
 

© 2015 IAU, Arak Branch. All rights reserved.                                                                                                    

 

Journal of Solid Mechanics Vol. 7, No. 2 (2015) pp. 204-222 

Application of Case I and Case II of Hill’s 1979 Yield 
Criterion to Predict FLD 

M. Aghaie-Khafri 
*
, M. Torabi-Noori 

Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Postal Code: 1999143344, Tehran, Iran 

Received 8 March 2015; accepted 6 May 2015 

 ABSTRACT 

 Forming limit diagrams (FLDs) are calculated based on both the Marciniak and Kuczynski 

(M-K)  model and the analysis proposed by Jones and Gillis (J-G). J-G analysis consisted 

of plastic deformation approximation by three deformation phases. These phases consisted 

of homogeneous deformation up to the maximum load (Phase I), deformation localization 

under constant load (phase II) and local necking with a precipitous drop in load (phase III). 

In the present study, case I and case II of Hill’s non-quadratic yield function were used for 

the first time. It is assumed that sheets obey the power-law flow rule and in-plane isotropy 

is satisfied. Calculated FLDs from this analysis are compared with the experimental data 

of aluminum alloys 3003-O, 2036-T4 and AK steel reported by other references.  

Calculated FLDs showed that limit strain predictions based on case I and case II of the 

Hill’s non-quadratic yield function are fairly well correlated to experiments when J-G 

model is used.                                                © 2015 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 N sheet metal, forming useful deformation is limited by the occurrence of plastic instability and necking. 

Forming limit diagram (FLD) , was introduced by Keeler [1] and Goodwin [2], shows the relationship between 

minor and major principal strains under diffuse or localized necking in a plane-stress condition. Experimental FLDs 

were developed for a wide range of sheet metals and sandwich sheets [3,4]. However, experimental determination of 

the FLDs is associated with practical difficulties [5]. Thus, different analytical and numerical models have been 

developed to predict limit strains and to construct FLD [6,7]. These models are mostly on the basis of different yield 

and instability criteria and flow or hardening rules.   

Hart [8] developed a general analysis of plastic instability of tension test with special attention to the influence of 

strain-rate-sensitivity (SRS) of the flow stress. Hill described the localized necking in thin sheets under plane stress 

states [9]. However, Hill’s theory does not take into account the SRS of the material. Jones and Gillis [10] model 

was based on Hart’s approach. Their criterion for plastic instability is taken as the formation of a severe localization 

of the deformation such as a neck. 

Marciniak and Kuczynski (M-K) [11] approach is usually considered to model FLDs [12]. This approach 

consisted of the assumption of an initial imperfection in the sheet material in the form of a line of slightly reduced 

thickness, or groove, across the test specimen. A different approach was introduced by the Jones-Gillis (J-G) theory 
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[13]. They developed a model that eliminates the necessity for the determination of the initial heterogeneity 

coefficient. 

The capability of J-G analysis to predict FLDs have been discussed by a number of studies. Choi et al [14,15] 

and Jones and Gillis [16,17], applied J-G model using a generalized anisotropic yield criterion for determination of 

FLDs. Pishbin and Gillis [18] developed J-G model by application of case IV of non-quadratic Hill’s yield criterion. 

Aghaie-Khafri and Mahmudi [19,20] improved J-G model by application of Hosford’s yield criterion for the 

prediction of the FLDs for aluminum alloys sheets. Noori and Mahmudi [21] used J-G model to predict FLDs using 

three different yield criteria. More recently, Rezaee-Bazzaz et al [22] used Hill’s 1993 criterion and J-G model for 

predicting FLDs. 

