
 

© 2013 IAU, Arak Branch. All rights reserved.                                                                                                    

 

Journal of Solid Mechanics Vol. 5, No. 2 (2013) pp. 206-215 

Nonlocal Vibration of Embedded Coupled CNTs Conveying 
Fluid Under Thermo-Magnetic Fields Via Ritz Method 

A. Ghorbanpour Arani1,2*, S. Amir1  
1Faculty of Mechanical Engineering, University of Kashan, Kashan, Islamic Republic of Iran
2Institute of Nanoscience & Nanotechnology, University of Kashan, Kashan, Islamic Republic of Iran 

Received 8 April 2013; accepted 30 May 2013 

 ABSTRACT 

 In this work, nonlocal vibration of double of carbon nanotubes (CNTs) system conveying 
fluid coupled by visco-Pasternak medium is carried out based on nonlocal elasticity theory 
where CNTs are placed in uniform temperature change and magnetic field. Considering 
Euler-Bernoulli beam (EBB) model and Knudsen number, the governing equations of 
motion are discretized and Ritz method is applied to obtain the frequency of coupled CNTs 
system. The detailed parametric study is conducted, focusing on the remarkable effects of 
the Knudsen number, aspect ratio, small scale, thermo-magnetic fields, velocity of 
conveying fluid and visco-Pasternak medium on the stability of coupled system. The results 
indicate that magnetic field has significant effect on stability of coupled system. Also, it is 
found that trend of figures have good agreement with the previous researches. Results of 
this investigation could be applied for optimum design of nano/micro mechanical devices 
for controlling stability of coupled systems conveying fluid under thermo-magnetic fields. 
                                                                        © 2013 IAU, Arak Branch. All rights reserved. 

 Keywords: Vibration; Coupled system; Conveying fluid; Knudsen number; Magnetic field; 
Visco-Pasternak medium 

1    INTRODUCTION 

 HEORETICAL and experimental studies on one-dimensional nanostructures, such as nanowires and 
nanotubes, have received much attention since identification of CNTs. Nanotubes have become remarkable 

because of their great importance in the development of nanodevices. CNTs have demonstrated exceptional 
mechanical, thermal and electrical properties and the most important features of CNTs are their extremely high 
stiffness combined with excellent resilience. It has been reported that CNTs possess very high elastic modulus and 
sustain large elastic strain up to 5% [1]. 

The dynamical behaviors of micro/nano structures with and without conveying fluid have been widely reported 
in the literature. It is noted that most nanodevices can be modeled as a beam [2], where the investigating mechanical 
behaviors of these structures is important in the design of the nanodevices. Ghorbanpour Arani et al. [3] investigated 
the free transverse vibrations of single walled carbon nanotube (SWCNT) and double walled carbon nanotube 
(DWCNT) under axial load using the EBB model. Their results showed that for the DWCNTs, the nonlocal theory 
predictions for the natural frequency are lower than that of the classical theory. In another study, the thermal effect 
on the buckling of DWCNT resting on a Pasternak foundation using Eringen’s nonlocal elasticity theory was studied 
by Ghorbanpour Arani et al. [4]. They concluded that the strength of a DWCNT was directly related to the Winkler 
and shear modules of elastic medium. Zhen et al. [5] represented transverse vibration of fluid-conveying DWCNT 

______ 
* Corresponding author. Tel.: +98 913 162 6594; Fax: +98 361 591 2424. 
   E-mail address: aghorban@kashanu.ac.ir (A.Ghorbanpour Arani). 

 T
 

 



A. Ghorbanpour Arani and S. Amir                   207 

© 2013 IAU, Arak Branch 

embedded in biological soft tissue based on thermal elasticity theory and nonlocal EBB model. Their results show 
that the damping parameter of the visco-elastic foundation causes an obvious reduction of the critical flow velocity. 
Kuang et al. [6] investigated the nonlinear vibrations of DWCNT conveying fluid with considering the nonlinearities 
of geometry and Van der Waals force. They showed that the effect of geometric nonlinearity on the amplitude 
frequency properties can be neglected if two types of nonlinearities are simultaneously considered. Surface effects 
on the free vibration of fluid-conveying nanotubes was presented by Wang [7], who observed that the surface effects 
with positive elastic constant or positive residual surface tension tend to increase the natural frequency and critical 
flow velocity. Computational modelling of the fluid flow in CNTs using the EBB theory was studied by Khosravian 
and Rafii-Tabar [8]. They reported the flow-induced vibrational frequencies in the nanotube were significantly 
affected by the flow velocity and this, in turn, affected the structural stability of the nanotube, especially at higher 
flow velocities. Wang et al. [9] analyzed the thermal effect on vibration and instability of CNTs conveying fluid 
using the same model as [8]. Their results are demonstrated for the dependence of natural frequencies on the flow 
velocity as well as temperature change. 

