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 ABSTRACT 

 This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) 
formulation for the three dimensional finite element modeling of mode I self-similar dynamic 
fracture process. Contrary to the remeshing technique, the presented algorithm can continuously 
advance the crack with the one mesh topology. The uncoupled approach is employed to treat the 
equations. So, each time step is split into two phases: an updated Lagrangian phase followed by an 
Eulerian phase. The implicit time integration method is applied for solving the transient problem 
in Lagrangian phase with no convective effects. A mesh motion scheme, in which the related 
equations need not to be solved at every time step, is proposed in Eulerian phase. The critical 
dynamic stress intensity factor criterion is used to determine the crack velocity. The variation of 
dynamic stress intensity factor along the crack front is also studied based on the interaction 
integral method. The proposed algorithm is applied to investigate the dynamic crack propagation 
in the DCB specimen subjected to fixed displacement. The predicted results are compared with the 
experimental study cited in the literature and a good agreement is shown. The proposed algorithm 
leads to the accurate and efficient analysis of dynamic crack propagation process. 
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1    INTRODUCTION 

XACT analytical solutions for the dynamic fracture problem are rarely available because of technical 
difficulties in solving equations of motion, particularly for complex geometries. So, the analytical solutions may 

only be established for the simple cases. Recently, an analytical modeling of dynamic fracture in a DCB specimen is 
accomplished by means of the Timoshenko beam theory through the quasi-static treatment of unstable crack 
propagation by Shahani and Amini [1]. They obtained the closed forms for the stress intensity factor, strain energy, 
kinetic energy and crack velocity in DCB specimen, which are functions of the model dimensions and material 
properties. 

In general, various simulations of the crack propagation in the framework of finite element method are available 
in the literature. The earliest finite element methods based on the Lagrangian formulation use a node release 
technique for crack propagation [2-4]. Node release technique has the drawbacks of requiring a prior knowledge of 
the path followed by the crack and also the crack is forced to advance the entire distance between the two nodes of 
an element edge at each growth step, so the continuous crack tip motion cannot be described. Consequently, it 
produces inaccurate results and is inappropriate for modeling crack propagation [5]. 
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The updated Lagrangian formulation can be extended with a remeshing technique by which the old mesh is 
replaced by a completely new mesh. In fracture study with this technique, the crack growth increment causes the 
new mesh generation of the model to represent the current crack configuration [6,7]. This means that the mesh 
topology should be changed frequently during the analysis. So, the crack growth increment is no longer constrained 
by the old mesh size as in node release technique. However, a search algorithm and interpolation of the state 
variables to the new mesh is required at each step to complete the solution. Shahani and Seyyedian [8] employed the 
remeshing to simulate the glass cutting with the impinging hot air jet, in which a controlled crack growth due to the 
thermal stresses is studied. Rethore et al. [9] presented a stable numerical scheme for simulation of the dynamic 
crack propagation with the remeshing, however, the aim of their work was not to develop an efficient remeshing 
procedure. In principle, their study focused on the stability and in their computations, the crack speed has been 
calculated via the energy release rate considering that the material toughness is independent of the crack speed. 
Recently, the dynamic crack propagation problem was investigated by using a remeshing technique by Shahani and 
Amini [10]. Dynamic fracture path prediction in impact fracture phenomena was carried out based on the Delaunay 
mesh generation scheme applied in each crack growth increment by Nishioka et al. [11]. 

On the other hand, the Arbitrary Lagrangian Eulerian (ALE) formulation can also be applied to the finite element 
method to simulate the problems of crack propagation. This can alleviate many of the drawbacks of Lagrangian 
formulation. The fundamental idea in ALE is to allow the computational mesh to move in an arbitrary manner, 
independent of the material motion. Subsequently, it is possible to control the mesh motion of a purely Lagrangian 
formulation or the boundary tracking of a purely Eulerian formulation. Contrary to the remeshing procedure, the 
mesh topology, i.e., the number of elements and their connectivity is preserved in ALE method. Moreover, the 
algorithm of the transfer of state variables between the old mesh and the new mesh is more accurate in ALE, where 
the convection equation is treated. 

