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ABSTRACT 
In this research, mechanical buckling of rectangular plates of functionally graded materials 
(FGMs) is considered. Equilibrium and stability equations of a FGM rectangular plate under 
uniform in-plane compression are derived. For isotropic materials, convergent buckling loads have 
been presented for non-uniformly compressed rectangular plates based on a rigorous superposition 
fourier solution for the in-plane Airy stress field and Galerkin’s approach for stability analysis. 
The results for isotropic case will be compared with reference articles and finite element method 
(FEM) solution. Finally, the results will be achieved for a sample of FGM material as well as the 
research on the effect of power law index on buckling coefficient. 
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1    INTRODUCTION 

TABILITY of plates is the most important classical subject well documented in numerous references and text 
books [1]. Most of the methods and analysis on buckling is related to uniform distribution load along the edges. 

But, in fact, the rectangular plates is usually the idealization of a small portion of a much larger and more 
complicated built-up plated structure and the applied loads are those exerted on the small portion by the adjoining 
structural elements. It is not easy to find out the actual distribution of the loads on boundary of the small rectangular 
portion under consideration because it requires modeling of the entire built-up structure. Thus, it is also necessary to 
examine the influence of various non-uniform load variations. In recent years, studies on new performance materials 
have addressed new materials known as functionally graded materials (FGMs). These are high performance heat 
resistant materials able to withstand ultra high temperature and extremely large thermal gradients used in aerospace 
industries. FGMs are microscopically inhomogeneous in which the mechanical properties vary smoothly and 
continuously from one surface to the other [2, 3]. Typically, these materials are made from a mixture of ceramic and 
metal. The nonlinear equilibrium equations and associated linear stability equations were expressed for bars, plates, 
and shells by Brush and Almorth in 1975 [4]. The subject matter of this book is the buckling behavior of structural 
members subjected to mechanical loads.  

One case of un-uniform loading that has been studied reasonably well is that of compression by two collinear 
concentrated loads. Apart from the simplistic energy type analysis employed by Timoshenko [5] wherein the plane 
stress solution was completely obviated, there has been a more careful study based on finite element method to 
account for the steep in-plane stress gradients and the singular stresses directly under the points of loading [6]. The 
closely related case of uniform loading on a small portion of the edge usually called partial edge load or patch load 

has also been studied using a simplified approach [7] as well as rigorous series approach for plane stress analysis 
[8]. Except the above cases which are distinctly different from that of uniform loading applied all along the edge, 
general non-uniform loading has not received due attention in the literature till very recently. While early solutions 
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like that of Benoy [9] for a parabolically distributed uniaxial load can be cited, they suffer from drastic errors due to 
oversimplification. For instance, Benoy assumes that the parabolic stress distribution continues in the interior of the 
plate as well which is in total conflict with St.Venant’s principle. A similar oversimplification of the in-plane stress 
solution, with a violation of the compatibility relations, is also found in a recent work [10] on orthotropic plates 
under parabolic load. The importance of a two-step procedure first to determine the in-plane stress field accurately, 
and second to determine the buckling load with due account of that stress field was clearly highlighted by Bert and 
Devarakonda [11] with reference to a sinusoidal distribution of the uniaxial load. Jana and Bhaskar [12] have 
employed a more rigorous series approach to study a wide variety of load distributions. In FGM case Nan et al. [13] 
directly address the constitutive relations of FGM and wish specifically used as an analytical approach to describe 
the uncoupled thermomechanical properties of metal/ceramic FGM. These noval materials were first introduced by a 
group of scientists in Sendai, Japan [14] and then rapidly developed by the scientists. Javaheri and Eslami presented 
the thermal and mechanical buckling of rectangular FGM plates based on the classical and high order plate theories 
[15]. The buckling analysis of circular FGM plates is given by Najafizadeh and Eslami [16]. A new way proposed 
recently for applying the boundary conditions is called the new version differential quadrature method (DQM) [17]. 
The method is successfully used to obtain the buckling loads for anisotropic plates with uniform in-plane loadings. 

In the present article, the equilibrium and stability equations for FGMs are obtained on the basis of classical plate 
theory. Then the influence of different edge load distributions of a simply supported plate is examined. Analysis is 
very rapidly in this method and has ability to spread solution for any loading and boundary conditions. Once again, 
an analytical approach is adopted so as to lead to a set of standard results which will be useful for judging various 
numerical approaches commonly resorted to. 

