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 ABSTRACT 

 The present paper studies the possibility of propagation of torsional surface waves in an 

inhomogeneous anisotropic layer lying between two heterogeneous half-spaces (upper 

and lower half-space). Both the half-spaces are assumed to be under compressive initial 

stress. The study reveals that under the assumed conditions, a torsional surface wave 

propagates in the medium. The dispersion relation of torsional surface wave has been  

obtained in the presence of heterogeneity, initial stress and anisotropic, and it is 

observed that the  inhomogeneity factor due to quadratic and hyperbolic variations in 

rigidity, density and initial stress of the medium decreases the phase velocity as it 

increases.  The result also shows that the initial stresses have a pronounced influence on 

the propagation of torsional surface waves. In the absence of anisotropy, Initial stress, 

inhomogeneity and rigidity of the upper half-space, then the dispersion relation 

coincide with the classical dispersion relation of Love wave.      

  © 2017 IAU, Arak Branch. All rights reserved. 

 Keywords : Torsional wave; Heterogeneity; Initial stress; Phase velocity; Dispersion 

relation. 

1    INTRODUCTION 

 HE propagation of surface waves in an anisotropic layer  has  importance to the seismologists due to its 

possible applications in geophysical prospecting and in understanding the cause and estimation of damage due 

to earthquakes. The particles of the medium twist clockwise and anticlockwise about the direction of motion of the 

waves during the propagation of torsional surface waves. Due to the importance in various fields such as civil 

engineering and its several sub-disciplines including architectural engineering, geotechnical engineering, control 

engineering, structural engineering, earthquake engineering, the study of torsional surface waves in anisotropic 

layered between two  inhomogeneous half spaces has been of central interest to the theoretical seismologists. 

However, propagation of a torsional waves in such a heterogeneity model   has not been studied yet. Earthquakes are 

often attributed to different types of seismic waves generated at the earthquake focus. Seismic anisotropy is the 

variation of seismic wave speed with direction. Seismic anisotropy is an indicator of long range order in a material, 

where features smaller than the seismic wavelength (e.g., crystals, cracks, pores, layers or inclusions) have a 

dominant alignment.  This alignment leads to a directional variation of elasticity wave speed.   

In this study, a heterogeneity model is proposed to propagate the torsional surface waves in anisotropic layer 

lying between two half-spaces (as shown in Fig. (1)).  Numerous papers on the propagation of surface waves in 

inhomogeneous half-space  have been published in various journals, due to their devastating damage capabilities 
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during earthquake and possible applications in geophysical prospecting. Literature for propagation of torsional 

surface waves is relatively very less, if compared to other surface waves.  Abo-Dahab [1] has studied reflection of P 

and SV waves from stress-free surface elastic half-space under influence of magnetic field and hydro-static initial 

stress without energy dissipation. Abd-Alla and  Ahmed [2] subsequently discussed omitted the propagation of Love 

waves in a nonhomogeneous orthotropic elastic layer under initial stress overlying semi-infinite medium.  

Propagation of Rayleigh waves in generalized magneto-thermoelastic orthotropic material under initial stress and 

gravity field was studied by Abd-Alla et al. [3]. Ahmed and  Abo-Dahab [4]  has shown the  propagation of Love 

waves in an orthotropic granular layer under initial stress overlying a semi-infinite granular medium, also  

Chattopadhyay et al. [5] described the  torsional wave propagation in harmonically inhomogeneous media. Torsional 

surface waves in heterogeneous anisotropic half-space under initial stress have been studied by Chattopadhyay et al. 

[6]. Effect of rigid boundary on the propagation of torsional waves in a homogeneous layer over a heterogeneous 

half-space was formulated by Gupta et al. [7] and effect of rigid boundary on propagation of torsional surface waves 

in porous elastic layer again improved  by Gupta et al. [8].  