Murmu et al. [10] reported an analytical approach to study the effect of a longitudinal magnetic field on the 
transverse vibration of a magnetically sensitive DWCNT based on nonlocal elasticity theory. Results revealed that 
presence of a longitudinal magnetic field increases the natural frequencies of the DWCNT. In another study Murmu 
and Pradhan [11] investigated the thermal vibration of SWCNT based on thermal elasticity mechanics, and nonlocal 
elasticity theory. They studied the influence of small scale effects, temperature change, Winkler constant and 
vibration modes of CNT on the natural frequency. Recently, Murmu and Adhikari [12] investigated nonlocal 
vibration analysis of double nanobeam systems and the governing equations of motion for EBB model in terms of 
displacements. They solved its coupled equations by the new analytical method to decouple the set of partial 
differential equations and they showed that small scale parameters and stiffness of the coupling springs have 
important role in stability of double nanobeam system. 

However, to date, no report has been found in the literature on the vibration analysis of coupled system of CNTs 
conveying fluid embedded in visco-elastic medium subjected to thermo-magnetic fields. Motivated by these 
considerations, this study aims to study the vibration analysis of double CNTs system based on EBB theory, where 
one of the CNTs is considered conveying fluid and coupled system is placed in uniform temperature. CNTs are 
simulated by EBB model and they have been coupled together with visco-Pasternak medium. Ritz method is applied 
to obtain characteristic parameters of coupled system. The results of this study is hoped to be use to design this kind 
of nano devices. 

2    FUNDAMENTAL EQUATION 

Fig. 1 illustrates two CNTs are coupled with visco-Pasternak foundation and subjected to uniform longitudinal 
magnetic field. The upper nanotube is conveying fluid and vibration of coupled system is investigated using EBB 
model, where the displacement fields are expressed as [13]: 
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where t  is time, iu  and iw  are the total displacements of the thi CNT along the x and z  coordinate directions, 

respectively, iu  and iw denote the axial and transverse displacements of the thi CNT. It is also noted that 21 ,i   
represent the upper and lower CNTs, respectively. 

Using Eq. (1), the strain–displacement relation can be written as: 
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Fig. 1 
The schematic of double CNTs which is coupled by visco-
Pasternak medium under magnetic field.. 

 

 
 
According to the Eringen’s nonlocal elasticity model [14], the stress state at a reference point in the body is 

regarded to be dependent not only on the strain state at this point but also on the strain states at all of the points 
throughout the body. On the other contract, at the local elasticity theory, the stress state at any point corresponds to 
the strain state at this point. The constitutive equations of the nonlocal elasticity can be considered as:  
 

2 2
0(1 ( ) ) ,e a      (3) 

 
where the right hand of Eq. (3) denote the classical stress and 0e a  is a constant parameter showing the small scale 

effect. In the present model, the normal stress z , the corresponding strain z  and the shear strains xz  and Z  

are assumed to be negligible. Using Eq. (3) and applying the above assumptions, the following equation is obtained: 
 

2 2
0( ) .x x x xe a E T        (4) 

 
where E , x denotes Young modulus and thermal expansion coefficient in x direction, respectively. The total 
potential energy of the coupled system considering the thermal field is defined as: 
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where iA  represents the cross section area of CNTs. The kinetic energy of the CNTs and fluid flow are [15]: 
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where t , f  denote the density of CNTs and fluid, respectively. 

Based on the visco-Pasternak foundations, the effects of the surrounding elastic medium on the nanotubes are 
considered as follows: 
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where wk , Gk  and dC  are spring, shear and damping modulus, respectively. 1F  denotes the external forces 

applied on upper nanotube and 2F  is applied force on lower nanotube. The external work due to surrounding elastic 
medium can be written as: 
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To achieve the effect of magnetic field on couple CNTs system, the Maxwell’s relations can be used as [10]: 
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where U


 is the displacement vector as ( , , )U u v w


, J


as current density, h


 as distributing vector of the magnetic 

field, and e


 as strength vectors of the electric field. Applying a uniform longitudinal magnetic field vector 

( ,0,0)xH H


on coupled system, the Lorentz force can be expressed as [10]: 
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For the present vibrational analysis in coupled CNTs, assumed that ),( txww  only, so that the Lorentz force in 

the z  direction is written as: 
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It should be noted that in the present study the effective Lorentz force is a function of magnetic permeability ( ) 

and ( xH ) also. For solving the problem of micro-nano flows a parameter which is called Knudsen number ( Kn ) is 
introduced. Knudsen number is a parameter defined as the ratio of the mean-free-path of the molecules to a 
characteristic length scale which is used for identifying the various flow regimes. For micro and nanotubes, the 
radius of the tube is assumed as the characteristic length scale. 