2    FUNCTIONALLY GRADED RECTANGULAR PLATES 

FGM is typically made from a mixture of ceramics and metal or a combination of different metals. The ceramic 
constituent of the material provides the high temperature resistance due to its low conductivity. The ductile metal 
constituent, on the other hand, prevents fracture caused by stresses due to high temperature gradient in a very short 
period of time. Further, a mixture of a ceramic and a metal with continuously varying volume fraction can be easily 
manufactured. The volume fractions of the ceramic cV and metal mV corresponding to the power law are expressed 
[18] as  
 

( ) (1 ), ( )c c m cE z E V E V zν ν= + − =                                                                                                            (1) 
 
where z is the thickness coordinate ( )2 2h h− ≤ , h is the thickness of the plate and n is the power law index that 
takes values greater than or equal to zero. The variation of the composition of ceramics and metal is linear for n=1. 
The value of n equal to zero represents a fully ceramic plate. The mechanical properties FGM are determined from 
the volume fraction of the material constituents. We assume that the non-homogeneous material properties, such as 
the modulus of elasticity E change in the thickness direction z based on Voigt's rule over the whole range of the 
volume fraction [18]; while Poisson’s ratio ν  is assumed to be constant [20] as  
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                                                                                                               (2) 

 
where subscripts m and c refer to metal and ceramic constituents, respectively. Substituting Eq. (1) into Eq. (2), 
material properties of the FGM plate are determined, which are the same as the equations proposed by Praveen and 
Reddy [18]: 
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3    EQUILIBRIUM AND STABILITY EQUATIONS 
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We initially consider an FGM rectangular thin flat plate ( 2 2, 2 2a x a b x b− ≤ ≤ − ≤ ≤  and thickness h) 
subjected to the mechanical loads. The general strain relations in the displacement z of middle plate are [4]  
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                                                                                                                                (5) 

 
where xε and yε are the normal strain and xyε is the shear strain in middle plate. The strain- displacement relations 
are as 
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Here u, v and w denote the displacement components in the x, y and z directions, respectively, and a comma 
indicates the partial derivative. Hook’s law for plate is defined [22] are as 
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The stress resultants ijN , ijM are expressed as 
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Substituting Eqs. (6) and (7) into Eqs. (8) give the constitutive relations are as 
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The general equilibrium equations are obtained as 
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Substituting Eq. (9) into Eq. (10) gives the constitutive relations are as 
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Derivative Eq. (11) than x and Eq. (12) than y, then add them are as 
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To multiply Eq. (14) at E2 and substituting into Eq. (13) gives as 
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At long last, gives the constitutive relations are as 
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For derived stability equations, virtual displacements are defined [23] as 
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Results in the stability equations are as 
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The subscript 1 refers to the state of stability and subscript 0 refers to the state of equilibrium. The terms Nxo , Nyo 

and Nxyo are buckling force resultants obtained from the linear equilibrium Eqs (11), (12) and (13).  
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4    FORMULATION AND ANALYSIS 

A simply supported rectangular plate ( 2 2, 2 2a x a b x b− ≤ ≤ − ≤ ≤  and thickness h) subjected to compressive 
loading in the x direction is considered. The load distributions are symmetrical about the mid-edges so that their net 
effect is to simply compress the plate without any overall bending action; further the distributions are identical on 
opposite edges. 

 4.1. In-plane stress analysis  

The first step is to obtain the internal plane stress field corresponding to any applied loading on the edges. This 
requires a solution of the two-dimensional elasticity problem governed by the biharmonic differential equation 
 

4 4 4
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+ + =
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                                                                                                                                 (19) 

 
where ϕ  is Airy’s stress function. A rigorous solution of this equation, satisfying the boundary conditions on all the 
edges of the plate, can be obtained by superposition of two building blocks as shown in Fig. 1, each building block 
having a stress function in the form of Fourier series [21]. The first building block corresponds to the applied 
compressive load on the edges 2x a= ± , with the coordinate system placed at the center of the plate is loaded with 
the in-plane loading as 
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Substituting the Airy stress function 1φ  given by 
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Into governing differential equation 4 0φ∇ = , one can obtain the general solution for the functional ( )f x as 
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In which 1C  through 4C  are constants which are to be obtained from the boundary conditions. It is to be noted that 
the stress function solution as given by Eqs. (21) and (22) gives a zero normal stress at 2y b= ±  edges. 
Substituting the zero shear stress boundary condition as well as the normal stress distribution as defined in Eq. (21), 
at the edges 2x a= ± , yield a complete solution for the in-plane stress. (See Appendix A for complete solution) 
 

    

Fig.1 
The building 
blocks required 
for compression. 
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But, the above in-plane stress solution gives a residual shear stress distribution at the 2y b= ±  edges, it is given by 
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In the present problem, a solution consisting of two superposed stress functions is sufficient to satisfy the 

required boundary conditions accurately. In order to eliminate these shear stresses at four edges, a building block is 
necessary. It is shown in Fig. 1 and corresponds to shear stresses applied along 2y b= ± , and taken as 

 

2
1,2,

2( ) cos
m

m x
f y

a

πφ
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑                                                                                                                                 (25) 

