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 ABSTRACT 

 This article deals with the determination of temperature distribution, displacement 

and thermal stresses of a rectangular plate having nonhomogeneous material 

properties with internal heat generation. The plate is subjected to sectional heating. 

All the material properties except Poisson’s ratio and density are assumed to be 

given by a simple power law along x direction. Solution of the two-dimensional 

heat conduction equation is obtained in the transient state. Integral transform 

method is used to solve the system of fundamental equation of heat conduction. 

The effects of inhomogeneity on temperature and thermal stress distributions are 

examined. For theoretical treatment, all the physical and mechanical quantities are 

taken as dimensional, whereas for numerical computations we have considered 

non-dimensional parameters. The transient state temperature field and its 

associated thermal stresses are discussed for a mixture of copper and zinc metals in 

the ratio 70:30 respectively. Numerical calculations are carried out for both 

homogeneous and nonhomogeneous cases and are represented graphically.              

                       © 2018 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 UNCTIONALLY graded materials (FGMs) refer to the composite materials where the compositions or the 

microstructures are locally varied so that a certain variation of the local material properties is achieved. The 

overall properties of FGM are unique and different from any of the individual material that forms it.  As the field of 

functionally graded minerals has advanced, the study of nonhomogeneous solids has also gained revived 

importance. From the perspective of continuum mechanics, these materials can be regarded as nonhomogeneous 

solids which are modeled by variable elasticity moduli. Al-Hajri and Kalla [1] developed a new integral transform 

and its inversion involving combination of Bessel’s function as a kernel and used it to solve mixed boundary value 

problems. Ding and Li [4] studied the thermoelastic analysis of nonhomogeneous structural materials. Gupta and 

Singhal [6] studied the thermal effect on vibration of non-homogeneous orthotropic visco-elastic rectangular plate of 

parabolically varying thickness having clamped boundary conditions on all the four edges. Gupta et al. [7] presented 

an analysis of the forced vibrations of non-homogeneous rectangular plate of variable thickness on the basis of 
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classical plate theory by assuming the non-homogeneity of the plate material to arise due to the variation in density 

which is assumed to vary linearly. Hata [8] studied thermal stresses in a nonhomogeneous thick plate with surface 

radiation under steady state temperature distribution. Kassir [9] investigated thermal stress problems in a thick plate 

and a semi-infinite body in nonhomogeneous solids. Kawamura et al. [10] studied the thermoelastic deformation and 

stress analyses of an orthotropic nonhomogeneous rectangular plate. Kumar [11] studied the free transverse 

vibrations of thin simply supported nonhomogeneous isotropic rectangular plates of bilinearly varying thickness 

with elastically restrained edges against rotation. Lal and Kumar [12] analyzed the buckling and vibration behaviour 

of nonhomogeneous rectangular plates of uniform thickness on the basis of classical plate theory when the two 

opposite edges are simply supported and are subjected to linearly varying in-plane force by assuming young’s 

modulus and density of the plate to vary exponentially along axial direction. Manthena et al. [13] studied the 

temperature distribution, displacement and thermal stresses in a rectangular plate with inhomogeneous material 

properties by taking the material properties to vary along y coordinate. Martynyak and Dmytriv [14] investigated the 

generalized plane stressed state of a rectangle of isotropic functionally gradient materials under the action of normal 

load using finite-element method. Morishita and Tanigawa [15] considered a nonhomogeneous semi-infinite body 

subject to an arbitrary shaped distributed load on its boundary surface as an analytical model, in which the 

fundamental equations system for the medium are given by three kinds of displacement functions. Muravskii [16] 

studied the action of surface vertical and horizontal forces applied to the half-space. Pandita and Kulkarni [17] 

studied the effect of variable thermal conductivity in thermal stress analysis of rectangular plate subjected to 

temperature variation. Sharma et al. [18] used Differential Quadrature Method (DQM) to analyse free vibration of 

non-homogeneous orthotropic rectangular plates of parabolically varying thickness resting on Winkler-type elastic 

foundation. Sugano [19] analyzed a plane thermoelastic problem in a nonhomogeneous doubly connected region 

under a transient temperature field by stress function method. Tanigawa et al. [20] presented thermal bending 

analysis of a laminated composite rectangular plate due to a partially distributed heat supply by introducing the 

methods of finite cosine transform and Laplace transform to the temperature field and adapted the classical plate 

theory based on Kirchhoff-Love's hypothesis to the thermoelastic field. Tanigawa [21] briefly discussed the method 

of analytical development of thermoelastic problems for nonhomogeneous materials where both the thermal and 

mechanical material constants are described by the function of the variable of coordinate system. Tanigawa et al.  