The ALE formulation of continuum mechanics was originated from the fluid dynamics problems [12, 13]. It was 
then applied to the nonlinear solid mechanics with path-dependent materials by Liu et al. [14,15]. Huerta and 
Casadei [16] employed the ALE in large deformation non-linear analysis involving necking and transient punch 
indentation processes. Gadala and Wang [17−19] applied the ALE formulation in finite strain deformation problems 
consists of the rate-dependent and rate-independent materials. The stress update procedures in ALE description of 
non-linear solid mechanics were discussed by Rodriguez-Ferran et al. [20] for transient and quasi static processes. 
The ALE finite element simulation of three dimensional large deformation problems was performed by Aymone et 
al. [21]. Rodriguez-Ferran et al. [22] employed the ALE method with hyperelastic-plastic constitutive models to 
simulate the necking, coining and powder compaction problems. A fully coupled ALE method was presented for 
large deformation problems by Bayoumi and Gadala [23]. An uncoupled ALE formulation has been employed by 
Khoei et al. [24] in plasticity behavior of pressure-sensitive materials, with the special reference to large 
deformation analysis of powder compaction process. 

The guidelines for designing effective mesh motion strategies in ALE analysis of particular problems were given 
by Movahhedy [25] and Gadala et al. [26], and the critical role of mesh motion in the success of ALE analysis was 
described. The difficult deformation processes such as coining, crack growth and orthogonal metal cutting were 
presented to demonstrate the capability of ALE formulation and suitable mesh motion techniques. In their study, the 
numerical schemes were also proposed for moving boundary and interior nodes of a region consistent with the ALE 
principles. Moreover, the multi region strategy was introduced in mesh motion scheme for the simulation of metal 
cutting process. This approach is employed in this study for the dynamic fracture simulation. 

Ponthot and Belytschko [27] employed ALE in element-free Galerkin (EFG) method to solve one dimensional 
wave propagation and two dimensional propagating cracks with the constant velocity in an infinite body. Their study 
was presented for a linear elastic model. A coupled ALE finite element method for simulating two dimensional 
crack propagation was presented by Gadala [28]. However, the presented ALE methodology uses the special 
techniques to control the motion of nodes on free boundaries for simulating the crack propagation. The crack 
propagation problem running at a uniform velocity in an infinite body was simulated by the presented methodology. 

The motivation for this study is to present an efficient ALE formulation in the framework of finite element 
method for the simulation of dynamic crack propagation problem. The three dimensional solution of the problem is 
performed in this study. The mesh topology is preserved during the crack propagation with the presented ALE 
algorithm. The crack velocity and crack growth increment is not prescribed and must be predicted using a dynamic 
fracture criterion. The crack arrest condition is also investigated. This study also does not have the limitation of 
dynamic crack propagation in the infinite models. The operator splitting technique is used to treat the convective 
terms of ALE formulation. So, each time step is decoupled into a Lagrangian phase followed by an Eulerian phase. 
An unconditionally stable and second order accuracy time integration method is employed to solve the dynamic 
problem. The new surfaces generated by the crack extension are controlled through the mesh motion part of each 
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ALE step. The isoparametric mapping technique is proposed to implement the mesh motion part, which 
demonstrates to be very suitable and efficient for the crack growth study. The solution variables are remapped to the 
relocated mesh using the convection equation. The crack tip motion is governed by a criterion that relates the 
dynamic stress intensity factor to the dynamic fracture toughness of the material. The different stages of modeling 
are applied to a finite element code, which is conducted by ANSYS parametric design language (APDL) [29]. The 
presented ALE algorithm can be used for both structured and unstructured meshes. The prepared ALE finite element 
code is easily applicable to simulate self similar dynamic crack propagation. The parameters such as the history of 
crack velocity, dynamic stress intensity factor and energy quantities are computed and are validated with the 
experimental study. The comparison is also made between the crack velocity predicted in the present study and that 
obtained via the remeshing technique cited in the literature. It is seen that the ALE formulation is a powerful 
alternative method by combining the advantages of both Lagrangian and Eulerian formulation for the dynamic crack 
propagation process. 

2    THE ALE FORMULATION 
2.1 ALE kinematics 

Two domains are commonly employed in continuum mechanics: the material domain ΩX, made up of material 
particles X, and the spatial domain Ωx, consisting of the spatial points x. The ALE formulation considers a third 
domain that is the referential configuration, Ωχ, formed by the reference (or grid) points χ in addition to the material 
and spatial domains. A convenient way to provide one-to-one transformations between the three domains is by 
means of the equations of material motion and referential motion that is also known as the mesh motion [28, 30]. 

