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ABSTRACT
In the present paper, the problem of reflection and transmission of waves at an interface of elastic
and microstretch thermoelastic solids with microtemperatures has been studied. The amplitude
ratios of various reflected and transmitted waves are functions of angle of incidence and frequency
of incident wave. The expressions of amplitude ratios have been computed numerically for a
particular model. The variations of amplitude ratios with angle of incidence are shown graphically
to depict the effect of microrotation. Some particular cases of interest have been also deduced.
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1 INTRODUCTION

RINGEN [1, 2] developed the theory of micromorphic bodies. The theory of microstretch elastic bodies

developed by Eringen [3] is a generalization of the micropolar theory. Eringen [4] also developed the theory of
thermomicrostretch elastic solids. The particles of microstretch materials have seven degree of freedom: three
displacements, three microrotations and one microstretch. A microstretch continuum can model composite materials
reinforced with chopped elastic fibres and various porous solids. The material points of these bodies can stretch and
contract independently of their translations and rotations.

Grot [5] established a theory of thermodynamics of elastic bodies with microstructure whose microelements
possess microtemperatures. The Clausius—Duhem inequality is modified to include microtemperatures and the first-
order moment of the energy equations are added to the usual balance laws of a continuum with microstructure.

Riha [6] presented a study of heat conduction in materials with microtemperatures. Experimental data for the
silicone rubber containing spherical aluminium particles and for human blood were found to conform closely to
predicted theoretical thermal conductivity. The linear theory of thermoelasticity with microtemperatures for materials
with inner structure whose particles possess microtemperatures, in addition to the classical displacement and
temperature fields, was constructed by Iesan and Quintanilla [7]. Various investigators have studied different types
of problems in microstretch thermoelastic medium notable among them are Ciarletta and Scalia [8], Iesan and
Quintanilla [9], Othman et al [10], Passarella and Tibullo [11], Marin [12,13], Kumar et al [14], Othman and Lofty
[15,16], Kumar and Rupender [17,18], Shaw and Mukhopadhayay [19].

Tesan [20] discussed the theory of micromorphic elastic solids with microtemperatures, Iesan and Quintanilla
[21] discussed various problems using thermoelasticity with microtemperatures. Exponential stability in
thermoelasticity with microtemperatures was studied by Casas and Quintanilla [22]. Scalia and Svandze [23]
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presented the solutions of the theory of thermoelasticity with microtemperatures, Iesan [24] discussed
thermoelasticity of bodies with microstructure and microtemperatures. Aouadi [25] studied some theorems in the
isotropic theory of microstretch thermoelasticity with microtemperatures. Scalia et al [26] discussed basic theorems
in the equilibrium theory of thermoelasticity with microtemperatures. The growth and continous dependence in
thermoelasticity with microtemperatures was discussed by Quintanilla [27]. Steeb et al [28] studied time harmonic
waves in thermoelastic material with microtemperatures. Chirita et al [29] studied the theory of thermoelasticity
with microtemperatures.

The main objective of the present investigation is to study the wave propagation at the boundary between a
microstretch thermoelastic half-space with microtemperatures and elastic solid half-space. The amplitude ratios of
longitudinal displacement wave (LD-wave), thermal wave (T-wave), microstretch wave (LM-wave),
microtemperature wave (LT-wave), coupled transverse displacement, microrotational wave and microtemperature
wave namely (CD-I wave, CD-II wave and CD-III wave) and transmitted longitudinal wave (P-wave) and transverse
wave (SV-wave) have been obtained and plotted graphically with angle of incidence. Some special cases of interest
have been deduced from the present investigation.

2 BASIC EQUATIONS

Following Eringen [5] and Iesan [30], the field equations and constitutive relations for a homogeneous, isotropic
microstretch thermoelastic solid with microtemperatures without body forces, body couples, stretch force, heat
sources and first heat source moment, can be written as:

. ou
(A+2u+K)V(VU) = (n+K)Vx(Vxu)+K (Vx@)+A,V§ —vVT =P (1)
.02
(aa+B+7)V (Vo) =y Vx(Vx@)+K (Vxu) —2Ke@-p, (Vxw) = pj 8t_(£ , ©)
S Tt ) _ O

oG Vi +vT =M =24y (V) My (VW) =p 2 =5, 3)
K'VT —pc*%—vlTo%—vT0 (Vu)+k,(Vw) =0, 4)