 
It is to be observed that whereas the initial stress-function solution 1( )φ is a one-term solution, the second stress-

function solution 2( )φ is a series solution. However, at the most, the first three or four series terms are sufficient to 
obtain a close approximation for the residual shear stress distribution due to 1φ . Although the stress-function 
solution 2φ  has zero normal stresses at the 2y b= ±  edges and zero shear stresses at 2x a= ±  edges, it does 
produce a residual normal stress ( ).xσ  However, it is observed that this xσ  stress distribution is once again 
sinusoidal with a very small magnitude. Consequently, a renormalization of the superposed xσ  distribution has to 
be carried out such that the resulting xσ  stresses are very nearly as specified by Eq. (20). This renormalization is 
carried out using a small uniform stress and a multiplication factor. This methodology gives good results as shown 
in the net section. For 2( )φ into governing differential equation 4 0φ∇ = , one can obtain the general solution for the 
functional ( )f y as 
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                      (26) 

 
Imposing the zero normal stress boundary condition at the 2y b= ±  edges, an interrelation between 1mD and 

4mD  can be obtained. Now superposition of the shear stress distribution at the 2y b= ±  edges and equating the 
resultant to zero yields a complete solution, as 
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The final solution is 
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where the constants are as defined in the Appendix B. Fig. 2 shows the comparative shear stresses at 2y b= ±  
plate edges for the case of 1φ  stress function solution only and the superposed ( 1 2( )φ φ+ ) stress function solution. 
From this figure, one can clearly see that the superposed solution satisfied the zero shear stress boundary condition 
(on all four edges) very accurately. 
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Fig. 2 
Dimensionless shear stress ( 0( )xyτ σ ) 

distribution at ( (2 1)y b = ± ) edges (aspect 
ratio 1a b = ) (solution-1 corresponds the 
stress function solution 1φ  and superposed 
solution is the total( 1 2( )φ φ+ ) solution). 

 

 4.2. Analysis for stability 

The governing differential equation for thin plate buckling is 
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where D is the flexural rigidity, h is the plate thickness, and w is the normal deflection. The well-known Airy stress 
function are defined as 
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Owing to the complexity of the resulting plate buckling equation when each of the in-plane stress is a series sum, 

exact analytical solution may not be possible. Therefore, the buckling solution is obtained by using the Galerkin 
method for the case of simply supported rectangular plates. For the present case of simply supported rectangular 
plates with central coordinate system, the trial functions are 
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π π
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As is well known, the critical loads obtained by seeking non-trivial solutions of the homogenous system of 

equations is given by 
 

cos( ) cos( ) d d 0m x n y
R x y

a b

π π
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where R is the residual obtained by substitution of the assumed w in the left-hand side of Eq. (29). Numerical 
calculations were conducted using symbolic math package Mathamatica (version 6.0) 
All the load distributions shown in Fig. 3 are considered for compression load. 

5    RESULTS AND DISCUSSION 
5.1. Isotropic plate 

Further, all the plates are taken to be of square plan-form. The first step is to examine the correctness of the 
superposition approach employed for plane stress analysis. Numerical results are compared for convergence 
between three-term Galerkin solution and four-term solution. Some representative results for Sinusoidal load is 
presented in Table 1. Although the results obtained by Benoy [9] are for the case of parabolic loading, one can 
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compare the solutions due to the close similarity of sinusoidal and parabolic stress distributions, and are compared 
with finite element program ANSYS 10. The plate width, plate thickness, Young's modulus and Poisson's coefficient 
were kept constant in the parameter study: b=100 mm, h=0.7 mm, E=210 000 N/mm2, v=0.3, a/b=1. In the model 
elements Shell98 8-Node Structural were used, based in Mindlin plate theory. The mesh density for each plate was 
40×40 elements. 

5.2. FGM plate 

To illustrate the proposed approach, a ceramic-metal FGM is considered. The combination of materials consists of 
aluminum and alumina. The Young's modulus and Poisson’s ratio for aluminum are Em = 70 Gpa, vm = 0.3 and for 
alumina are Ec = 380 Gpa, vc = 0.3. Note that Poisson’s ratio is selected to be constant and equal to 0.3. The 
convergent net buckling load for different distributions is shown in Table 2. One should note from Tables 1 and 2 
that the effect of a non-uniform load distribution is quite significant. Variation of the critical buckling coefficient Kcr 
versus the volume p are listed in Table 3. In this Table, the values of critical buckling coefficients Kcr is obtained by 
the method developed in the present article. This table shows that the critical buckling coefficient increases with the 
increase of the power law index p. It is interesting to note that the critical buckling coefficients for FGM plates 
(p>1) are considerably higher than isotropic plates (p = 0). 
 