The material motion is defined by ( , )t=x X  and the mesh motion is defined by  ˆ ( , ).t=x   Generally, the 

motion of the referential coordinate point χ is arbitrary and thus it does not coincide with the material coordinates. 
The material velocity v and the mesh velocity v̂  are determined by differentiating the equations of material 

motion and mesh motion with respect to time while keeping the material coordinate X or the grid point χ fixed [30]: 
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The difference between the material and mesh velocity is introduced as convective velocity ˆ( )= -v vc  that 

represents the velocity of material particles relative to grid points. Although the two velocities are in general 
independent from each other, there exists a one-to-one mapping between them. At any given time each grid point 
should coincide with one and only one material point, provided that the Jacobian of the mapping function is non-
zero. In addition, the boundary constraint, which ensures that the material and grid configurations have the same 
boundary at all times, can be expressed in the form [28]: 

 
ˆ( ) . 0- =bv v n  (3)

 

 
where nb represents the normal vector to the boundary and (·) represents the scalar product of the vectors. The 
physical interpretation of Eq. (3) is that no normal convective velocity occurs across the boundary if the boundary 
particles remain on the boundary. 

The governing ALE equations involve the material time derivative of some quantities. For a given arbitrary 

vector function fi , the material derivative denoted by if
  is defined to be the rate of changes of the function holding 

the material particle X fixed. The referential time derivative denoted by f is also the time derivative of function fi 

holding the reference point χ fixed. The relationship between the material time derivative and referential time 
derivative of an arbitrary vector function fi is given by the convective derivative [12, 30] as 

 



231                   A.R. Shahani et al. 

© 2011 IAU, Arak Branch 

.i i i
i j i i

jX

Df f f
f c f c f

Dt t x

¶ ¶ ¢= = + = + 
¶ ¶

  (4)
 

 
The term 

if⋅c   in Eq. (4) represents the convective effects, which means that the material particle X is neither 

attached to the spatial point x nor to the grid point χ. 

2.2 Governing equations of the problem 

The balance of momentum equation for the dynamic problems in the updated Lagrangian description is 
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where σji is the Cauchy stress tensor and bi is the body force. The right-hand side of Eq. (5) expresses the inertia 
force with the mass density, ρ, and material time derivative of velocity vi. In ALE description, the governing 
equations can be derived by applying the convective derivative relation, i.e., Eq. (4), into the continuum mechanics 
governing equations. Thus, the balance of momentum equation in ALE formulation can be readily obtained as [30] 
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where iv¢  is the referential acceleration and vi  is the velocity gradient tensor. The Cauchy stress tensor in Eq. (6) 

is obtained from the isotropic linear elastic constitutive equation written as 
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where v and E are the elastic constants, δij is the Kronecker delta and εij is the strain tensor that follows the small 
displacement rule. 

As, in this study the path I ndependent material is studied, the constitutive equation does not have the rate form. 
Hence, no convective terms are introduced in the constitutive governing equation. However, the convective term 

v. ic  in the momentum equation, i.e., Eq. (6) should be taken into account [20, 30]. 

3    NUMERICAL TREATMENTS 

In this study, the uncoupled ALE approach is used to deal with the numerical implementation of Eq. (6). Hence, an 
operator splitting technique is applied to treat the material and convective effects separately [30]. In this approach, 
as shown in Fig. 1, every time step is decomposed into a Lagrangian phase followed by an Eulerian phase. The 
advantage of the operator splitting technique proposed by Benson [31] and Ponthot and Hogge [32] is that the 
calculations are performed in the Lagrangian phase with no convective term to achieve the equilibrium. Such a 
technique has been applied to finite element method to solve the forming problems in solid mechanics [20-22, 24, 
25, 33-35]. 
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Fig. 1 
Decomposition of each ALE step into 
a Lagrangian phase and Eulerian 
phase. 
 