A 0 0 . ow
kKeVW +(k, +k )V(VW)+p, —(Vx@)—p, — (Vo )b ——-kw -k, VT =0, )

ot ot ot

and the constitutive relations are

t;=Mu, 8, + u(ul.,j +u,, ) +K(uj’l. —€;,0, ) -vT'§,; + 7»0(1)*81.]., (©)
m; =ad, 5; +Bd; ; +vd;; +bye b, O
7\‘:5 = (XO(I):.; + bOSijm(I)_/,m’ (8)
q; = —k4w”,84./. —kswl.t/. —k6wj’l., iLj,m=1,23 ©)
where K, o, B,y,A, 1, Oy Mo My Mys s Jioo Ky (= 1, ,6) are constitutive coefficients. tl:f and m,; are the components

* . . .
of stress tensor and couple stress tensor, A; is the microstress tensor, q, is the first heat flux moment tensor, y

and @ are the displacement and microrotation vectors, W is the microtemperature vector and d)* is the microstretch
scalar, p is the density, j is the microinertia, ¢"is the specific heat at constant strain, K *is the thermal conductivity,

T is the thermodynamic temperature, T is the reference temperature, v =(31+2u+K)a, , v, =(3A+2u+K)a, ,

where O, O, are the coefficients of linear thermal expansion.
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Following Bullen [31], the equation of motion and constitutive relation in an isotropic elastic solid are given by:

e e e e e e ate
(O +u)V(Vu® )+ p Vi =p 7 (10)

e _ qe e ef, e e (1
t, =AU, 5 +u (uiyj +U;;
where 1°, p° are Lame’s constants, u® is the displacement vector, p° is density corresponding to isotropic elastic

solid.

3 FORMULATION OF THE PROBLEM AND SOLUTION

We consider an isotropic elastic solid half-space lying over a homogeneous isotropic, microstretch thermoelastic
half-space with microtemperatures. The origin of the Cartesian coordinate system Ox,x,x, is taken at any point on

the plane surface (interface) and x; -axis points vertically downwards into the microstretch thermoelastic half-space
with microtemperatures is introduced. The region x, >0 is occupied by microstretch thermoelastic half-space with
microtemperatures (medium A, ) and an elastic solid half-space occupies the region x, <0 (medium M, ) as shown

in Fig. 1. We consider plane waves in the x,x, -plane with wave front parallel to the x, -axis.
For two dimensional problem, we take

u=(u,(x;,X;), 0,u; (x,,X;)), W =(w1(x1,x3),0,w3(x1,x3)), <p=(0,¢2(x1,x3),0) W)
u® =(u5 (X,,X5), 0,5 (X, X))
We define the dimensionless quantities as:

' xl ' x3 roy 1 e e e e 1 !
X =Z= X3 =T’ (u, 55 )=(”1’u3)Zs (1 ’”3)=(u1’”3)25 ¢, =0,

*! * ’ 1 1 *! 1 1

=0, t =—0:=t,, m. = m., A= A, =, (13)
b =0 YooY VA M A b Le VT, %
1

tf':Ltﬁ, t':C_lt, T'ZL, w =Lw, L=( b )2, cf:M—MJFK

N L 7, pc’T, p

The relations connecting displacement components and microtemperature components to the potential functions
in dimensionless form are expressed as:

u :@_ﬂ, uf:@_%, u _ﬁ_'_a\ve

0 op, _ oy o, oy
. U3=—¢+8\V' Wy=—t——%, Wy=_—++_—*+, 3 = (14)
OX, OX,4 OX,; OX, OX; OX, OX; OX, OX, OX, OX; OX,

where the primes have been suppressed. Using the dimensionless quantities given by Eq. (13) in Egs. (1)-
(5),(10),(11) and with the aid of Eq. (12) and (14), we obtain the following equations

62 *
[(a, +DV* —a, ¥]¢+a3¢ -a,T=0, (15)

2

0
s —as ?)\V"—azd)z =0, (16)
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2

0
(V? —2a, -3, )0 -a,Vy +a,Viy, =0, (17)
V:-a, - YO Vip—a,V’ T=0
( ayy—ap y)(b a, (I) a,, ¢1 ta,l =0, (18)
0 o0
(Vz —dy E)T_aIS %_alsvz(b"‘awvzd)l =0, (19)
0 oy
[V2(1+a18)—a21 —a,, 5](])] —ay, E—azzT =0, (20)
0 ob