[22] established analytical method of development for the plane isothermal and thermoelastic problems by 

introducing two kinds of displacement functions. Tokovyy and Ma [23] presented a method for solving the plane 

elasticity and thermoelasticity problems for planes and half-planes which exhibit inhomogeneous material properties 

in one of the planar directions Wang and Wang [24] presented the exact solutions for the vibration problems of 

nonhomogeneous rectangular membranes with an exponential density distribution and with a linear density 

distribution. The behaviour of non-homogeneity has been assumed due to exponential variation in Young’s moduli 

and density in one direction. Yang et al. [25] developed a general two-dimensional solution for a bilayer functionally 

graded cantilever beam with concentrated loads at the free end. 

In this paper we have extended our own work [13]. Here we have considered a rectangular plate occupying the 

space Lybxa  0,  subjected to sectional heating and internal heat generation. The material properties except 

Poisson’s ratio and density are assumed to be nonhomogeneous given by a simple power law in x direction. The 

solutions are obtained in the transient state in the form of Bessel’s and trigonometric functions. For theoretical 

treatment all physical and mechanical quantities are taken as dimensional, whereas for numerical computations we 

have considered non-dimensional parameters. Numerical computations are carried out by considering various values 

of the inhomogeneous parameter .m   

2    STATEMENT OF THE PROBLEM 

2.1 Heat conduction equation    

We consider the transient heat conduction equation with initial and boundary conditions in a rectangular plate with 

heat source given by [13] 
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where
 

)(x
 

and )(xc
 

are respectively, thermal conductivity and calorific capacity of the material in the 

inhomogeneous region,   is the density. 

2.2 Thermoelastic equations    

Let xu
 
and yu  be the displacement components in the in-plane directions of x and y. The strain-displacement 

components ij , equilibrium equations of the forces and stress-strain components in y direction disregarding the 

body forces are given by [13] 
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We assume that shear modulus of elasticity G and the coefficient of linear thermal expansion )(x have an 

inhomogeneous material property in x direction and are changed arbitrarily in its direction, but Poisson’s ratio   is 

assumed to be constant. We consider )(xG and )(x given by simple power law [13] 

 

mm LxxLxGxG )/()(,)/()( 00             
      (7) 

 

Here 0G   and  0   are the reference values of shear modulus of elasticity and coefficient of linear thermal 

expansion respectively. Also )0(m  is a constant which is related to Poisson’s ratio  by the relation .21  m  
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2.3 Plane stress field 

Using Eqs. (3) and (5) in (4) the displacement equations of equilibrium in x and y directions are obtained as: 
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2.4 Plane strain field 

Similarly, the equilibrium equations in terms of displacement components are obtained by using Eqs. (3) and (6) into 

(4) as: 
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The solution of Eqs. (8) and (9) without body forces can be expressed by the Goodier's thermoelastic 

displacement potential  and the Boussinesq harmonic functions  and  as: 
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In which the three functions must satisfy the conditions 
 

 
2 2, 0K            and    02              (11) 

 

where
2 2

2

2 2
,

x y

 
  

 
)(

)1(

)1(
)( xxK 








  

is the restraint coefficient and iTT  , iT  is the initial temperature. 

Now by using Eqs. (7) and (10) in Eqs. (5) and (8) and then in Eqs. (6) and (9) the results for thermoelastic fields 

are obtained as 

2.5 For plane stress field  

The equations for the displacement functions are given by 
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The corresponding stress functions are given by  
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2.6 For plane strain field  

The fundamental equations for the displacement function are given by 
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The corresponding stress functions are given by 
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The boundary condition on the traction free surface stress functions are 
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Eqs. (1) to (16) constitute the mathematical formulation of the problem. 

3    SOLUTION OF THE PROBLEM 

3.1 Heat conduction equation    

The heat conduction equation is given by 
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Here 0 0 0, andc   are the reference values of thermal conductivity, calorific capacity and density, respectively.  