The effect of initial stress in the medium is due to many reasons, for example resulting from the difference of 

temperature, process of quenching, shot peening and cold working, slow process of creep, differential external 

forces, gravity variations etc. These stresses have a pronounced influence on the wave propagation as shown by Biot 

[9]. Kepceler [10] described the torsional wave dispersion relation in a pre-stressed bi-material compounded 

cylinder with an imperfect interface and torsional wave propagation in a pre-stressed circular cylinder embedded in 

a pre-stressed elastic medium was contribute by Ozturk and Akbbarov [11]. Several graphs are plotted to show the 

nature of torsional surface waves in heterogeneity model, for that purpose the numerical data of the components 

have been taken from various books (Love [12-13], Ewing et al. [14], Biot [15]).  

Many scientists have studied omitted the propagation of various surface waves in heterogeneous medium like: 

Rayleigh wave, SH-waves, Love waves etc.   Khaled et al. [16] calculated homotopy perturbation method and 

variational iteration method for harmonic wave propagation in nonlinear magneto-thermoelasticity with rotation. 

Biot [17] discussed omitted the theory of propagation of elastic waves in a fluid saturated porous solid I low 

frequency range.  Recently Kumari et al. [18] studied omitted the propagation of torsional waves in an 

inhomogeneous layer sandwiched between inhomogeneous semi infinite strata. Selim [19] calculated 

mathematically the propagation of torsional surface waves in heterogeneous half-space with irregular free surface. 

Torsional wave propagation in a pre-stressed hyperelastic annular circular cylinder was formulated by Shearer [20].   

Propagation of magnetoelastic shear waves in an irregular self-reinforced layer was studied by Chattopadhyay and 

Singh [21]. Existence of torsional surface waves in an earth’s crustal layer lying over a sandy mantle investigated by 

Vishwakarma and Gupta [22]. Georgiadis et al. [23] have summarized the torsional surface waves in a gradient-

elastic half-space.  Dey and Dutta [24] concluded the torsional wave propagation in an initially stressed cylinder. 

Keeping these in view (propagation of various surface waves and torsional surface waves), the present paper 

contains a heterogeneity model with three types of heterogeneity in the layer and half-spaces. Quadratic and 

hyperbolic variations in rigidity, density and initial stresses has been taken in upper and lower half-spaces 

respectively with the inhomoheneity parameters  and   having dimension equal to length. Whereas, middle layer 

is considered as inhomogeneous anisotropic layer with variation in rigidity, density as 

20 20 20, ,z z zN N e L L e e      where  is  inhomogeneity parameter having dimension equal to length. x -axis 

is taken along the direction of wave propagation and z-axis is vertically downward to the direction of wave 

propagation having origin at the interface (as shown in Fig. (1)). The inhomogeneity and initial stresses of half 

spaces also have visible effects on the phase velocity of wave propagation. It is observed that phase velocity 

increases with increase in initial stress of half spaces. The presents model gives the dispersion relation of torsional 

surface waves in the presences of anisotropic, heterogeneity and initial stress. The classical dispersion relation of 

Love waves omitted obtained  in the absence of anisotropy, initial stresses, inhomogeneity and rigidity 10L  of the  

upper half-space, in other words,  the torsional wave mode changes into the Love wave mode and this conversion 

shows that such kind heterogeneity model exists in the Earth and allows the  torsional surface waves to propagate.   

2    FORMULATION OF THE PROBLEM 

A heterogeneity model has been assumed to the propagation of torsional surface waves. The model is well-equipped 

with an inhomogeneous anisotropic layer of finite thickness H lying between two half-spaces. In this model the 

upper and lower half-space considered under initial stress with quadratic and hyperbolic variation in rigidities and 
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density respectively.  We have described a cylindrical coordinate system with z-axis positive vertically downwards. 

The origin of the coordinate system is located at the surface of the lower half-space at the circular region and x-axis 

is taken along the direction of wave propagation (as shown in Fig. 1).  

Variation in rigidity, density and initial stress in upper half-space have been expressed as: 

 

10 10 10 10(1 ), (1 ), = (1 ), (1 )N N z L L z z P P z              

 

Similarly, for lower homogeneous half-space 

 
2 2 2 2

30 30 0 0cosh ( ), cosh ( ), = cosh ( ), cosh ( )N N z L L z z P P z          

 

and anisotropic layer having variation as: 

 

20 20 20, ,z z zN N e L L e e        

 

where 
10 10 20 20 30 30 10 20 30, , , , , , , ,N L N L N L     and 

10 30,P P  represents rigidities, densities and initial stresses  in 

respective mediums.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Geometry of the problem.   

