a variety of conditions. 

Comparisons of the coupling and uncoupling beams were made in undamping state. The results have been shown in 

Table 3. The existence of a nonlinear state affects the results and has the maximum of increasing of the frequency 

value by 23.6% in comparison to the linear state in the second mode. 

 
Table 3 

Results of vibration analysis. 

Natural frequency 

(undamping, coupling 

and linear) (Hz) 

Natural frequency 

(undamping, coupling 

and nonlinear) (Hz) 

Natural frequency 

(undamping, uncoupling 

and linear) (Hz) 

Natural frequency 

(undamping, uncoupling 

and nonlinear) (Hz) 

Number 

of mode 

2.27   2.28 0.96           0.81 1 

10.68 13.2                  6    5.88 2 
14.77  16.64 16.82 16.72 3 
32.86 35.33    32.97 32.85 4 

3.2 Numerical results of steady state 

The NPBDA program is applied to compute steady time response of nonlinear piezoelectric beam. Each time step 

equals 0.001sec in the numerical solution and the time of the steady state response is considered 120sec.  

Table 4. presents CPU time for the vibration analysis of the nonlinear beam with piezoelectric and without 

piezoelectric properties in the time step of 0.001sec. 

Fig. 5 shows the FFT for the base and the tip of the beam without piezoelectric properties. The figure shows the 

jump in the frequency 17.58Hz. This frequency is excitation frequency. The figure does not show other structural 
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frequencies. The result of the time response of the tip of the nonlinear beam without piezoelectric properties is 

shown in Fig. 6. The figure shows harmonic behavior and the steady state will be reached in the 80sec. And, the 

response for the last three seconds is in Fig.7. According to this figure, the steady state is seen.  

Fig. 8 shows the FFT for the base and the tip of the piezoelectric beam. In the tip FFT, a single frequency is 

shown, but in the base FFT, two frequencies are shown. The result of the time response of the tip of the nonlinear 

piezoelectric beam is presented in Fig. 9 and the response for the last three seconds is in Fig.10. According to this 

figure, the piezoelectric property in nonlinear beam effects the time period of the steady state and it is greater than 

that for a beam without piezoelectric property, thus the steady state is not seen even passing 120sec. The figure 

shows that the presence of piezoelectric properties causes an increase in the global stiffness value. This is the reason 

for the reduction in the displacement of the piezoelectric beam in comparison to the beam without piezoelectric 

properties. 

 
Table 4 

CPU time for the vibration analysis of nonlinear beam with piezoelectric and without piezoelectric properties. 

Nonlinear beam without piezoelectric properties Nonlinear piezoelectric beam  

1.2964*105(sec)=36.11(h) 9.9898*104(sec)=27.78(h) CPU time 
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Fig.5 

Steady state FFT for the base and the tip of the nonlinear beam 

without piezoelectric properties. 
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Fig.6 

Time response of the tip of the nonlinear beam without 

piezoelectric properties. 

  

 

 

 

 

 

 

 

Fig.7 

Time response of the tip of the nonlinear beam without 

piezoelectric properties for the last three seconds. 



255                        Dynamics Analysis of the Steady and Transient States of a Nonlinear…. 

 

 

© 2016 IAU, Arak Branch 

 

 Frequency(Hz) 
 

 

 

 

 

 

 

 

Fig.8 

Steady state FFT for the base and the tip of the nonlinear 

piezoelectric beam. 
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Fig.9 

Time response of the tip of the nonlinear piezoelectric beam. 
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Fig.10 

Time response of the tip of the nonlinear piezoelectric beam for 

the last three seconds. 

3.3 Numerical results of transient state 

The time step equal 0.001sec for the numerical solution. The time of the transient state response is considered 3sec.  

Fig.11 shows the FFT for the base and the tip of the beam without piezoelectric properties. The figure shows the 

structural frequencies. Frequency results are presented in Table 5. The result of time response of the nonlinear beam 

without piezoelectric properties is shown in Fig.12. The greatest displacement of tip of the beam without 

piezoelectric properties during the 3 second period is 21mm. the figure shows that amplitude modulation is created 

in the nonlinear beam without piezoelectric property. 