Using Eq. (18) in (17), we obtain 

 
2 2

((1 )/2)
12 2

1
( , )mT m T T T

x y t
x x tx y 


      

               
 

    

   (19) 

 

where  0

0 0c





    and  

 

0 0 0

1 0

( ) ( ), 0

0, , 0  , t  0    

0,    , 0  , t  0

( )sinh( ), 0,  , t  0

0, ,  , t  0

T Q x x y y at t

T at x a y L

T at x b y L

T Q x x t at y a x b

T at y L a x b

 

 

   

    

    

     

    

 

    

 

 

   (20) 

 

To remove m from the numerator of Eq. (19), we use the variable transformation ((1 )/2)mT x   and obtain 

 
2 2 2

12 2 2

1 1
( , )y t

x x tx x y

    




      
               

 
    

   (21) 

 

where 2 (( 1) / 2)m    

 
(( 1)/2)

0 0 0

(( 1)/2)
1 0

( ) ( ), 0

0, , 0  , t  0    

0,    , 0  , t  0 

( )sinh( ), 0,  , t  0

0, ,  , t  0

m

m

Q x x x y y at t

at x a y L

at x b y L

Q x x x t at y a x b

at y L a x b

  





  







   

    

    

     

    

 

    

 

 

   (22) 
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To solve the differential Eq. (21) using integral transform technique, we introduce the extended integral 

transform [1] of order i  over the variable x as given below (Refer Appendix A).  

 

[ ( ), , ; ] ( ) ( ) ( )

b

i i i

a

T f x a b f x f x S x dx      

    

   (23) 

 

Here ( )iS x  is the kernel of the transform given by 

 

( ) cos( log ) sin( log )i i i i iS x Z x W x        (24) 

 

where sin( log ) sin( log ), cos( log ) cos( log )i i i i i iZ a b W a b       and ( 1,2,3,........)i i   are the real and 

positive roots of the transcendental equation 

 

sin( log )cos( log ) sin( log )cos( log ) 0a b b a         (25) 

 

The inversion formula is 

 

1

( )
( ) ( )

( )

i
i

ii

f
f x S x

S










  
    

   (26) 

 

where  

 

( );
( ) ( )

0;

b

i
i j

a

S i j
x S x S x dx

i j


 


 


  

    

   (27) 

 

Hence Eq. (21) becomes 

 
2

2
12

1
( , )i y t

ty

 
 



  
       

 
    

   (28) 

 

0 0 0

1 0

( ), 0

sinh( ), 0,  , t  0

0, ,  , t  0

Q g y y at t

Q g t at y a x b

at y L a x b

 

 



  

    

    

 

    

 

   (29) 

 

where ((1 )/2)
1 0 0 0 0( , ) ( ) ( ) , ( ) ( )

b

m
i

a

y t y y t t g x x x S x dx          

Applying finite Fourier sine transform to Eq. (28) and using the boundary conditions given in Eq. (29), we obtain 

 

1 2 3 0sinh( ) ( )A A t A t t
t


  


   


 

    

   (30) 

 

where  
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2 2
1

2 1 0

3 0 0

( )

sin ( / )

i n

n

A

A Q g

A y n y L

  



 

 





 

    

    

 

( / ),n n L   n is the transform parameter and 

 

0 0 0 0sin ( / ), 0Q g y n y L at t       (31) 

 

The kernel of the transform is sin ( / )n y L . Applying Laplace transform and its inverse on Eq. (30) by using 

the initial condition given in Eq. (31), we obtain 

 

2 2 2
4 1 3 1 0 02 2

1 11

( , ) exp( ) exp( ) exp( ) exp( ( )) *( )
2 2 2 2

A A A
n t A A t t t A A t t t t

A AA


   

 

 
          

   

 
    

   (32) 

 

where 4 0 0 0 0sin ( / .A Q g y n y L Here )(* 0tt   is the Heaviside Theta function given by 

 

0
0

0

0;
*( )

1;

t t
t t

t t



  


 

    

    

 

Applying inverse Fourier sine transform on Eq. (32) and following [3], we obtain 

 

1 0

1

2
( , ) { sinh( )[( ) / ] ( , ) sin ( / )}

n

y t Q g t L y L n t n y L
L

   




    
    

   (33) 

 

Applying inverse transform defined in Eq. (26) on the above equation, we obtain 

 

1 0

1 1

sinh( )[( ) / ] ( , ) sin ( / )2
( , , ) ( ) , 0

( )
i

ii n

Q g t L y L n t n y L
x y t S x x

L S

  
 