3.1 Lagrangian (material) phase 

The first phase of the operator split is to implement a pure Lagrangian procedure without considering the convective 
effects. So, the mesh is attached to the material, i.e., the material and referential coordinate systems are the same 
(X=χ). Consequently, the convective effects in Eq. (6) are neglected (c0) and it simplifies to Eq. (5). The finite 
element equations for the updated Lagrangian formulation are developed by means of the virtual work. To this task, 
the weak form of Eq. (5) can be obtained by multiplying it by kinematically admissible test function δui over the 
current domain Ωx [30], which using the integration by part and applying the divergence theorem yields 
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where ui represents the displacement field and Γt refers to the part of the boundary on which the traction force ti=σijnj 
is prescribed. Prefix δ designates an arbitrary, virtual and compatible variation. After finite element discretization of 
the body, virtual nodal displacements are eliminated from Eq. (8) and it can be rewritten as the set of second order 
ordinary differential equations [30]: 
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where M is the mass matrix, K the stiffness matrix, F ext the external force vector acting on the finite element nodes 
and u  represents the nodal acceleration vector. N is the shape function matrix and superscript T indicates the matrix 
transpose. It should be noted that the mass, stiffness and external force matrices are recomputed at the beginning of 
each time step since the domain of the problem is changed as the crack propagates. 

The governing Eq. (9), which is associated with the prescribed initial conditions un and vn at the beginning of 
current time step ∆tntn+1-tn, can be solved for time tn+1. The implicit time integration procedure by using the 
Newmark Eqs. [36, 37] is employed to solve the dynamic problem represented by Eq. (9). Accordingly, the 
unknown values at time tn+1, i.e., un+1, vn+1 and 

1n+u  are computed solving the following algebraic system of 

equations: 
 

1 1
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The parameters   and   appeared in Eqs. (14) and (15) determine the stability and accuracy characteristics of 

this algorithm. The Newmark method is unconditionally stable and second order accurate for structural dynamic 
problems when the integration parameters satisfy the relevant relationships [37]. In this study, the values of 

0.25 =  and 0.5 =  are applied into the Eqs. (14) and (15). 

3.2 Governing equation of crack motion 

For the straight self-similar crack propagation, the computational simulations for a given initial crack length, 
specimen geometry, and applied load can be conducted in either of two ways. One of these is the generation phase 
simulation in which the variation of a fracture parameter such as stress-intensity factor can be determined, using an 
experimentally measured crack propagation history (a or a  vs. t curve) as the input data into the computational 

model. On the other hand in the second type of computational simulation, which is called the application phase 
simulation, the crack propagation history and the crack velocity can be predicted by specifying the material dynamic 
fracture toughness data as inputs to the computational model. In this study, the application phase type of the 
computational simulation is used for the dynamic fracture analysis. In this case, for a given dynamic fracture 
problem, a fracture criterion governing the crack tip motion is required to predict both the instantaneous crack speed 

( )a t  and instantaneous crack length  ( ).a t  In this study, the crack tip equation of motion is explained by the critical 

dynamic stress intensity factor criterion [38].  The crack grows in such a way that its tip dynamic stress intensity 
factor, Kd, is always equal to the dynamic fracture toughness of the material, KD. The stress intensity factor 
represents the effect of the applied loading, geometrical configuration, and the parameters of the bulk material 
around the crack tip region. While, the dynamic fracture toughness represents the resistance of material to the crack 
growth. It depends on the material properties and can be determined through the laboratory measurement. Hence, the 
equation of crack tip motion for the purely mode I can be written [38] as:  

( ( ), ( ), ( )) ( )d
I DK a t a t t K a =   (16)

 

 
It is shown from Eq. (16) that the dynamic stress intensity factor is dependent on the crack length, crack speed 

and the stress field σ(t) due to applied load. According to this criterion, the crack arrest occurs when the crack stress 
intensity factor is less than the value of crack arrest fracture toughness or crack arrest SIF KD ( 0).a =  The effect of 
velocity in dynamic stress intensity factor is defined by a separate function and can be written as [38, 39]: 
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where KI

* is the equilibrium stress intensity factor that depends on the current crack length, the applied load, which 
both can be time dependent. It has the dimensions of a static stress intensity factor, but it is not equal to the static 
stress intensity factor for a stationary crack of the same length as the moving crack. The subscript I refers to mode I 
of fracture. kI is a function of crack speed, and can be approximated in the form [38]: 
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where CR is the Raleigh wave speed that its value is 975 m/s for Epoxy-Resin [10]. The crack-velocity function kI is 
a universal function for all elasto dynamically propagating cracks. When the crack is not propagating ( 0),a =  this  
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Fig. 2 
Dynamic fracture toughness vs. crack velocity for 
Araldite-B [43]. 