 

The following boundary conditions must be satisfied. The continuity of the displacement at interface z H   is 

 

 0 1

0 1 10 20( ) ( ),
v v

v z v z L L
z z

 
 

 
    

 

(1) 

 

and continuity at the interface 0z   is 

 

1 2

1 2 20 30( ) ( ),
v v

v z v z L L
z z

 
 

 
    

 

(2) 

 

where 
0 ( )v z  and 

2 ( )v z  are displacement components of upper and lower half-space and 
1( )v z  is the displacement 

component of middle layer.  

3    SOLUTION OF THE PROBLEM 

3.1 Dynamics and solution for the inhomogeneous anisotropic layer  

We have considered a cylindrical co-ordinate system with z-axis positive downwards. The origin of the coordinate 

system is located at the surface of the lower half-space at the circular region (as shown in Fig.1). 

The equation of motion in an anisotropic layer may be written as Biot [15]: 
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(1) (1) 2
(1)

2

2r z

r

v

r z r t

 


 
 

  
  

  
  

 

(3) 

 

where r and   be radial and circumferential coordinates respectively,  is the density and ( , , )v r z t is the 

displacement component along   direction. Stress-strain relation for an inhomogeneous anisotropic elastic layer 

given as: 

 
(1) (1)2 , 2r r z zNe Ne       (4) 

 

where strain components are express as 
1 1

,
2 2

r z

v v v
e e

r r z
 

  
   

  
.  N and L are represents rigidities of the 

medium along r and z directions, respectively. Eq. (3) takes the following form by using relation (4) 

 
2 2

2 2 2

1v v v v v
N L

r z z zr r t


      
      

     
 

 

(5) 

 

when wave propagates along radial direction with amplitude of displacement as a function of depth then the solution 

of Eq. (5) may be expressed as: 

 

1( ) ( ) i tv V z J kr e   (6) 

 

  represent circular frequency of the wave and 
1J  is the Bessel’s function of first kind and of order one. ( )V z  

is the solution of following equation 

 
2 2 2

2

1
1 0

d V dL dV k N c
V

L dz dz L Ndz

 
    

 
 

 

(7) 

 

where c= /k  is the velocity of the propagation of torsional surface wave. Now, substituting, 
1 /V V L  in Eq. 

(7), we get 

 
22 2 2 2

1

1 12 2

1 1
1

2 2

d V d L dL k N c
V V

L L dz L Ndz dz

     
       

     

 
 

(8) 

 

Consider the exponential variation in elastic moduli, rigidities and density in the inhomogeneous anisotropic 

layer i.e. 

 

20 20 20, ,z z zN N e L L e e       (9) 

 

where   is inhomogeneity parameter and 
20 20,N L  and 

20  are rgidities and density at 0z  . Using Eq. (9), Eq. 

(8) becomes: 

 
2

21

1 12
0

d V
V

dz
   

 

(10) 

 

where   2 2 2 2 2 2

1 20 20 1/ / 1 / 4k N L c c k     and 1 20 20/c N  is the shear wave velocity in the layer. The 

solution of Eq. (8) is given by 

 
1 1

1 1 1( )
i z i z

V z A e B e
 

   (11) 
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where 
1A  and 

1B  are arbitrary constants and hence the displacement in the middle inhomogeneous anisotropic layer 

is given by 

 

 1 1

1 20 1 1 11/ ( )
i z i z i tv v L A e B e J kr e
  

    (12) 

4    DYNAMICS OF PRE-STRESSED INHOMOGENEOUS ANISOTROPIC HALF-SPACE 

If r and   are the radial and circumferential coordinates respectively, the equation of motion for the initially 

stressed anisotropic half space is given by Biot [15]:  

 
(2) (2) 2

(2)

2

2

2

r z

r

P v v

r z r z z t

 


 
 

     
    

     
 

 

(13) 

 

where (2)

r and (2)

z  represents incremental stress components of anisotropic half-spaces, ( , , )v v r z t  the 

displacement along   direction, P is the initial compressive stress along the radial coordinate r, and  is the density 

of the medium. Relation between stress and strain for anisotropic layer is 

 

 (2) (2)/ / , ( / )r zN v r v r L v z           

 

where N and  L are the rigidities of the medium along r and z directions respectively. By using above relation, Eq. 