(Vz —8, —ay 5)\”1_‘—319#:0' 2D
v2 -y =0

FE =Y (22)
(VZ __ 62 e _ O

8,25 =0, (23)

where

A+ K A vT pC2 KL?
a=""" a= g=—t- a=—L a=L1 a="—,

p+K p+K p+K p+K p+K Y

v pjcl v,T,L? A L% AL’ u P jCl
=" g= o =, pE— Ay =, @y =—t, Ay=o

Y Y o Qg Qo Qo 201,

_pcel _vel _vell ~ky kK, _pel
4 K* y Y5 K* v Oy K* v Ay KTO’ A ke v Ay ks )

w,C,L k,L? k,T L’ bcL — A+p° — pcl

8y = T(l v 8y = |i y 8y = 3|(0 y 8y = kl y 8 = s A= el
6 6 6 6 p I3

The boundary conditions at the interface x; =0 are given as:

by =t , b =1, my, =0, 7\-;:05 9, =0, gy, =0, w=u;, u =u,

oT

90

o, 24)

4 REFLECTION AND TRANSMISSION

We consider longitudinal displacement wave (LD-wave), thermal wave (T-wave), microstretch wave (LM-wave),
microtemperature wave (LT-wave), coupled transverse displacement, microrotational wave and microtemperature
wave namely (CD-I wave, CD-1I wave and CD-III wave) propagating through medium A, and incident at the plane

x, =0 with its direction of propagation with angle 6, normal to the surface. Corresponding to each incident wave,
we get reflected LD-wave, T-wave, LM-wave, LT-wave, CD-I, CD-II and CD-III waves in medium M, and

transmitted P- wave and SV-wave in medium M, as shown in Fig. 1.
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Fig. 1
Geometry of the problem.

In order to solve the Egs. (15)-(23), we assume the solutions of the form

(0T 0000 b i 607} = (0T 0 i 0 050 05

where k£ is the wave number and ® is the angular frequency and (T), i(l?,(l? 0, W, (I) \V are arbitrary constants.
Making use of Eq. (25) in Egs (15)-(23), yield

BV +BV°+BV*'+BV’+B,=0, (26)
DV*+DV*+D,V*+D, =0, @27
where

B, = 13-;1%(31*331*4 -3,), B, = _331*363 'H%S 312 —5 05— 2 8'218 + a21(a13a16 ;85 ),

(D2

Bs = _%a;363 _1%54 _alaziz 85 +a5(63 +87)+a3_a:6(a12a22 _aga;s)"'%ss _a‘488’

y . 5 .
B4 = % (a4a16 - aean) —85d — (alzazo + a14a18) 31 31301)32318 ) Bs =y,

. . ) . . . )
a =a +1 a,=a,;0" —a,, a14 =a,1lm, a15 :alsl('o’ g =g +1, 8,y =210, ay =a,l0° — 3y,

» « ~ 1 O . 1
61 =88, + 8y, 82 =858 + 8,785, 83 = (314318 g + 0)_12)1 84 = (3982 - ai4a21): 85 = (a14a20 — 358, 6)1

86 = (6113141 - a9a16)1 8 (a13a18 7t a,,85 (x)) ) 68 = (aISa;8 + azl) ai_i + (a:l_za:lﬁa'ZO - a1152)%,

D, o (e -a)2+1%2), D, -~ —a)(® -2y 4 ia (o) _aq 4B (g, 1 By g (T 2

D3=2—"’Zﬁ—(a—2;—‘aﬁ)—(2a°‘%)+as+as, D, =1

and
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Eq. (26) is biquadratic in V>, therefore the roots of this equation gives four values of >. Corresponding to
each value of V*, there exist four types of waves in medium M, in decreasing order of their velocities, namely LD-
wave, T-wave, LM-wave, LT-wave. Eq. (27) is cubic in V2, corresponding to each value of V2 there exist three
types of waves in medium M, , namely CD-I wave, CD-II wave and CD-III wave. Let V,,V,,V,,V, are the

velocities of reflected LD-wave, T-wave, LM-wave, LT-wave and V,, ¥, V, are the velocities of reflected CD-I
wave, CD-II wave, CD-IIl wave in medium A, . Similarly, V, =1is the velocity of transmitted P-wave and
72 = ; is the velocity of SV-wave in medium A, .
aZ
In view of Eq. (25), the appropriate solutions of Egs. (15)-(23) for medium M, and medium M, take the form
Medium M, :