Some other recent investigations on the FLD calculation are as follows. The validation of the deformation path 

insensitive formulae of the forming limit criterion and the validation of forming condition independence of the 

forming limit criterion to justify its feature as a material property for typical room temperature thin sheet forming 

under the plane stress condition was presented by Chung et al [23]. Avila and Vieira studied the M-K model based 

on five different yield criteria [24].The FLD of a half-hard aluminium alloy (AA1100-H24) sheet was obtained 

theoretically for linear strain paths using two different approaches: phenomenological theory and crystal plasticity 

theory by Chiba et al [25]. Panich et al investigated experimentally determined and theoretically calculated FLDs 

and FLSDs of two AHS steels, DP780 and TRIP780 steel. The FLDs and FLSDs based on experimental data were 

compared with the FLDs and FLSDs based on the M–K model [26]. The M–K model  with the linear and nonlinear 

deformation paths has been studied by Assempour et al [27]. The onset of localized necking in anisotropic metal 

sheets was analyzed by Kuroda et al [28]. Four different anisotropic plasticity models were used. For all four 

models, the yield surfaces and hardening behavior are fitted to agree with experimental results of a cold-rolled steel 

sheet. 

In the present work, for the first time case I and case II of Hill’s 1979 criterion in conjunction with the J-G 

analysis and M-K model is used to predict FLDs. The results of calculation were compared to experiments.  

2    ANALYSIS  

2.1 Yield criteria 

In this study, case I and case II of Hill’s non-quadratic criterion were used in order to calculate the stress 

components from the strain and strain rate components. Hill proposed the following anisotropic yield criterion: 
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where M is considered as a flexible index for comparing with experiments. Considering the following equation that 

is given by Hill [29]: 
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and uniaxial tension condition, 
1e

   , the more common form of case I and case II of Hill’s criterion can be 

obtained as: 
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Case I: 
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where 
1

  and 
2

  are the principal stress components in the sheet plane and R is the plastic anisotropy ratio. 

Based on the case I of Hill’s yield criterion, the equivalent strain rate is given by [30]: 
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For case II we have: 
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1
c  and 

2
c  can be determined based on the principal of the work equivalence. 

In the balanced biaxial tension, 
1 2

   and 
1 2

c c . Concerning these conditions and equivalent stress and 

strain equations: 

For case I: 

 
 1 1

1 1

1

2 1 2

M

M

R
c

R R





 
    

 

 

(12) 

 

For case II: 
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For the shear deformation condition, we have 
1 2

  and  
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For case II: 
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Finally, more simplified form of the equivalent strain rate can be drawn as: 
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For Case II: 
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where, 
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Principal stresses 
1

  and 
2

  can be calculated as: 
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where 
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b  is a constant that is defined as: 
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For case II: 
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and, 
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where, γ is the ratio of principal stresses.  

Using associated flow rules for plastic deformation, when the stress or the stress ratio is known, the 

corresponding strain can be found from the following relationships: 
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For case I: 
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For case II: 
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The value of   can be determined from Eqs. (22) and (23): 

For case I: 
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For case II: 
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where,  
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2.2 J-G model 

According to J-G model, plastic deformation is approximated by three deformation phases as schematically 

indicated in Fig. 1: 

Phase (I): homogeneous deformation up to the maximum load. 

Phase (II): deformation localization under constant load. 

Phase (III): local necking with a precipitous drop in load.  
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Point H is the transition point between phase I and II and that between phase II and III is point J. 

Fig. 2 shows the geometry of neck formation and the element of sheet undergoing plastic deformation. 

Concerning the J-G analysis, logarithmic principal strains at the minimum thickness in the deforming sheet (2a) are 

defined as: 
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According to tensor transformation, strain-rate components in the local coordinate system are: 
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Fig. 2 shows the local coordinate system x, y, z. The y-axis is along the direction of neck formation; the z-axis 

coincides with the 3-axis; and the x-axis is perpendicular to both z and y. It is assumed that during the initial 

homogeneous phase of the deformation average logarithmic strain rates in the length and width directions are 

constant. It is worth noting that these conditions hold throughout the deformation for the RHS of FLD. However, for 

the LHS of FLD, as neck formation proceeds, the width strain rate is assumed to be proportional to the rate in the 

length direction. Consequently, for the RHS for all three phases: 
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In the LHS, Eqs. (36)  and (37) can be used during phase I. During phases II and III, it is assumed that:  
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For the width direction, it is assumed that:     
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It is interesting to note that during the propagation of neck, both the longitudinal strain rate and the width strain 

rate are changed along the length direction. For a given material,   is held constant;   varies over a set of discrete 

cases from uniaxial tension to equibiaxial stretching. For uniaxial tension, / (1 )R R    ; for plane strain tension, 