 
 
function takes a unit value, and decreases monotonically with increasing crack velocity while it reduces to zero 
when the crack velocity is equal to CR. Dynamic fracture toughness KD is a nonlinear material property, which is 
expected to be dependent on the crack speed in a special temperature and is obtained through the experimental tests 
[40, 41]. In the current study, the dynamic fracture toughness data of the Araldite-B material reported by Kalthoff et 
al. [42] and Kanninen and Popelar [43] are used (Fig. 2). 

The stress intensity factor KI
* is computed for the crack front nodes at each time step using the interaction 

integral method [29]. Thereafter, using the data of material dynamic fracture toughness, the Eq. (16) is solved for the 
crack velocity at the end of current time step using the Newton-Raphson iterative procedure. The crack growth 
increment for the next time step ∆tn+1 is then computed as  1.na a t  +=   

3.2.1 Interaction integral method 

Interaction energy integral is a two state integral which allows the mixed mode stress intensity factors to be 
computed independently by superimposing suitable auxiliary fields to the actual ones [44]. It is derived from the J-
integral by considering a composition of two admissible states. This approach does not require to accurately capture 
singular fields in the vicinity of crack tip, moreover, it can be easily introduced in the finite element framework [45]. 
The interaction integral method is briefly discussed here [44, 46].  

The local coordinate system are taken to be at the crack tip with the x1-axis parallel to the crack faces and is 
pointed to the crack extension, the x2-axis is pointed to the normal of the crack surfaces or edges, and the x3-axis 
pointed to the tangential direction of the crack front, as shown in Fig. 3. Two states of the cracked body are 

considered. State 1, ( )(1) (1) (1), , ,ij ij iju   corresponds to the actual state and state 2, ( )(2) (2) (2), , ,ij ij iju   is an auxiliary 

state which is chosen as the asymptotic fields for different fracture modes [44]. So, the interaction integral is written 
as 
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For the sake of simplicity for numerical computation, the interaction integral (19) is written in the domain form 

as 
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The domain form interaction integral (20) is calculated over the volume V , including a group of elements to be 
surrounded by a contour ΓA (Fig. 3). q is referred to as the crack extension vector. The direction of q is the simple x1-
axis of the local coordinate system ahead of the crack tip. The q vector is chosen as zero at nodes along the contour, 
and is a unit vector for all nodes inside the contour. For a given node on the crack front, the finite element mesh 
corresponding to the finite domain V over which the domain integral is defined is shown in Fig. 3 for an arbitrary 
contour ΓA illustrated by the thick lines. This domain is defined by sweeping the Area A, surrounded by contour ΓA, 
along the segment Δ. The size of the domain is dominated by the size of contour. The local coordinate system 
associated with the considered crack front node is also shown in Fig. 3. According to Fig. 3, the crack plane normal 
is the x2-axis of the defined local coordinate system.  

The interaction integral (1,2)I  is associated with the various modes of stress-intensity factor as 
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(1,2) (1) (2) (1) (2) (1) (2)2(1 ) 2(1 )
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v v
I K K K K K K

E E

- +
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where (1) (1),  I IIK K  and (1)
IIIK  are the mode I, II and III stress intensity factors and (2) (2),  I IIK K  and (2)

IIIK  are the 

auxiliary mode I, II and III stress intensity factors. In a problem that all the three modes are produced, by choosing 
the three different auxiliary fields, each stress intensity factor can be calculated independently. In this study, the out 
of plane loading is absent. So, the value of KIII is zero. The mode II stress intensity factor is also eliminated, since 

both the geometry and loading are symmetrical. Thus, the auxiliary field is so selected that (2) 1,IK =  then the value 

of (1)
IK  is obtained from Eq. (21) as 
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22(1 )

I
E

K I
v

=
-

 (22)
 

 
It is noteworthy that the employed time step ∆tn is sufficiently small during the finite element solution of system 

of Eqs. (13)-(15). Nevertheless, each time step ∆tn is subdivided into 50 substeps to achieve dynamic equilibrium 
using the implicit time integration. 