{(I) T (I) ¢1} Z{ i ”g[’ }[ { ( sinSOi—x3coseol.)—m,.t} +R,], (28)
W0, v} :Z{l o, m, }[S el{ (xlblneo, X‘;Cose()/) wjz} +P/.], 29)
where

V2
[a, —ay* —a, (8,8, +a5,8,)][- a12+ta14a12 +aga17 —]
9; = 2 @ 4 4 !

v/ v2 v v,
a3a12 (,02 4a10) —-a ] + la'zlail2a15 + a4a13a17

2 2

V.
a3, [nm, — l8*3315 ] +[- a9a16 —ayn,][a,m, +1a5a, 7)]

fi = i 2 V 2
[agn; +a,8, 1M, — 1"3‘9"3‘15 ] [a,M, +aga17 ][azznl +18,8,, o —]
V2 V2 VAV
=(-1-a, 5 +ay, %) N, = (14w, —), Ny =(-ay—ay —5 +1a, —),
o; ; ; o,
y V.2
—w; (V" —a )[(-aa, +a5a,,) ? —aMs]—aagm,
l; = VE v, 2 v, 2 : 2 2
—(—aya, +aa, ?)a o —18,a,M; o +agn, (-1+ la14 o Ay, 7|2
V 2 2 2 V2 V2 ®
-a,a, G)—JZ +(-1+ay *)(-1-2a, O)—Jz +ay ) +a7a191w—' a;(1+a, (0—12 —1a,, w—‘) +1a,3,, a—‘(—1+ aV /)
m = j j i = j j 2
j VE z 2 LY 2 z 2
2,8, 5 (3, 5 — 18y, -1 @1+ 2a6 ——ay, (+a, L —1a, )
Q) (,0 [ON (,l) ()]

i j j J j i
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and
Pl_ _ ‘Siet{ki(xl sin9i+x3 cosei)fmil} , P S e { (Xl sin@ ; +V3 cos0 ) wjt}
Medium M, :
- -t X, sme —X. cose —o, ¢
(I) S { ( 1 3 ) 1 }’ (30)
\T] _ Elel{ Z(XI sine2 X3 c0592 )—mzt} i (3 1)

where S, , So,- are the amplitudes of incident (LD-wave, T-wave, LM-wave, LT-wave) and (CD-I, CD-II, CD-III)
waves respectively. S, and S/. are the amplitudes of reflected (LD-wave, T-wave, LM-wave, LT-wave) and (CD-I,

CD-II, CD-III) waves and El , E are the amplitudes of transmitted P-wave and SV-wave respectively.
We use the following extension of the Snell's law

sin, sin®,  sin0, sinO; sinO, sinO; sinB; sin0O, _sine_l _sin@ 1
A A A A A A A A oy

5 1 2

where

O > O > O . _
ijk—,V 7,Vz=k=2 (j=1,2,3,4,56 T)atx, =0 (33)

Making use of Egs. (28)-(31) in boundary conditions (24) and with the help of Egs. (32) and (33), we obtain a
system of nine non-homogeneous equations which can be written as:

da,Z =Y ; (i=1,2,3,4,5,6,7,8)9) (34)

2 2

2 V2
a,; =—[d1(1—¥ sin® 0, )+d —sin OOJ\% I +d,0;, a;=(d, dl)\;’b—vsineO 1—\/—‘Zsin290
0

ivo 0
% 5
g = d(l V—sm 0, )+d —5sin“ 0, -

=—(2d, +d;) sme / sm 0,

2

a,;=d, (1 2—sm 0, )+d (1 —sm 20,) —d, n,

o2 V_
28——2d = sme 1——sm 0, 1-2-2sin*,
V2 vy
2 0
a; =ud,g, — 2 sino, a; =1, ’1——sm 0, , Ay =2a,=0,
7 Vo 0 j JVj V0 0 3 9

||8

_ v
am:(dZ—dl)\Wsmeo 1—V—Zzsm260

270 0

<
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= ——sm 0,9, a,;= V sme n, 8y =, =0,