Fig.13 shows the FFT for the base and the tip of the piezoelectric beam. Frequency results are presented in Table 

6. The result of the time response of the tip of the nonlinear piezoelectric beam is shown in Fig. 14. According to the 

figure, the greatest displacement of tip of the beam during the 3 second period was 7mm, which shows a decrease in 

displacement relative to the beam without piezoelectric properties.  

Figs.15 and 16 show the voltage response of the base and the tip of the beam. In these figures it is shown that the 

voltage response in the tip of the piezoelectric beam changes within the limit [-80, 80], while the voltage of the base 

of the piezoelectric beam changes within the limit [-60, 60]. The existing difference could be the result of a change 

in the slope of the beam. 

Fig.17 shows the FFT of the first three seconds and the last three seconds for the piezoelectric beam. Considering 

the results shown, the natural frequencies of the beam are made clear by the FFT figure for the first three seconds 

while, in the last three seconds (steady state) only a single frequency is seen. 
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Table 5 

Frequencies results for nonlinear beam without piezoelectric properties. 

The fourth frequency (Hz) The third frequency (Hz) The second frequency (Hz) The first frequency (Hz) 

32.03 16.02 5.47 0.586 

 

Table 6 

Frequencies results for nonlinear piezoelectric beam. 

The fourth frequency (Hz) The third frequency (Hz) The second frequency (Hz) The first frequency (Hz) 

34.57 16.21 12.89 2.148 
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Fig.11 

Transient state FFT for the base and the tip of the nonlinear beam 

without piezoelectric properties. 
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Fig.12 

Time response of the tip of the nonlinear beam without 

piezoelectric properties. 
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Fig.13 

Transient state FFT for the base and the tip of the nonlinear 

piezoelectric beam. 
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Fig.14 

Time response of the tip of the nonlinear piezoelectric beam. 
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Fig.15 

Voltage response for the base of the piezoelectric beam. 

 

   

 Time(s)  

 

 

 

 

 

 

 

Fig.16 

Voltage response of the tip of the piezoelectric beam. 
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Fig.17 

FFT of the first three seconds and the last three seconds for the 

tip of the piezoelectric beam. 

3.4 The effect of function 
1g  in the vibration results 

The function 
1g  is a nonlinear function in the stiffness matrix. The functions 

newg  and  
oldg  can be defined for 

function 
1g . The function 

1g  depends on the time, the total number of step and the time step. Comparison of the 

functions 
newg  and 

oldg  is presented in Fig.18. This figure shows that the maximum different between the functions 

newg  and 
oldg  is in the base of the beam. The value of functions 

newg  and 
oldg  is the same in the tip of the beam. 

Fig.19 presents the effect of function 
newg  and 

oldg  on the behavior of FFT for a nonlinear piezoelectric beam. 

Fig. 20 presents the effect of function 
newg  on the behavior of FFT for a nonlinear piezoelectric beam and a beam 

without piezoelectric properties. 

The time response of a piezoelectric beam depends on function 1g  in the numerical method. Fig. 21 presents the 

effect of functions newg  and oldg on the time response for a nonlinear beam without piezoelectric properties. 

Displacement of the tip of the beam without piezoelectric properties with the function newg  represents a 40 

percent decrease in comparison to the use of function 
old

g  the function newg  is the reference solution. The effect of 

the functions oldg  and 
newg  has been presented in Table 7. The numerical results in Table 7. show that the function 

1g  does not influence frequency results.  
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Table 7 

The results of the natural frequencies for functions 
oldg  and 

newg . 