(13) may reduced as: 

 
2 2

2 2 2

1 1v v v v v
G

r z N z z Nr r t

      
      

     
 

 

(14) 

 

where 
0 0 / 2, 1,2,3n n nG L P n   . Since the middle layer does not contain any initial stress i.e. 

20 0P  . 

Assuming the solution of Eq. (14) as 
1( ) ( ) i tv V z J kr e  where   is the frequency, Eq. (14) takes the form 

 
2 2

2

2

1
( ) 0n

n n

dGd V dV N
k V z

G dz dz G Ndz

  
    

 
 

 

(15) 

 

Assuming  

 

( ) ( ) / nV z V z G  (16) 

 

Eq. (15) can be written as: 

 
2

22 2
2

12 2

1 1
0

2 2

n

n n n

d Gd V dL N
k V

G G dz G Ndz dz

      
        

    

 

 

(17) 

 

where ,kc c   the phase velocity of the torsional surface waves in initial stressed half space.   

4.1 Solution of lower homogeneous half-space  

Consider the hyperbolic variation in elastic moduli, density and initial stress with depth z as: 
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2 2 2 2

30 30 30 30cosh ( ), cosh ( ), = cosh ( ), cosh ( )N N z L L z z P P z         (18) 

 

where    is inhomogeneity parameter. Using relation (18), Eq. (17) takes the form 

 
2

2

22
  ( ) 0

d V
V z

dz
   

 

(19) 

 

 where 
2 2

2 2 30

2 2 2

2 2

1
N c

k
Gk c




   
    

   
. The solution of Eq. (19) is given by  

 
2

2( )
z

V z B e


  (20) 

 

Therefore the solution of Eq. (13) is 

 
2

2 1

2

0

( )

cosh( )

z i tB e J kr e
v v

G z

 





   
 

(21) 

4.2 Solution of upper half-space  

Consider the quadratic variation in elastic moduli, density and initial stress with depth z as: 

 
2 2 2 2

10 10 10 10(1 ) , (1 ) , = (1 ) , (1 )N N z L L z z P P z             (22) 

 

where   is the inhomogeneity parameter in lower half-space. Using relation (22), Eq. (17) takes the form  

 
2

2

02
  ( ) 0

d V
V z

dz
   

 

(23) 

 

where 
2 2

2 30

0 2

2 2

1
k N c

G c


 
  

 
and 0 10 10/c N  is the shear wave velocity in the medium along the radial direction. 

Solution of  Eq. (23) is given by 

 
0 0

0 0( )
z z

V z A e B e
 

    

 

The magnitude of the surface wave propagating in the medium decays rapidly with increase in depth, so the 

solution of Eq. (21) may be taken as: 

 
0

0( )
z

V z B e


  (24) 

 

where 
0A  and 

0B  are arbitrary constant. In view of Eqs.(16) and (24), the solution of Eq. (13) takes the form 

 
0

0 1

0

1

( )

(1 )

z i tB e J kr e
v v

G z

 


 


 

 

(25) 

 

where 
0 ( )v z  represents the displacement in lower half-space.  
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5    PHASE VELOCITY EQUATIONS 

Phase velocity equations will be obtained by using of above mentioned boundary conditions into Eqs. (12), (21) and 

(25), we have following equations as: 

 

 
0

1 1

0 1 1

0 20

1

(1 )

H
i H i He

B A e B e
G H L


 




 

 


 
 

(26) 

 

    0 1 1/10

0 0 20 1 1 1 1

0

1
H i H i HHL

H e B L e i e A i e B
G

             
 

(27) 

 

  2

1 1

20 2

1 B
A B

L G
   

 

(28) 

 

  2 30

20 1 1 1 1 2

2

L
L i A i B B

G


      

 

(29) 

6    DISPERSION RELATION 

Eliminating all the arbitrary constants from the phase velocity equations, we have 

 

 
  

 

  

30 1 2
10 1 0

1
2

10 30 2 020 1

20

1
1

tan( )
1

1

H

H

L e
L H

H
H

L L HL e

H L





 
   




   







 
   

 

  

 
  

 

 

 

(30) 

 

Eq.(30) represents the dispersion relation of the torsional surface waves in the assumed heterogeneity model. 