 

 

 
     

    

   (34) 

 

Using Eq. (34) in the equation
 

((1 )/2)mT x  , we obtain 

 

1 1 0 1

1 1

2
( , , ) [ sinh( )[( ) / ] ( , ) sin ( / )] ( )

i n

T x y t Q g t L y L n t n y L g x
L

   
 

 

       
    

   (35) 

 

where 

 
((1 )/2)

1 11/ ( ), ( ) [ cos( log ) sin( log )], 0m
i i i i iS g x x Z x W x x                

3.2 Thermoelastic equations    

 

Using the solution of heat conduction Eq. (17) given by Eq. (35), the solutions for Goodier's thermoelastic 

displacement potential   from Eq. (11) is obtained as: 

 
2

21 1

( )[ ( , , ) ( , , ) ]2

( , , )

i

i n

K x T x y t T x y t T

L g x y t


 
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
    

    

   (36) 
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where 

  

2 3 4

3 1 1 0 1

2
4 1 1

( , , ) ( , , ) ( , , )

( , , ) [ sinh( )[( ) / ] ( , )sin ( / )] ( )

( , , ) [ ( , ) sin ( / )] ( )n

g x y t g x y t g x y t

g x y t Q g t L y L n t n y L g x

g x y t n t n y L g x

   

   

 

    

  

 

    

    

 

For the sake of brevity, to avoid complexity, we assume the Boussinesq harmonic functions 
 
and  so as to 

satisfy Eq. (11) as: 

 

1 1

{sinh( )[ cos( log ) sin( log )]sin( )}n i n i

i n

p t A x B x y   
 

 

     

    

   (37) 

 

where
 

,n nA B  are constants. 

Now, to obtain the displacement components, we substitute the values of  ,,
 
from Eqs. (36) and (37) in Eq. 

(10) and obtain 

 

,

1

,

1

{sinh( )}{ (1 )[ ( / )sin( log ) ( / ) cos( log )]sin( )}
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n
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n i n i
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    

  

  









    

   

  



  

    

 

 

 

   (38) 

 

where a comma denotes differentiation with respect to the following variable.  

By substituting the values of displacement components given by Eq. (38) in Eqs. (13) and (15), the resulting 

components of stresses in plane stress field and plane strain field can be obtained. By using the traction free 

conditions given by Eq. (16) in the equation of stresses (13) and (15), the constants nA  and nB can be obtained. 

Since the equations of stresses and constants nA  and nB  obtained so are very large, we have not mentioned 

them here. However numerical calculations are carried out by using Mathematica software. 

4    NUMERICAL RESULTS AND DISCUSSION 

The numerical computations have been carried out for a mixture of Copper and Zinc metals [5, 8] in the ratio 70:30 

respectively, with non-dimensional variables as given below.  

 

2
0

0 0
0

( , )
, , , , ( , ) ,

( , , ) 1
( , , ) ,

1

x y

x y
R R

xx yy xy

xx yy xy
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u uT x y t
x y u u

T L L K LL

K
EG


 



   
   

 

    


 



               

    

 

           

 

with parameters 2 , 1 , 3 ,L cm a cm b cm  
 

2 sect  , Reference Temperature 32o
R C  , Thermal expansion 

coefficient 6
0 17 10 /o C   , Thermal diffusivity 21.11 / seccm  . The Young's modulus E is given by the 

following equation [5, 8] 

 
2 4 5 7 2( ) (0.14 0.09 0.93 5.72 10.28 ) 9.8 10 /E x x x x x N cm                          
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Here : weight of zinc  100 x  , 0 0.3x  . For 0.3x  , 6 24.963 10 /E N cm   

For different values of parameter m  , the Poisson’s ratio   and Shear modulus 0G
 
are calculated by using the 

formula 01 2 , [ / (2(1 ))]m G E       

For 0m  , Poisson’s ratio 0.5  , Shear modulus 6 2
0 1.654 10 /G N cm   

For 1m  , Poisson’s ratio 0.33  , Shear modulus 6 2
0 1.866 10 /G N cm 

 

For 2m  , Poisson’s ratio 0.25  , Shear modulus 6 2
0 1.985 10 /G N cm 

 

For 3m  , Poisson’s ratio 0.2  , Shear modulus 6 2
0 2.0679 10 /G N cm 

 