Natural frequency of 

coupling and damping 

beam with function 

oldg  (Hz) 

Natural frequency of 

coupling and damping 

beam with function  

newg  (Hz) 

Natural frequency of 

coupling and undamping 

beam with function  

oldg  (Hz) 

Natural frequency of 

coupling and undamping 

beam with function 

newg  (Hz) 

 

Number of  

mode  

     2.148   2.148  2.29    2.28 1 

  12.79 12.89 13.21 13.2 2 

  16.11 16.21 16.65  16.64 3 
34.5 34.57 35.34  35.33 4 
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Fig.18 

Comparisons of functions 
newg and 

oldg  (t=3sec, time step=0.001, 

the total number of step=200). 
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Fig.19 

Effect of functions 
newg and 

oldg on FFT behavior at the tip of the 

nonlinear piezoelectric beam. 
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Fig.20 

Effect of function 
newg on FFT behavior at the tip of the nonlinear 

piezoelectric beam and the beam without piezoelectric properties. 
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Fig.21 

Effect of functions newg and oldg on the time response at the tip of 

the nonlinear beam without piezoelectric properties. 
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4    THE EXPERIMENTAL RESULTS  

Fig.22 shows the structure and dimensions used for the test. The beam was excited by a harmonic load at the base of 

beam. An accelerometer was installed to measure input excitation at the base. A strain gage was attached near the 

base of the beam to show time response. The base of beam was excited by Eq.(26).     

Malatkar applied an excitation frequency close to the third natural frequency of the structure, so it is assumed to 
be 17.54Hz ‎[15]. Table 8. shows the experimental natural frequencies and damping ratios for a horizontal beam. The 

natural frequencies of a horizontal beam are lower than those of a vertical beam (effect of gravity). 

Fig.23 presents FFT response, and frequency values can be obtained from this. The high frequency value is at 

17.57 (excitation frequency). This diagram shows that the third mode frequency component is modulated [15]. The 

low frequency value is 1.58Hz. 
 

Table 8 

Experimental natural frequencies and damping ratios. 

damping ratio Natural frequency(Hz) Mode number 

0.009   0.574     1 

0.00185          5.727 2 
0.00225        16.55 3 
0.005   32.67 4 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.22 

Structure and experimental set up used by Malatkar for test. 
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Fig.23 

FFT response from experimental result. 

 

5    CONCLUSIONS 

A finite element program for analyzing the nonlinear vibration behavior of a piezoelectric beam has been presented 

in this paper. The time response for a coupling and uncoupling beam is obtained during both steady and transient 

states. The Newmark technique for dynamic analysis, and the Newton-Raphson iterative and Simpson methods for 

nonlinear solution were used. The results of the time response and FFT were obtained. 

The results were compared to the experimental results of Malatkar and the numerical results of Delgado for a 

nonlinear beam without piezoelectric properties. 
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Numerical results showed that the presence of piezoelectric properties affected the increase of the first and 

second frequency of a nonlinear beam. However, the effect on later modes is less, which can be stated as a 72% 

increase in the first frequency and a 57% increase in the second frequency.  

The existence of a nonlinear state affects the frequency results and has the maximum of increasing of the 

frequency value by 23.6% in comparison to the linear state in the second mode.   
The existence of piezoelectric properties affects the time response of the beam and increases stiffness, therefore 

decreasing displacement.  

Existence of vibration produces periodic voltage. The voltage response in the tip of the piezoelectric beam is 

different in comparison to the voltage of the base of the piezoelectric beam. The existing difference could be the 

result of a change in the slope of the beam. 

The numerical results of the time response showed that the presence of piezoelectric properties caused an 

increase in the global stiffness value. This is the reason for the reduction in the displacement of the piezoelectric 

beam in comparison to the beam without piezoelectric properties. 

Comparisons of the time responses of the coupling and uncoupling beams indicate that the presence of 

piezoelectric properties effected the time period of the steady state. The time it took for the piezoelectric beam to 

reach a steady state was greater than that for a beam without piezoelectric properties. 

Comparisons of the FFT of the first three seconds and the last three seconds show that the frequency results are 

different. So, the frequency results for a nonlinear beam depend on the amount of time considered. 

Function 
1g  is one of the parameters that is used for presenting the nonlinear conditions of a beam, so in the 

NPBDA program, function 
1g is determined by the function four order. The results showed that this function does 

not affect the frequency results but can influence time response. The function 
newg is preferred to be used in the 

solution.  

The numerical results showed that the FFT of the nonlinear piezoelectric beam changed. Thus, the frequency 

results of an uncoupling beam and a piezoelectric beam are different. 

The results show that amplitude modulation was created in the nonlinear beam without piezoelectric properties, 

while the presence of piezoelectric properties eliminated this. 
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