According to the Knudsen number the classification of the various flow regimes is given as: continuum flow 
regime ( 20 10Kn   ), slip flow regime ( 2 110 10Kn   ), transition flow regime ( 110 10Kn   ), free molecular 
flow regime ( 10Kn ) [16]. For CNT conveying fluid, Knudsen number may be larger than 10−2. Therefore, the 
assumption of no-slip boundary conditions is no longer credible, and a modified model should be used. So ,avg slipV  is 

replaced by ,( )avg no slipVCF V   in the basic equations where it is determined as follows [17]: 
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where v  is tangential momentum accommodation coefficient. For most practical applications v is chosen to be 
0.7 and a  can be expressed as the following relation: 
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In which, 41 a and 04.0B , are some experimental parameters. The coefficient 0a  is formulated as [17]: 
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where 1b . 

3    SOLUTION PROCEDURE 

The geometric boundary conditions of simply supported CNTs at two ends are: 
 

( , ) ( , ) 0, 0,u x t w x t at x L    (15) 

 
According to basic Ritz method, the displacement component u  and w  can be expanded by following 

expression (trial functions), which satisfy the geometric boundary conditions of the coupled system at both ends 
[18]: 
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where )(tAi  and )(tBi  are unknown functions of time and N  is the summation integer that can be increased to 
obtained maximum accuracy and acceptable results. 

The vector  q , which is containing the displacement vector ( dq ), is introduced as     ,
T

dq q     where 

     ,d i iq A B    . Hence, the dimension of  dq  is 2 1N  and may be explained as the number of degrees of 

freedom (DOF) of the beam used in the modal expansions. In this study, the discretized equations of motion are 
directly obtained by minimizing the energy of the system. Hence, the Lagrange equations of motion are expressed 
as: [19] 
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where Q  are the generalized forces obtained by differentiation of the virtual work W done by external forces: 
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Using mode expansion (16), all the terms in Eq. (17) are evaluated and a system of discretized governing 

equations is obtained in matrix form as follows: 
 

          0   M q C q K q  (19) 

 

where  M  and  C  are matrices of  mass and damping, respectively and  K  is stiffness matrix that contains 

linear and nonlinear terms as: 
 

      Linear Nonlinear
K K K  (20) 

 

where  nonlinearK  have small value and can be neglected. The general solution of Eq. (19) can be written as: 
 

     ˆ exp d dq q t  (21) 

 
where   is complex circular frequency containing imaginary and real parts denoting natural and damping 

frequencies, respectively and  ˆdq  is amplitude of the displacements vector. Substituting Eq. (21) in Eq. (19), yields  

 

    2 ˆ 0             dd dd m dM D K q  (22) 

 
In order to obtain complex frequency of coupled conveying fluid system, should be used an eigenvalue 

procedure from Eq. (22). 

4    NUMERICAL RESULTS AND DISCUSSION 

In this section, effects of parameters such as aspect ratios ( dL / ), temperature gradient ( T ), Knudsen number, 
elastic medium on frequency versus fluid velocity ( fu ) of the simply support double CNTs are shown in Figs. 2 to 

9. It is noted that Im( )  represents the resonance frequencies of the double CNTs. Mechanical and geometrical 
properties of the CNTs are considered as [21]: 
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Fig.2 illustrates fundamental frequency changes ( )Im( ) of CNTs versus flow velocity ( fu ) in three different 

mode. The curves demonstrate the frequency changes of upper CNT conveying fluid and the straight lines related to 
lower CNT which is without fluid. This figure physically implies that due to eliminating visco-Pasternak foundation 
that is coupled CNTs, both CNTs vibrate separately. As can be seen, )Im( decreases with increasing velocity of 
fluid. For zero resonance frequency, coupled system becomes unstable due to the divergence via a pitchfork 
bifurcation and the corresponding fluid velocity is called the critical flow velocity. Therefore, with increasing flow 
velocity, system stability decreases and became susceptible to buckling.Fig.3 shows the fundamental frequency 
changes versus flow velocity for coupled and uncoupled system. It is found from this figure that existence of visco-
Pasternak medium which linked two CNTs, enlarge the stability region of system and increase the resonance 
frequency. This point is valid for all modes of system. The effect of elastic medium on fundamental frequency 
versus fluid velocity presented at Fig. 4. It is obvious that existence of spring and shear foundations enlarge the 
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stability region of coupled CNTs system and increase the resonance frequency. Also, the frequency of Winkler and 
Pasternak mediums are maximum and minimum, respectively and visco-Pasternak case located between. As can be 
seen, Im( ) increases by increasing the elastic foundation stiffness and decrease as fu  increases.Fig.5 depicts 