0) 0)2 V»Z
H ] cin2
—d,+d, 1——sm 0, V— f, . =—dll\mmjsmeo 1_\/_023m 0, , az=4a,=0,
Ve \VA e
3 =—(dy, +d13)f v, Sln9 /1—\Zsm 0, a; :(dla(l—v—(’)zsmzeo)—dlzv—;zsmzeo)mjv—j2 ,

aezs:aegzoa

V2 V2
a, =1—sino, , a, S—— 1-—Lsin*0, , a, =1 28in0, , a,=1— 1-—%sin’0, ,
Vo Vi Vo Vo Ve Vo
® (VA o . 0} V2 o .
C=1— [J1-—_sin?0, . =1—sin0,, =1= ’1—Lsm26 , =—-1—sing, ,
a8| \/, V02 0 a8 j Vo 0 a88 Vl V02 0 a89 VO 0

Ve o . .
agizllig 1--5sin®0, , 8y =ag =a, =0 (i=1,2,3 4and  j=5,6,7)
i 0 (35)
where
2 7\‘ b
d,=P%  g-r gt g B g K gl Y =
vT, vT, vT, vT, vT, L°vT, L°vT,
_a b, ok 4 _Kkstk K, Kk
TULAVT,T T LAVT, U LT LT ¥ LT BT
- }\'E+2H€ _ }Le He
d1 = ) 2 = v Uz =
vT, vT, vT,

For incident LD-wave:
4 =S > Sop =S80 =S =S85 =S =S8, =0, Yy =-a,, Y,=a,, Y,=-a,, Y, =q,,
Yi=-a,, X 6o 1= Yy =a Y,
For incident T-wave:

—a =a, —a; 81> =4y,

A4 =S s Sor =S80 =80 =S85 =S80 =8, =0, ¥ =—a,, Y,=a,, Y,=-a,, ¥, =a,,
Y =-a Y =a Y,=-a,, Y Y, =a

8§ =g, Ly )

52

62 72 0

For incident LM-wave:

A =8p> S0 =S80 =8y =Ty =Ty =1, =0, Y =-a,, Y,=a,, Y,=—a,, ¥, =a,;,
Y. Y

5= 70535 6 = 3> 7

For incident LT-wave:

A*=S04’ So1 =8 =8i =805 =8 =87, =0, Y, =-a,, Y,=a,, Y,=-a,, Y, =a,,

Yi=-a,, Yi=ay, Y,=-a,, Y=a, Y, =a,

For incident CD-I wave:
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4 =S0s> Sot =S =S; =8 =86 =8, =0, Yi=a,, Y,=-a;, Y,=a;, Y, =-a;,
Yi=ay, Yi=-ays, Y,=a;, Yy=-ay, Y,=a,=0

A =806 s So1 =Sp =83 =S, =S85 =8, =0, ¥, =—a,, Y,=a,, Y,=-a,, Y, =a,,
Y.=a

5 60 Yo ="lg» Y;=05, Yy=-a

For incident CD-III wave:

A =Sy, S =8p =83 =8y =S85 =84=0, Y=-a,, Y,=a,, Y,=-a,, Y, =a,,
Yi=a,, Y=-ay,, Y,=a,, Yy=-a, Y,=a,=0
and
S, S, S S, S S, S S, T,
le l*’ 22: 2*7 Z3: 3*9 Z4: t P Zsz 5*9 26: (;a Z7: 17 Zgz l*n Zr;: l*
A A A A A A A A A

where Z,, Z,, Z,, Z,, Z,, Z,, Z, are the amplitude ratios of reflected LD-wave, T-wave, LM-wave, LT-wave
and coupled CD-I, CD-II, CD-III waves in medium M, and Z,Z, are the amplitude ratios of transmitted P-wave

and SV-wave in medium M, .