3.3 Eulerian phase 

The second phase of the operator splitting, which is the Eulerian phase deals with the convective terms that have not 
been taken into account during the Lagrangian phase and consists of two parts: 

3.3.1 Mesh motion 

In the crack propagation problem, the mesh motion strategy is to create the traction free surface owing to crack 
advancement. As shown in Fig. 4(a) because of symmetry, one half of the DCB is modeled by FEM. The idea of 
mesh motion is taken from the isoparametric mapping method, which was originally proposed by Zienkiewicz and 
Phillips [47] for the mesh generation.  
 

x1 

x2 

x3 

crack surface 

crack front 

crack front 
node 

  

A

A  

 

Fig. 3 
Details of the finite element mesh corresponding to the finite 
domain V over which the domain integral is defined, the 
defined local coordinate system at the considered crack front 
node. Note that the domain V is defined by sweeping the 
Area A, surrounded by contour ΓA, along the segment Δ. 
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The use of isoparametric mapping method was advocated by Movahhedy [25, 26] for mesh motion in ALE 
analyses. Following the mesh motion scheme presented by Movahhedy [25, 26] for the 2D simulation of metal 
cutting process, the model is subdivided into different regions as shown in Fig. 4(a): the purely Lagrangian region 
including the loading point, the central region including the crack tip and the left and right ALE regions. The central 
region with the fixed mesh size moves with the crack velocity during the analysis. All external boundaries are 
Lagrangian in the normal direction according to the ALE boundary constraint (3). 

For a given initial mesh, the first step is to find the parametric coordinates (Pr, Ps) of all nodal points of the 
model regions. Thus, each region can be considered as a super element with four straight sides and four corner 
nodes. As the mesh motion does not occur in thickness direction, the corresponding equations are considered just in 
x and y directions. So, the parametric coordinates of each internal or boundary node in each region can be obtained 
solving the nonlinear equations given by 
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where xi, yi are the global coordinates of the corner nodes of each region, and Pri and Psi are their local coordinates. 
The subscript 'i' refers to the number of corner nodes and x, y are the global coordinates of internal nodes. The 
parametric coordinates Pr, Ps of the nodes in each region are computed by solving Eqs. (23) and (24) only once at 
the beginning of analysis, and the computed values are stored. Once the crack tip motion was determined in each 
time step, the coordinates of corner nodes in each region are updated. Next, with the aid of computed parametric 
coordinates, the new coordinates of each internal or boundary nodes of each region can be calculated using the direct 
mapping written by 
 

4 4

1 1

( , ) , ( , )i r s i i r s i
i i

new new new newx N P P x y N P P y
= =

= =å å  (25)
 

 
The mesh velocity of each node can now be computed using the new nodal coordinates. Fig. 4(a) illustrates the 

generated finite element mesh according to the initial crack length with the symmetry boundary condition at the 
lower edge of the model. Fig. 4(b),4(c) and 4(d) also show the mesh topology and deformed shape of the model 
during the mode I crack propagation with the proposed ALE analysis. 
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(c) 
 

 

Fig. 4 
3D FE model and its boundary conditions; (a) initial generated mesh in different regions; (b) pattern of moving mesh and 
deformation after 25 mm crack propagation; (c) pattern of moving mesh and deformation after 57 mm crack propagation. 

 

3.3.2 Transport process 

The ALE step in the uncoupled approach is completed with a transport or convection process. This means that after 
the mesh motion in each time step, all the state variables have to be remapped from the Lagrangian solution to the 
relocated mesh according to the convection algorithm. The number of variables to be remapped will depend on the 
material constitutive model. However, in dynamic problems, the inertia effects should also be taken into account 
during the ALE step analysis, which leads to transferring of the velocity field. The remapping of state variables 
consists of solving the classical convection equation, which can be written as [20, 30]: 

0j
j

c
t x

 ¶ ¶
+ =

¶ ¶
 (26)

 

 

The Eq. (26) is resulted from the convective derivative relation (4) with ( ) 0,
X