fundamental frequency versus flow velocity for different values of small scale. It is obvious that nonlocal parameter 
is significant parameter in vibration of coupled system. As can be seen increasing the nonlocal parameter decreases 
the frequency and critical flow velocity. It is need to point out that, the zero value for nonlocal parameter (i.e. 

00 ae ) denotes the result obtained by the classic EBB model which has the highest frequency and critical fluid 
velocity. Fig. 6 shows the effect of magnetic field on fundamental frequency of coupledsystem. As already has been 
mentioned applying magnetic field in axial direction generate the force in radial direction call Lorentz force. It is 
found that increasing magnetic intensity ( zH ) increase frequency and critical flow velocity. Regarding Lorentz 
force effect, it has been concluded that the magnetic field is basically an effective factor on increasing resonance 
frequency leading to stability of coupled CNTs system.Fig.7 demonstrates the effect of aspect ratio ( dL / ) on the 
imaginary components of fundamental frequency versus fundamental fluid velocity. It is evident that resonance 
frequency of the coupled CNTs system increase with decreasing dL / . In addition, as dL / decreases, the critical 
flow velocity increases. Therefore the low aspect ratio should be taken into account for CNT in optimum design of 
nano/micro devices. Temperature is one of the topics discussed in this study in which Fig. 8 illustrates the imaginary 
component of fundamental frequency versus flow velocity for different values of temperature change. It is found 
from this figure that the frequency and critical flow velocity decrease with increasing temperature change because a 
larger temperature change reduce the coupled system stiffness. Knudsen number is defined based on various flow 
regimes. Here, the slip flow regime is considered, where Fig. 9 illustrates the imaginary parts of the fundamental 
frequency versus flow velocity for three values of Knudsen number. As can be observed from this figure, Im( ) and 
critical flow velocity of coupled CNTs system decrease with increasing Knudsen number, where the small Knudsen 
number can be has remarkable effect on the stability region of system. 
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Fig. 2 
Fundamental frequency for CNTs with or without fluid for 
different vibration modes. 
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Fig. 3 
Effect of vibration modes on fundamental frequency of 
coupled and uncoupled system. 
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Fig. 4 
Effect of elastic medium on the fundamental frequency for 
different values of flow velocity. 
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Fig. 5 
Fundamental frequency ( Im( ) ) versus flow velocity for 

different values of small scale parameter 0e a . 

 

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12
x 10

10

Velocity of Conveying Fluid

F
un

da
m

en
ta

l f
re

qu
en

cy
 (

Im
 (

   
))

 

 

H
x
=0

H
x
=0.25×108 A/m

H
x
=0.5×108 A/m

H
x
=0.75×108 A/m

H
x
=1×108 A/m

 

 
 
 
 
 
 
 
 
 
Fig.6 
Effect of magnetic field on fundamental frequency of 
coupled system. 
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Fig. 7 
Fundamental frequency (Im( ))  versus flow velocity for 

various aspect ratios ( / )L d . 
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Fig. 8 
Effect of temperature changes on fundamental frequency 
( Im( ) ) versus flow velocity. 
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Fig. 9 
The effect of Knudsen number on fundamental 
frequency (Im( )) . 

5    CONCLUSION 

In this study, general theoretical vibration analysis of coupled CNTs system subjected to thermo-magnetic fields was 
developed, where one of nanotubes is conveying fluid. The CNTs linked by visco-Pasternak medium which is 
considering damping and shear effects. Based on EBB theory fundamental equations evaluated and were solved by 
Ritz approach. Regarding CNTs conveying fluid, it can be observed that Knudsen number have significant effects 
on the mechanical behavior of the system. Also, it has been found that the magnitude of fundamental frequency is 
strongly dependent on the imposed magnetic field so that increasing the magnetic intensity significantly increses the 
critical flow velocity. The findings of present study may be used in advanced applications of this kind of nano/micro 
mechanical devices. 
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