0  ; and for equibiaxial stretching, 1  . 
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2.2.1 Analysis of phase I 

It is assumed that the initial phase of the deformation is relatively homogeneous. The Considére [31]  criterion  for  

the  maximum  load  in 1 direction  is: 
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when this condition is satisfied, phase I terminates (point H), as shown in Fig. 1. The assumption of an initial 

homogenous phase results in: 
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Fig.1 

Schematic representation of the three deformation phases. 

Point H and J are, respectively, denoted as the end of 

homogeneous deformation (phase I) and deformation at 

constant load (phase II). 

 

 

  

 

 

 

 

 

 

 

 

 

Fig.2 

The geometry of neck formation in the sheet. The localized 

neck is inclined at an angle   to the 2-axis when strain rate 

ratio is negative. 

2.2.2 Analysis of phase II 

Phase II of deformation is a period of nearly constant longitudinal load and gradual concentration of the deformation 

into the vicinity of the critical cross-section that is straining faster near the beginning of this phase. Consequently, it 

is assumed that the load remains constant. It is worth noting that the assumption of homogenous deformation does 

not hold any more. 
In the LHS of the FLD, the strain-rate ratio, is assumed to be constant. Therefore, 
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2 1
0           (43) 

 

So, the stress ratio, is constant too. However, derivation of   from   is not analytically achieved. From Eq. 

(26) and (27) we  obtained: 
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In order to solve  Eqs. (44) and (45) for  , the numerical Newton-Raphson’s  method was used. 

Applying energy equilibrium we have: 
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Combining Eqs. (48), (47) and (40) gives: 
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Considering the constitutive equation as follows: 
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Equating the RHS of Eq. (52) and (49),   is obtained as follows: 
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Eq. (53) can be used as the governing differential equation phase II for the LHS of the FLD which is equivalent 

to that calculated by Pishbin and Gillis [18] for the LHS using case IV of Hill’s non-quadratic flow law. 

In the positive minor strain region (RHS) of the FLD, strain rate is assumed to remain uniform throughout the 

sheet. Therefore, 
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(55) 

 

For case II: 
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(56) 

 

where, 
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Eq. (55) or (56) can be solved explicitly for the effective strain rate in terms of strain rate and   or numerically 

for the strain rate when the effective strain rate and   are given. 

Differentiating both sides of the Eq. (5) or (6), gives, 

For case I: 
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(57) 

 

For case II: 

 

   

 

1 1
1

1 2 2
2 1 1 21

1 1 1

1

1 2
1 2

1

(( 1)(2 1) 3) 2 1 2 2 2

(( 1)(2 1) 3) 1

M M
M

M

M

M

M

R

R

 
    

  


 



 










   
           

   

 
      

 

   

 

 

(58) 

 

Inserting Eq. (29) into Eq. (57) or (58) gives, 

For case I: 
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(59) 

 

For case II: 
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(60) 

 

Rewriting Eq. (5) or (6), gives, 

For case I: 
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For case II: 
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(62) 

 

Combining Eqs. (59), (61) and (54),  the following equation is obtained, 

For case I: 
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(63) 

 

For case II: 
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(64) 

 

Equating right hand side of Eqs. (52) and (63) and solving for   gives: 
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(65) 

 

where, 

For case I: 
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(66) 

 

For case II: 
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(67) 

 

Eq. (66) or (67) can be taken as the governing differential equation during phase II for the RHS of the FLD. At 

each stage of the integration, 1
  is obtained from the effective strain rate using Eq. (55) or (56) and   is obtained 

from Eq. (47). 

2.2.3 Analysis of phase III 

Localized necking is studied based upon the Bridgeman-type neck [32]. This neck is assumed to obey the kinematic 

constraint that is: 

 

0
ha

k Ln
r a

 
  
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(68) 

 

where r is the radius of curvature of the trace of the neck, 2a is the minimum thickness in the deforming sheet and k 

is a constant taken here as ¾. 