5 PARTICULAR CASES

(a) If we neglect micropolarity effect in medium A/, i.e K =0, then we obtain amplitude ratios at an interface of

microstretch thermoelastic half-space with microtemperatures without microtational effect and elastic solid half
space as:

36
Zayj Y5 (i=1,2,3,4,5,6,7,8) (30

where the values of a, are given as:

o o . Vi,
a; = [d (1——sm 0, )+d sm 0 ] —I,+d,g,, a;=(d,-d)——sin@, ,[1-—L-sin’0
Vo 0 VZ 3 j 2 1 VjVO 0 Voz 0

a, :[(dl(l_x S|n 9 )+d Sll']2 90}\/2] g :(dz_dl)v—w_VSineo 1_x_223in2 60
1

0 2Vo 0
2 V-2
=—(2d, +d,) sme —sin” 0, (1 2—5|n 0, ) +dy — (1——5sin*6,),
Sv? \Y/
O j 0
27——2d sme l——sm 0, = 1- 2—S|n 0,
v2 Vy

’ sme —d, smen , 8y =a, =0,
VO
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V? o 0% ®? . VZ o
a, = —[dm +d, /1—\/—025|n2 0, ]\? ., a, :—dnmmj sing, 1—\/—;25|n2 0,
2 2
o . ’ A
A, =8, = 0, a; = _(d12 + d13) fi \mSln 60 1_\/_02$In2 90 , (37)

V.2 ) V-Z ] 0)2
a, :(dl3(1—v—(‘)ZS|n29O )—duv—(}smzeo)\? ,

]

V2 V2
a, =1—sin0 asj:—lﬂ 1--Lsin?0, ,a; =—t1—sinB, , ag=1—,[l—-2sin’0, ,
Vo Vi Vo Vo v, Vo
® Ve o, o . ® V7 )
a; =1— [l-—sin"6, , a,;=1—sinf,, a,=1=,[1-—sin"6, ,
\/i VO VO V1 VO

6i [
o . (o) Vi Tn2
A BV

(i=1,2 3 4and  j=5, 6)

as7:a58:O' )

6 NUMERICAL RESULTS AND DISCUSSION

The following values of relevant parameters are taken for numerical computations. Following Eringen [32], the
values of micropolar constants are taken as:

A=94x10"Nm~?, p=4.0x10°Nm~?, K =1.0x10°Nm~™ , y=7.779x10°N
j=2x10"m? |, p=174x10°Kgm*.

and thermal parameters are taken from Dhaliwal and Singh [33]:

¢ =1.04x10°NmKg K™, T,=0298K , K" =17x10°Nsec ‘K™

Microstretch parameters are taken as:

jo =0.19x10""m?, b =015x10°N, A,=0.21x10"Nm™>, A, =0.007x10"Nm~?,
o, =0.00008x10°N

and microtemperatures parameters are taken as:

k, =0.0035Ns ", k,=0.045Ns™, k,=0.055NK *s™, k, =0.065Ns 'm?, k,=0.076Ns'm?,
K, =0.096Ns 'm?, u, =0.0085N , p, = 0.0095N

The values of amplitude ratios have been computed at different angles of incidence. In Figs.1-18, MMT
corresponds to microstretch thermoelastic solid with microtemperatures and WMP corresponds to microstretch
thermoelastic solid with microtemperatures without microrotational effect.
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6.1 Incident LD-Wave

Variations of amplitude ratios |Z[|;1 <i <9 with the angle of incidence 6, for incident LD-wave are shown in Figs.
2 through 10. Fig. 2 shows that the values of |Zl| for MMT decrease monotonically in the range 0° <0, < 77°and

then increase, where as the values for WMP increase monotonically in the range 0° <0, < 64° and then decrease in
the further range. It is noticed that the values for WMP are greater than the values for MMT in the whole range.
It is evident from Fig. 3 that the values of amplitude ratio |Zz| for MMT first increase and then decrease near the

grazing incidence. The values for WMP follow oscillatory pattern in the whole range. The values for WMP in
comparison in comparision with MMT are greater in the whole range, except near the normal incidence and grazing

incidence. Fig. 4 shows that the values for |Z3| for MMT decrease in the whole range. The values for WMP attain

maximum value in the intermediate range. The values for MMT are greater than the values for WMP in the whole
range, except the range 39° <0, < 76°, where the behavior is reversed. Fig. 5 depicts that the values of amplitude

ratio |Z 4| for MMT decrease from normal incidence to grazing incidence. The values for WMP are greater than the

values for MMT in the range 20° <0, <80°. The values of amplitude ratio for MMT and WMP are magnified by
multiplying by 10°.