D Dt =  since this term was 

accounted for in Lagrangian phase [20, 30]. The variable β may be the displacement, stress or velocity field.  
As the mesh motion is carried out at each time step, the Lagrangian mesh is close to the relocated (Eulerian) 

mesh. Accordingly, by applying Eq. (26) into the first order Taylor series expansion [30, 32, 34], yields a 
sufficiently accurate relation between the unknown value of solution variable at the new mesh and the value 
obtained at the Lagrangian mesh: 

 

i
i i i i j
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t t c
x


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¶
E L Lc =  
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where βE is the value of state variable for the relocated nodes to be found, βE is the corresponding Lagrangian 
solution and   is the gradient tensor of that variable. Here, the gradient tensor of a variable is evaluated at the 
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material points. The gradient tensor components of a variable at each material point with the given coordinate x are 
calculated by 

1 1

( , )1
m n

i I
iI

j jk Ix x

N r s

x m x




= =

æ ö÷ç¶ ¶ ÷ç ÷= ç ÷ç ÷¶ ¶ç ÷÷çè ø
åå L  (28)

 

 
where j refers to the x, y or z component, n is the number of nodes per element, NI (r,s) is the shape function 
expressed by the element coordinates r and s and βI

L is a state variable at Lagrangian node I. Also, m refers to the 
number of elements connected to the considered node. The spatial derivative of shape functions are calculated as 
[35, 37] 
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In above relation, J -1 is the inverse of the Jacobian matrix. The Jacobian matrix is written as [35] 
 

1 2 3
1 1 1

1 2 3
1 1 1

1 2 3
1 1 1

n n n
I I I

I I I
I I I

n n n
I I I

I I I
I I I

n n n
I I I

I I I
I I I

N N N
x x x

r r r

N N N
x x x

s s s

N N N
x x x

t t t

= = =

= = =

= = =

é ù¶ ¶ ¶ê ú
ê ú¶ ¶ ¶ê ú
ê ú
ê ú¶ ¶ ¶ê ú= ê ú¶ ¶ ¶ê ú
ê ú
ê ú¶ ¶ ¶ê ú
ê ú¶ ¶ ¶ê úë û

å å å

å å å

å å å

J  (30)
 

4    RESULTS AND DISCUSSION 

The presented algorithm is applied to solve the dynamic crack propagation problem in the DCB sample under fixed 
displacement loading. The through-thickness crack is treated. The mode I self-similar dynamic crack propagation is 
investigated in this study. The assumption of straight crack front is applied to the problem simulation during the 
crack propagation. Fig. 5 depicts a DCB specimen geometry, which is employed in this study. The dimensions of the 
specimen are given in millimeters as follows [42]: length L321, initial crack length a067.8, beam height h63.5, 

distance from beam end to pin e16, distance from crack plane to pin b20 and thickness B10. The mechanical 
properties of Araldite-B are also given in Table 1, which are slightly different in static and dynamic cases [42]. In 
this study, the dynamic material properties are employed in the analysis. The isotropic linear elastic constitutive 
model is employed in dynamic crack propagation analysis of Araldite-B, which is a brittle material. 
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 Fig. 5 
Geometry of the DCB specimen. 

  
 
Table 1 
Mechanical properties of material [42]. 

Epoxy-Resin E (GPa) v  (kg/m3) 
Dynamic  3.66 0.39 1172 
Static  3.38 0.33 1172 

 
 
The FE model of the problem is shown in Fig. 4. Eight-node 3D element (Solid185) is employed in the analysis 

[29]. The element, its nodes location and the employed local coordinate system in element formulation is shown in 
Fig. 6. This element has three degrees of freedom at each node that are nodal translations in the x, y and z directions. 
The finite element analysis is performed by using a mesh contains 5068 3D elements and 6775 nodes. 

The simulation is carried out for the specimen with the initiation stress intensity factor Kq1.33MPa.m0.5 [42]. 
The crack propagation is initiated in the specimen with the initial crack length, by increasing the vertical 
displacement at the pin location until the crack stress intensity factor reaches its critical value Kq. Thereafter, the pin 
displacement is held fixed throughout the simulation. Four elements are used in the thickness direction. As 
mentioned, the crack front has the straight profile during the crack propagation in this study. However, in high 
velocities crack propagation, the straight crack front is observed in the experimental works [48]. Furthermore, using 
the BEM method, it is predicted that for high crack velocity of dynamic crack propagation, the crack front maintains 
its straight profile [49].  