The thinning rate 
n
  at the minimum cross-section is found by considering deformation rate for the 1 direction 

of the sheet. The material velocity component normal to the neck is considered to accommodate the prescribed 

deformation program in the 1 direction by the strain only within the skewed neck. Hill’s velocity discontinuity 

analysis is used to determine the necessary formulation [9]. The thinning rate in the minimum cross-section during 

phase III is, for the LHS, 
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For the RHS, 
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(70) 

 

where, 
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(71) 

 

where   is given by: 
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The specific procedure for deriving the equations above has been given by Pishbin and Gillis [18]. The neck 

strain 
n
 , can be related to conditions in phase II as following: 
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(73) 
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Eq. (73) can be solved numerically. Once the value of 
n
  is obtained from Eq. (73), it is substituted into Eq. (69) 

to calculate the thinning rate. After determining the thinning rate in the minimum cross-section, the strain rate is 

easily obtained as: 

 

   1
1

n
                         For the LHS of the FLD (74) 

 

 1 2n
                               For the RHS of the FLD (75) 

2.2.4 Calculation of forming limit strains 

It is interesting to note that actual limit strains are mainly measured at some distance away from the failure. Here, it 

is assumed that the minor strain at point J, remains constant.  For the LHS of the FLD, proportional straining is 

assumed so that 
2 1

e e  . From the conservation of volume at the center of the neck at time J, 
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     (76) 

 

 2
1J

n
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Now from the constancy of volume, the limit strains are 
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For the RHS of the FLD,  
2
  is assumed to be homogenous. At time J, 2 2

( ) ( )    thus, 

 

1 2
( )J

n
      (81) 

 

2 2
( )J    (82) 

 

The values of the limit strains obtained from Eqs. (78) and (79) are transformed to engineering strain values to 

plot the FLD. 

 
*

1 1
exp( ) 1e    (83) 

 
*

2 2
exp( ) 1e    (84) 

2.3 M-K model 

Analysis of the neck in M-K model is based upon that the groove is normal to the principle stress. The strain 

increment inside the groove ( 1bd ) is considered and the corresponding strain in the safe zone ( 1ad ) is calculated 



216                     Application of Case I and Case II of Hill’s 1979 Yield Criterion to Predict FLD                                                
           

© 2015 IAU, Arak Branch 

 

based on an iterative procedure. The procedure consisted of applying an increment of 1bd and then guessing 1a . 

2ad can be obtained as 2a a ald    . Concerning compatibility condition, 2 2a bd d  , we have: 
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 3 1
1

b b b
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Considering the strain increment, the effective stress-strain equation, Eq. (51), is modified as following: 
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The force equilibrium results in: 
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where 
1

F  and 
1

  are the force and the stress normal to the groove. For natural strain we have: 
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Inserting Eq. (88) in Eq. (91): 
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where, 
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The value of  can be calculated for case I and case II of Hill’s non-quadratic flow law according to Eqs. (19) 

and (20), respectively. 

Using associated flow rules for plastic deformation, i

i

d d


 
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


, the strain ratio can be obtained as: 
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Case II:  
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(95) 

 

The procedure to calculate limit strains is as following. (i) Using Eq. (92) and Eq. (93) to calculate a
d  and 

al
d , respectively. (ii) Strain increment bl

d  is applied until 1 1
10

b a
d d  . (iii) The corresponding 1 2

,
a a
   is used 

to plot the FLD. 

3    RESULTS AND DISCUSSION      

In order to assess the validity of the present analysis, comparisons were made with experimental FLDs. All the 

material constants needed for the calculation of FLDs, are taken from other  references [14,18,33,34]. In calculation 

of FLDs, average of weighted values of mechanical properties, such as n and r are defined as 0 45 90
( 2 ) / 4t t t t   . 