Obtained dispersion relation does not coincide with the classical dispersion relation of Love waves in the presences 

of anisotropic, heterogeneity, initial stress. Now following particular cases are considered to reduce Eq. (30) into 

classical form of dispersion relation.  

6.1 Case I 

When 10 100,N L     and 10 0P   i.e. the upper half-space has constant rigidity and density, the Eq. (30) takes the 

form as: 

 

30 1 2 10 1 0

1

2 10 30 2 0
20 1

20

tan( )

H

H

L e L m
H

L L m
L e

L





  









  

 

 
 

 

 

(31) 

 

where  2 2 2 2

0 01 /m k c c   and the above Eq. (31) represents the dispersion relation of torsional surface waves 

when upper half-space is homogeneous.  
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6.2 Case II  

If 
20 200,N L    and

20 0P  , then Eq. (30) reduces to 

 

 
  

 

  

30 1 2
10 1 0

1
2

10 30 2 020 1

20

1
1

tan( )
1

1

L m
L m H

H
m H

L L HL m

H L


  



   



 
   

 

  

 
  

 

 

 

(32) 

 

where  2 2 2 2

1 1/ 1m k c c  and the above Eq. (32) represents the dispersion relation of  torsional surface wave in 

an inhomogeneous anisotropic layer.   

6.3 Case III 

Setting
30 300,N L    and 

30 0P   in the Eq. (30), we get  

 

 
  

 

  

30 1 2
10 1 0

1
2

10 30 2 020 1

20

1
1

tan( )
1

1

H

H

L m e
L H

H
H

L L m HL e

H L






   




  







 
   

 

  

 
  

 

 

 

(33) 

 

where  2 2 2 2

2 21 /m k c c  . In this case, Eq. (30) represents the dispersion relation of torsional surface wave for 

constant rigidity and density in the lower half-space.  

6.4 Case IV 

Considering
10 20 30 10 10 20 20 1 30 30 20, 0, 0, 0, , ,P P P N L N L N L                and neglecting the 

density ( 10L ) of upper half-space in Eq. (30) , we get 

 

 
2 2

22 2 2

1
2 2

1 1

1 /
tan / 1

/ 1

c c
kH c c

c c






 


 

 

 

(34) 

 

which is the classical dispersion relation of the torsional surface wave in an heterogeneity model.  Eq. (34) is a well 

known classical dispersion equation of Love wave (Love [13]). In this case the torsional wave mode changes into 

the Love wave mode and this conversion shows that such kind heterogeneity model exists in the Earth and allows 

the torsional surface waves to propagate.   

7    NUMERICAL COMPUTATION AND DISCUSSIONS 

The phase velocity 1/c c  of the torsional wave in an inhomogeneous anisotropic layer has been calculated 

numerically from the Eq.(30). The graphical representation shows the phase velocity relation for the different values 

of 10 10/ , / , / , / 2k k k P L    and 30 30/ 2P L with the fixed value of 10 10 20 20 30 30 1 2 1 0/ 2, / 0.7, / 2, / 0.2 /P L P L P L c c c c     , 

30 20/ 1.8L L   and 10 20/ 0.25L L   for all the curves.  
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Fig. (2) to Fig. (6) have been  plotted for non-dimensional  wave number kH  versus dimensionless phase 

velocity 
1/c c .  Fig. (2) to Fig. (4) represent the effect of inhomogeneity  parameters on the phase velocity of 

torsional wave  as well as  Fig. (5) and Fig. (6) show the effect of initial stresses on the propagation of torsional  

waves. For graphical representation, MATLAB software has been used to generalize the results. It is observed that 

there is a significant effect of heterogeneity and initial stresses on the propagation of the torsional wave in an 

inhomogeneous anisotropic layer. It is found that, the phase velocity is more in the case of quadratic 

inhomogeneity(upper half-space) rather than hyperbolic (lower half-space).  