The crack tip equation of motion, i.e., Eq. (16) is solved at each time step and the corresponding results are 
illustrated in the following. The predicted crack propagation velocity vs. time is represented in Fig. 7, and is 
compared with the experimental results reported by Kalthoff et al. [42]. To check the accuracy of the presented 
algorithm, the computed crack velocity from our previous work on the remeshing technique [10] is also shown in 
Fig. 7. Accordingly, the predicted crack propagation velocity from the presented ALE algorithm in this study shows 
more agreement with the experimental work in comparison with those obtained via the remeshing technique. The 
arrest time is also better estimated in this study. So, using the ALE method and its capability in mesh motion 
scheme, the dynamic crack propagation is simulated with the computational saving and more accuracy in the results. 
The history of computed dynamic stress intensity factor along the crack front from Eq. (17) is shown in Fig. 8. It is 
observed that the maximum values of computed dynamic stress intensity factor during the crack propagation are 
related to the deepest point of the crack front. However, the value of dynamic stress intensity factor reduces near the 
free surfaces (corner nodes) of the specimen. This agrees with the reported BEM analysis by Agrawal [49] for the 
through-thickness straight running crack. The determined dynamic stress intensity factor in this study is shown that 
is in good agreement with the experimental results of Kalthoff et al. [42].  
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Fig. 6 
Geometry of the employed eight-node 3D element and its nodes 
location. 
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Fig. 7 
The variation of crack propagation velocity 
vs. time for DCB specimen with 
Kq=1.33MPa.m0.5. 
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Fig. 8 
The variation of dynamic stress intensity 
factor along the crack front vs. time for 
DCB specimen. 
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Fig. 9 
The kinetic and strain energy values during 
dynamic fracture for DCB specimen under 
fixed displacement conditions. 
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Fig. 10 
Study of the solution convergence based 
on the predicted crack velocity. 

  
 
The variations of strain energy and kinetic energy of the model are shown in Fig. 9 as a function of time. It is 

seen that the maximum strain energy corresponds to the beginning of the process when the stress intensity factor has 
its maximum value. Afterward, as the crack propagates the strain energy of the model decreases. This is due to the 
fixed displacement condition. The minimum value of strain energy corresponds to the crack arrest time. The kinetic 
energy of the specimen begins with the zero value at the start of the solution and reaches a maximum value after a 
specified propagated crack length and finally tends to zero at the crack arrest time. 

The reported crack arrest length by Kalthoff et al. [42] is 129.5mm and the predicted value in this study is 
125mm. The convergence of the solution is also checked and is shown in Fig. 10 through the predicted crack 
velocity. To this task, the crack velocity is computed at two different time steps, i.e., Δtn0.08 and 0.16µs. The 
corresponding results coincide with each other, which confirm the convergence. 

5    CONCLUSION 

This paper aimed at elucidating the powers of the ALE finite element method to simulate the self-similar dynamic 
crack propagation. To treat the convective terms appeared in the ALE formulation, each time step of the solution is 
decoupled into an updated Lagrangian phase followed by an Eulerian phase. In Lagrangian phase, the implicit time 
integration method with the unconditionally stable and second order accurate method is applied to the dynamic 
problem. The mesh motion process based on the isoparametric mapping method is proposed here. It is shown that 
this mesh motion technique can be very suitable and computationally efficient for crack growth studies. With the 
organized mesh motion process, a regular and a high resolution mesh at the moving crack tip can be maintained 
during the simulation with no change in number of elements. During the problem solution neither new nodes nor 
new elements are created. A proper manner was presented to treat the convective effects in dynamic finite element 
analysis by which the convergence of the solution can be easily obtained. The nonlinear equation of crack tip motion 
is governed by the critical dynamic stress intensity factor criterion, and is solved for the crack velocity. The 
variation of dynamic stress intensity factor along the crack front is also investigated. The obtained results are 
validated with the experimental study. In comparison with the results of remeshing approach, a more agreement is 
seen between the predicted crack velocity via the present study and the experimental work. So, it can be noticed that 
the ALE formulation is more robust and a good alternative in terms of the accuracy and efficiency by combining the 
advantages of both Lagrangian and Eulerian approaches for the dynamic crack propagation study. 
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