 

 
Case 1. Concentrated load Case 2. Triangular load 

  
  

 
Case 3. Sinusoidal load Case 4. Uniform load 

  
  

Case 5. Reverse Triangular load 
Fig. 3 
Various load distributions considered. 
 

 

Table 1 

Sinusoidal buckling load (values for K in 2
cr /P K D bπ= ) for an isotropic square plate and simply supported edges (v = 0.3)  

Van Der Neut [24] Benoy [9] FEM Solution, ANSYS DQM [17] Present (Superposition) a/b 
4.68 4.59 5.286 5.408 5.149 1 
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Table 2 

Total buckling coefficient (Values for K in 2
cr /P K D bπ= ) for an isotropic square plate and simply supported edges (v = 0.3) 

FEM Solution, ANSYS Present (Superposition) Load distribution 
2.582 2.409 Concentrated load 
3.315 3.540 Triangular load 
3.972 4 Uniform load 
4.81 4.69 Reverse Triangular Load 
5.286 5.149 Sinusoidal load 

 
 
Table 3 
Total buckling coefficient (GN) for FGM square plate and simply supported edges with various p (power law index) 

Sinusoidal load Reverse Triangular load Uniform load Triangular load Concentrated load P 
      8.581       7.77     6.666     5.901     4.015 1 
    31.477     28.45   24.452   21.645   14.729 2 
    63.801   57.67 49.562  43.873   29.855 3 
  104.898     94.81   81.487   72.134   49.086 4 
  154.669   139.81 120.151 106.359   72.376 5 
  213.111   192.632 165.551 146.547   99.723 6 
  280.242   253.31 217.699 192.711 131.137 7 
  356.080   321.862 276.613 244.861 166.625 8 
  440.630   398.295 342.301 303.009 206.194 9 
  533.932   482.623 414.773 367.162 249.859 10 
  635.968   574.853 494.037 437.328 297.597 11 
  746.755   674.994 580.099 513.511 349.438 12 
  866.298   783.049 672.964 595.716 405.378 13 
  994.603   899.025 772.635 683.946 465.417 14 
1131.674 1022.92 879.115 778.204 529.558 15 
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Fig. 4 
Buckling coefficient Kcr of FGM square plate, 
for simply supported edges, for various load 
distributions and for various values of power 
law index. 

 
 

Fig. 4 shows the critical buckling coefficients Kcr for various load distributions and for various values of power 
law index ( / 1).a b =  It is seen that the critical buckling coefficients increases with the increase of power law index. 
Figs 5, 6, 7, and 8 are graphs that show the critical buckling coefficients Kcr increases with the increase of aspect 
ratio ( / )a b  for the cases of concentrated, sinusoidal, triangular and reverse triangular compression load with simply 
supported boundary conditions, respectively. 
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Fig. 5 
Kcr of FGM rectangular plate under 
Concentrated Load, for various values of 
power law index and for various values of 
aspect ratio (a/b). 

 
 

0

500

1000

1500

2000

2500

3000

1 2 3 4(a/b)

K

P1
P2
P3
P4

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 
Kcr of FGM rectangular plate under 
Sinusoidal Load, for various values of power 
law index and for various values of aspect 
ratio (a/b). 
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Fig. 7 
Kcr of FGM rectangular plate under Triangular Load, 
for various values of power law index and for various 
values of aspect ratio (a/b). 
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Fig. 8 
Kcr of FGM rectangular plate under Re-Triangular 
Load, for various values of power law index and for 
various values of aspect ratio (a/b). 

6    CONCLUSION 

In the present article, convergent buckling loads have been presented for non-uniformly compressed rectangular 
plates based on a rigorous superposition Fourier solution for the in-plane stress field and Galerkin’s approach for 
stability analysis. Then, the equilibrium and stability equations for functionally graded rectangular plates are 
obtained with the assumption of power law composition for the constituent materials. Buckling analysis of FGM 
plate under various load distributions is presented. It is concluded that: 
1. For such cases, the effect of non-uniform distribution is to significantly alter the critical value of the total load, 
and such changes are much more than the corresponding isotropic plate. Further, depending on the nature of the load 
distribution, the buckled configuration may also change.  
2. The critical buckling coefficients Kcr for the isotropic plate is generally lower than the FGM rectangular plate. 
3. The critical buckling coefficients Kcr for the FGM rectangular plate is increased by increasing the aspect ratio 
( a b ).  
4. The critical buckling coefficients Kcr for the FGM rectangular plate is increased by increasing the volume power 
law index p. 
5. The present converged analytical results will be useful for judging the accuracy of various approximate methods 
commonly employed.  

APPENDIX 
Appendix A 
The constants occurring in the stress function 1φ  equations are: 

Eq. (23): 
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Appendix B 
The constants occurring in the stress function 2φ  equations are: 
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Eq. (28): 
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