 

 

 

 

 

 

 

 

 

 

Fig.2 

Dimensionless phase velocity 
1/c c  versus non-dimensional 

wave number kH  for the different values of  / 0.1,0.2,0.3k   

with the fixed value of
10 10 30 30/ 2 / 2 0.2, / 0.2P L P L k   ,  

and / 0.2k  . 

 

Fig. 2 represents the effect of inhomogeneity parameter / k  on the phase velocity   of the torsional wave.  In 

this figure, all curves have been plotted by taking / 0.1,0.2,0.3k   and the constant value of other parameters 

have been taken as 
10 10 30 30/ 2 / 2 0.2, / 0.2P L P L k    and / 0.2k  . The phase velocity of the torsional wave 

decreases rapidly as the value of / k  increases. It is also observed that the phase velocity
1/c c  decreases with the 

increases in wave number kH . The phase velocity of the torsional wave has been affected in sandwiched medium.   

Fig. 3 depicts the effect of inhomogeneity parameter / k  on the propagation of torsional wave.  The value of 

/ k for the curve 1, curve 2, curve 3 and curve 4 has been taken as 0.2, 0.4, 0.6 and 0.8 respectively and other 

parameters remains constant.  In this figure the inhomogeneity parameter / k  has the visible effect on the phase 

velocity of the torsional wave for low frequency and curves are shifted closer to each other at higher magnitude, that 

is, inhomogeneity parameter / k  come into effect on the phase velocity of the torsional wave for low magnitude.  

 

 

 

 

 

 

 

 

 

Fig.3 

Dimensionless phase velocity 
1/c c  versus non-dimensional 

wave number kH  for the different values of / k  0.2,0.4,0.6,0.8 

with the fixed value of
10 10 30 30/ 2 / 2 0.2, / 0.2P L P L k     

and / 0.2k  . 

 

From Fig. 2 and Fig. 3 it may be concluded that the phase velocity 1/c c decreases with increases in wave 

number kH . The inhomogeneity parameter / k  affected the phase velocity of a torsional wave for the higher 

magnitude as shown in Fig. 2, whereas, the inhomogeneity parameter / k  has negligible effect on the wave 

propagation after a certain point (0.7, 2.3). From both figures it is concluded that the heterogeneity parameter 

/ k in upper half-space is more effective than the heterogeneity parameter / k  of lower half-space.   
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Fig. 4 gives the change of phase velocity for the different value of the inhomogeneity parameter  / 2k  of 

anisotropic layer with compressive initial stresses and heterogeneity parameters ( / k  and / k ) and the fixed 

parameters have been taken as
10 10 30 30/ 2 0.2, / 2 0.2, / 0.2 /P L P L k k     . The value of / 2k  has been 

taken as 0.1, 0.2, 0.3 and 0.4 for curve 1, curve 2, curve 3 and curve 4 respectively. It may conclude that the phase 

velocity 
1/c c  increases as the value of / 2k  increases for the wave number 1kH   and the effect of the 

inhomogeneity parameter / 2k is vanished for certain wave number 1kH  . It is also observed that, the phase 

velocity increases rapidly for the inhomogeneity parameter / 2 0.3k  as shown in curve 4.   

Fig. 5 depicts the variation of phase velocity 
1/c c with respect to the wave number kH  for different value of 

initial stress
10 10/ 2P L  associated with upper half-space. The value of initial stress 

10 10/ 2P L  for curve 1, curve 2 and 

curve 3 is 0.2, 0.4 and 0.6, and the value of other parameters is
30 30/ 2 0.2, / 0.2 / , / 2 0.2P L k k k      . The 

higher magnitude in initial stress
10 10/ 2P L  is more effective on the phase velocity of torsional wave and the phase 

velocity 
1/c c of a torsional wave increases as the value of 

10 10/ 2P L increases.    