In case I and case II of Hill’s 1979 nonquadratic flow law, which is used in this analysis, the exponent M is greater 

than one and must be determined experimentally. In the present wok, this exponent is used as an adjustable 

parameter to obtain a best fit between the calculated and experimental FLDs. 

3.1 Comparison with experiment 

Calculated FLDs were compared with experimental FLDs of three materials reported by other references. The 

capability of the model to predict experimental results was investigated. All material constants used in   calculations 

are given in Table 1. 

Fig. 3 shows predicted and experimental FLDs for AK steel reported by other references. In both LHS and RHS 

of the FLD the agreement is fair for the J-G model. But, in the LHS of the FLD calculations show better agreement 

for the M-K model. 

Fig. 4 shows the calculated and experimental FLDs for aluminum 2036-T4 reported by other references. The 

agreement between experimental and calculated results is acceptable for J-G model. However, agreement between 

M-K predictions and experiments are poor. Fig. 5 compares calculated FLDs with experimental ones for aluminum 

3003-O. The correlation between experimental and calculated FLDs is very good for J-G model. It should be noted 

that predicted limit strains in case I are smaller than case II in the positive strain region. However, the LHS of 

calculated FLDs are identical. M-K predictions are poor for both case I and case II. 
 

 

Table 1 

Mechanical properties of studied materials. 

Material 
Angle to the rolling 

direction (deg.) 

Strain rate sensitivity 

index (m) 

Strain hardening 

exponent (n) 
Plastic strain ratio (R) 

     

2036-T4  0    - - 0.68   
aluminum 45 0.13a   

 0.005b 0.65a 

 90 – - 1.13  
     

3003-O 0  – 0.190    1.08   
aluminum 45 0.005c 0.200d  

 0.85d 

 90 – 0.193   0.25  
     

AK steel 0  - - 1.70  
 45 0.012c 0.228c 1.27c 

 90 - - 2.13  
aRef. 18 dRef. 28    
bRef.27     
cRef.14     
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Fig.3 

Experimental and predicted FLDs for AK steel, experimental data are from [14]. 

 

  
Fig.4 

Experimental and predicted FLDs for aluminum 2036-T4, experimental data are from [18, 27]. 

 

 
  

Fig.5 

Experimental and predicted FLDs for aluminum 3003-O, experimental data are from [14, 28]. 

3.2 Influence of material parameters 

In  order to check the influence  of  material properties  on  the  limit  strain, the  computation  was  done  for  AK  

steel  as  a representative  material. Fig. 6 shows the effect of the strain rate sensitivity parameter (m) on calculated 

FLDs for the AK steel. Based on the case I of Hill’s yield criterion, increasing the value of m results in raising the 

level of both sides of the FLD. This is in agreement with the experimental observations, indicating that uniform 

strain distribution is achieved by higher strain rate sensitivity index. 

The effect of the strain hardening exponent (n) on the FLD is demonstrated in Fig. 7. Increasing the n value 

shifts the FLD to higher values. Fig. 8 shows the influence of the plastic anisotropy ratio on the calculated FLD. In 

the RHS of  the  FLD, with increasing  R values, forming limit  strains  attain  higher level. However, in  the  LHS  

of  the  FLD,  changing  R  did  not  affect  the level of the FLD. 
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Fig. 9 shows the effect of exponent M on the predicted FLD. An increase in M results in an increase in the limit 

strains for the positive strain region, while it has no effect on the limit strains in the negative minor strain and the 

plane strain regions of the FLD. 

 

 

 

 

 

 

 

 

 

 

Fig.6 

Influence of strain rate sensitivity (m) on the calculated FLD 

for AK steel. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.7 

Influence of strain hardening exponent (n) on the calculated 

FLD for AK steel. 

 

  

 

 

 

 

 

 

 

 

 

 

Fig.8 

Influence of plastic anisotropy ratio on the calculated FLD 

for AK steel. 