Fig. 6 shows that the values of |ZS| for WMP attain maximu value at the normal incidence. The values of
amplitude ratio for MMT and WMP are magnified by multiplying by10. The values for MMT increase in the range
0° <@, <61° and then decrease. Fig. 7 shows that the values of |Zg| for MMT increase monotonically in the
interval 0° < @, <61° and the decrease as @, increases further, while the values for WMP decrease monotonically in
the whole range. It is noticed from Fig. 8 that the values of |Z7| for MMT increase to attain maximum value at
G = 55° and then decrease with further increase in 6. The values for MMT are magnified by multiplying by 10% 1t
is noticed from Fig. 9 that values of |Zg| for MMT decrease with increase in 6. The values for WMP oscillate and

attain maximum value at normal incidence. Fig. 10 depicts that the values of amplitude ratio |Z 9| for MMT increase

in the interval 0° <@, <65° and decrease for 6 > 65° . The values for MMT are greater in comparison to the values
for WMP in the whole range. The values of amplitude ratio for WMP are magnified by multiplying by 10°.

Amplitude ratio |Z,|
\

Fig. 2
04 B A e s o o e B M Ry sy Variations of amplitude ratios ‘Z 1‘ with the angle of
0 10 20 30 40 50 60 70 80 90 . .
Angle of incidence 0, incidence for LD-Wave.
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Variations of amplitude ratios ‘ZS‘ with the angle of incidence
for LD-Wave.
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Fig. 10
o 1o m m m w  w  m m e Variations of amplitude ratios|Z g| with the angle of incidence
Angle of incidence 6,
* for LD-Wave.

6.2 Incident LM-Wave

Variations of amplitude ratios |Zi |;1Si <9, with the angle of incidence 90 , for incident LM-wave are shown in

Figs. 11 through 19. Figs. 11 show that the values of |Z l| for MMT decrease and WMP oscillate in the whole range.
The values for WMP remain more than the values for MMT in the whole range. Fig. 12 depicts that the values of
|Z 2| for WMP are greater than the values for MMT in the whole range. It is evident from Fig. 13 that the values of
|Z5| for WMP attain maximum value in the range 65° <@ <75°. The values for WMP in comparison to the
values for MMT are more in the whole range.

Fig. 14 depicts that values of |Z 4| for MMT oscillate and attain maximum value near the normal incidence. The
values of amplitude ratio for MMT are magnified by multiplying by 10° and WMP are magnified by multiplying by
10°. Fig. 15 shows that the values of |Z 5| for MMT increase in the range 0° <@}, <45° and then decrease in further
range. The values for WMP follow oscillatory pattern and attain peak value at 6, = 0. The values of amplitude ratio

for MMT and WMP are magnified by multiplying by 10. Fig. 16 shows that the values of |Z | for MMT increase in

the interval 0° < G < 55 and then decrease in the subsequent range, while the values for WMP decrease sharply in
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the whole range with slight oscillation in the finite region. Fig. 17 shows that the values of |Z7| for MMT get

increased to attain maximum value in the intermediate range and then decrease sharply in the further range. The
values of amplitude ratio for WMP are magnified by multiplying by 10°. Fig. 18 shows that the values of |Zs| for

MMT decrease and WMP oscillate in the whole range and the values for MMT remain more as compared to the
values for WMP in the whole range, except near the normal incidence where the behavior is reversed. Fig. 19

depicts that the values of amplitude ratio for MMT increase in the range o° < G < 56° and then get decreased with

increase in 6. The values of amplitude ratio for WMP attain peak values in the range 65° < G < 75° . The values of
amplitude ratio for MMT and WMP are magnified by multiplying by 10.
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Fig.19

Variations of amplitude ratios ‘Zg‘ with the angle of incidence

10 20 30 40 50 60 70 80 9 for T-Wave.

Angle of incidence 6,

7 CONCLUSIONS

The reflection and transmission coefficients at an interface of microstretch thermoelastic solid half-space with
microtemperatures and elastic solid half-space have been studied in the present paper. The amplitude ratios for an
incidence of LD-wave and LM-wave have been obtained numerically and their variations with angle of incidence
have been shown graphically. It is noticed that when LM-wave is incident, the values of reflected LD-wave, T-wave,
LM-wave, LT-wave, transmitted SV-wave and when LD-wave is incident, the values of reflected LD-wave and
transmitted SV-wave for WMP (without microrotational effect) are greater as compared to the values for MMT
(with microrotational effect). The amplitude ratios for WMP are more oscillatory and attain peak value in the initial

range.
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