Fig. 6 shows the effect of initial stress 
30 30/ 2P L associated with lower half-space on the propagation of torsional 

wave in particular range.  The value of initial stress
30 30/ 2P L  has been taken as 0.4, 0.6 and 0.8 for curve 1 to curve 

3. It is observed that, the phase velocity increases with increases in initial stress
30 30/ 2P L  with respect to wave 

number .kH    

The study on seismic waves gives important information about the layered Earth structure and has been used to 

determine the epicenter of earthquake. Seismologists are able to learn about Earth’s internal structure by measuring 

the arrival of seismic waves at stations around the world because these waves travel at different speeds through 

different materials. Knowing how fast these waves travel through the Earth, seismologists can calculate the time 

when the earthquake occurred and its location by comparing the times when shaking was recorded at several 

stations. If a wave will arrive late, it would pass through a hot, soft part of the Earth. This study shows that phase 

velocity dispersion curve is affected by inhomogeneity and since the Earth’s crust and mantle are non-homogeneous 

in nature, the findings may play a vital role in understanding the cause of damage due to earthquakes.  

 

 

 

 

 

 

 

 

 

 

Fig.4 

Dimensionless phase velocity 
1/c c  versus non-dimensional 

wave number kH  for the different values of / 2k  0.1,0.2,0.3,0.4 
with the fixed value of 10 10 30 30/ 2 / 2 0.2, / 0.2P L P L k   ,  

and / 0.2k  .   

  

 

 

 

 

 

 

 

 

Fig.5 

Dimensionless phase velocity 1/c c  versus non-dimensional wave 

number kH  for the different values of  
10 10/ 2 0.2,0.4,0.6P L   

with the fixed value of
30 30/ 2 0.2, / 0.2, / 2 0.2P L k k    ,  

and / 0.2k  . 
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Fig.6 

Dimensionless phase velocity
1/c c  versus non-dimensional wave 

number kH  for the different values of  
30 30/ 2 0.2,0.4,0.6P L   

with the fixed value of
10 10/ 2 0.2, / 0.2, / 2 0.2P L k k     

and / 0.2k  .  

8    CONCLUSIONS 

In this study the propagation of torsional surface waves in an inhomogeneous anisotropic layer lying between two 

heterogeneous half-spaces has been investigated analytically. We conclude  that the geometry may allow the 

propagation of torsional surface wave in  three different mediums(as shown in Fig. 1). Some special cases of interest 

have been deduced from the generalized dispersion relation as:  

Case I  described the  dispersion relation of torsional surface waves in  anisotropic layer and inhomogeneous 

semi-infinite medium(lower half-space). In this case, the phase velocity affected by the inhomogeneity parameters 

/ 2 0.2, /k k  and   initial stress 
30 30/ 2P L  as showing in Fig. 4, Fig. 3 and Fig. 6 respectively.   

Case II represents the dispersion relation of the torsional wave in the  absence of inhomogeneity parameter 

( 0)   of anisotropic layer. In other words, when the layer is taken as homogeneous  medium. The effect of 

inhomogeneity parameters / , /k k  and initial streses 
10 10 30 30/ 2 , / 2P L P L  on the propagation of  the torsional  

wave has been  demonstrated in the Fig. 2, Fig. 3, Fig. 5 and Fig. 6 and discussed respectively.   

Case III discussed  the relation of inhomogeneity parameters( / k and  / 2k ) and  initial stress 
10 10/ 2P L  on 

the phase velocity 
1/c c of  the torsional  wave.   

Case IV, in this case,  when the initial stresses, inhomogeneity and rigidity 
10L  of the  upper half-space are 

negligible, the dispersion equation coincides with the well-known classical equation of Love wave which is the 

validation of the problem.   

From the above figures we may conclude that:   

Dimensionless phase velocity 
1/c c  of torsional surface wave decreases with increases of non-dimensional wave 

number kH  with visible effect of initial stresses and heterogeneity of the mediums.  

The phase velocity of the torsional wave increases with increases in heterogeneity parameters / 2k  and / k , 

whereas, the phase velocity decreases as the value of / k  increases.   

The phase velocity of the torsional wave increases as the value of 10 10/ 2P L  and 30 30/ 2P L increases.  

It is found that, the phase velocity of torsional wave is more in the case of quadratic inhomogeneity rather than 

hyperbolic and exponential variation in rigidities and densities having the simultaneous effect on the phase velocity 

of the torsional wave. The obtained results are useful to find the location of earthquakes as well as their energy, 

mechanism etc. and may provide valuable information about the selection of proper structural materials for civil 

construction.   
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