  

 

 

 

 

 

 

 

 

 

Fig.9 

Influence of the Hill’s exponent on the calculated FLD for 

AK steel. 
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3.3 Comparison to the Hill’s 1993 criterion 

The general form of the criterion proposed by Hill in 1993 [35] is: 
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where c, p and q are non-dimensional parameters and given by: 
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In the above equations, 
b

  is the yield stress under balanced biaxial tension, 
0

  and 
90

  are yield stresses under 

uniaxial tension at 0
º
 and 90

º
 to the rolling direction, respectively, and 

0
r  and 

90
r  are ratios of transverse to through-

thickness increments of logarithmic strain under 
0

  and 
90

 , respectively. It is noted that there are five independent 

material parameters 
0

 , 
90

 , 
b

 , 
0

r , and 
90

r  among which no presumed relationship is postulated. These 

parameters need to be determined for each material experimentally. The J-G model based on the Hill’s 1993 

criterion has been discussed by Rezaee-Bazzaz et al [22]. The reported result for AA3003 can be compared to the 

present analysis. The results of comparison are as following. 

Hill’s 1993 criterion overestimates FLD0 and the LHS of the AA3003 FLD. However, case I and II results in the 

presented analysis are much closer to the experiment. Considering the RHS of the FLD, the Hill’s 1993 criterion 

prediction is a bit greater than the experiment. In contrast, case I and II results are smaller than the experiment and 

are more accurate than Hill’s 1993 criterion. Moreover, Hill’s 1993 criterion has the capability of calculating larger 

strains than that of case I and II criteria. 

The above mentioned differences between Hill’s 1979 and 1993 yield criteria can be discussed based on 

different terms and coefficients used in yield functions. For instance, the LHS of the FLD based on Hill’s 1993 is 

calculated according to the following equation [22]: 
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However, for Hill’s 1979 the LHS is calculated based on the Eqs. (55) and (56). It is clear that for Hill’s1993 the 

limit strain depends on experimental parameters n and m. Considering Hill’s 1979, the limit strain depends on 

anisotropy parameter R and M. 

Hill’s 1993 yield criterion is based on experimental values that should be precisely derived. In contrast, Hill’s 

1979 is mainly based on M parameter that is an adjustable parameter and usually takes a proper value to fit the 

experimental data. Consequently, it is expected that Hill’s1979 results would be closer to the experiment especially 

when experimental coefficients of Hill’s 1993 were inaccurately calculated. Moreover, adjustable exponent M in 

Hill’s 1979 leads to much nonlinearity of equations when it is compared to the quadratic Hill’s 1993 yield function.  

Consequently, much solution errors are expected in the case of Hill’s 1979 yield function. However, it should be 

noted that these errors may be insignificant when precise numerical methods and powerful software are used. 

Increasing R value results in greater strains in the RHS when Hill’s 1993 criterion is used. However, this is vise 

versa for case I and II criteria. Increasing m, n and M parameters result in shifting the FLD to the higher levels in 

both Hill’s 1993 and case I and II criteria. RHS of the FLD for Hill’s 1979 is calculated based on Eq. (65) that is 

directly dependent on W.W is related to R According to Eq. (66) and decreased with increasing of R. However, LHS 

of the FLD for  Hill’s 1993 has no direct relation to R value based on Rezaee-Bazzaz et al [22] derivations.  
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4   CONCLUSIONS 

Case I and case II of Hill’s non-quadratic yield function were used to predict forming limit strains based on both J-G 

and M-K models. The following conclusions can be drawn from the analysis. 

1. J-G predictions for FLDs are in better agreement with experiments than M-K model when case I or case II 

of Hill’s non-quadratic yield function is used. 

2. Considering yield function exponent (M), the best agreement to experiments achieved when M<2 for case I 

and M>2 for case II. Increasing M or normal anisotropy (R) affects the RHS of  FLD and has no effect on 

the LHS.  

3. Limit strain predictions for case I of Hill’s non-quadratic yield function in the RHS of the FLD are greater 

than case II predictions for M-K model. However, there is no significant difference when J-G model is 

used. 

4. Considering LHS and RHS of the FLD, Predictions based on the case I and II criteria for AA3003 are 

closer to the experiment than the predictions of the Hill’s 1993 criterion.  
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