For 4m  , Poisson’s ratio 0.1667  , Shear modulus 6 2
0 2.127 10 /G N cm 

 
Fig.1 (a) shows the variation of dimensionless temperature along x–axis for different values of 

parameter 0, 1, 2, 3, 4m  . From the graph it is seen that the nature is exponential. Due to internal heat source, the 

temperature has a finite value at the outer part of the plate. Because of the sectional heating at the outer part, the 

absolute value of temperature is slowly and steadily increasing towards the inner region of the plate. The magnitude 

of temperature is increasing with increase in the parameter m. The magnitude of temperature is low in the 

homogeneous region 0m 
 
and is peak in the nonhomogeneous region 4m  . 

Fig. 1(b) shows the variation of dimensionless temperature along y–axis for different values of parameter m. 

From the graph it is seen that the nature is sinusoidal. The temperature is increasing in the region 0 0.35y   and 

then suddenly decreasing towards the end in the region 0.35 1y   and gradually approaching zero at the upper 

part of the plate.  Thermal energy is accumulated in the middle region at 0.35y   causing material deformation. 

Also the magnitude of temperature is peak in the central part of the plate at 0.5y 
 
in the nonhomogeneous region, 

whereas it is peak at 0.4y   for the remaining values of m.  

         

 
(a) 

 
(b) 

Fig.1 

a)Variation of dimensionless temperature along x–axis. b)Variation of dimensionless temperature along y–axis. 

 

Figs. 2(a) and 2(b) shows the variation of dimensionless displacement xu  along x–axis and y-axis respectively 

for different values of parameter m. Along x-axis, it is seen that the absolute value of displacement is increasing and 

is peak at the rightmost end at 1.5x  , where the heat is applied. Also the magnitude of displacement is high in the 

nonhomogeneous region as compared to that of homogeneous region. In the nonhomogeneous region the magnitude 

is high for 2m   and is found to be decreased with increase in the parameter m. Along y-axis, it is seen that the no 

displacement is happening at the lower end. Also it is increasing and towards the upper part of the plate.  

Figs. 3(a) and 3(b) shows the variation of dimensionless displacement yu  along x–axis and y-axis respectively 

for different values of parameter m. Along x-axis, due to the application of heat source at the upper part of x–

axis 1.5x  , it is observed that the absolute value of displacement is exponentially increasing and is peak at the 

upper part. The displacement has high magnitude in the homogeneous region 0m 
 
as compared to that of 

nonhomogeneous region and is slowly decreasing with the increase in the parameter m. Along y-axis, it is seen that 

the displacement is increasing in 0 0.45y 
 
for the homogeneous region 0m   and then decreasing towards the 
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end. Whereas in the nonhomogeneous region, the absolute value of displacement is increasing for 0 0.65y 
 
and 

then decreasing towards the end.  

        

 
(a) 

 
(b) 

Fig.2 

a) Variation of dimensionless displacement xu  along x–axis. b) Variation of dimensionless displacement xu  along y–axis. 

  

 
(a) 

 
(b) 

Fig.3 

a) Variation of dimensionless displacement yu  along x–axis. b) Variation of dimensionless displacement yu along y–axis. 

 

Fig. 4(a) shows the variation of dimensionless stresses in the plane stress field along x–axis for different values 

of parameter m. It is seen that the stresses ,xx xy 
 
are exponentially increasing along x–axis in both homogeneous 

and nonhomogeneous regions. The absolute value of the stresses ,xx xy   is more in the homogeneous region as 

compared to nonhomogeneous region, whereas for the stress yy
 
it is more in the nonhomogeneous region as 

compared to homogeneous region. The stresses ,xx xy 
 
are tensile while the stress yy

 
is compressive in both 

homogeneous and nonhomogeneous regions. 

Fig. 4(b) shows the variation of dimensionless stresses in the plane stress field along y–axis for different values 

of parameter m. It is seen that all the stress xx  has a peak value at the upper part of the plate and is tensile and is 

gradually decreasing towards the lower part of the plate and becoming zero at the lower part in both homogeneous 

and nonhomogeneous regions. The absolute value of the stress xy is peak at the lower part of the plate and is 

decreasing towards the upper part. The stress yy
 

is compressive and its magnitude is a bit high in the 

homogeneous region as compared to that of the nonhomogeneous region. We also observe that the stresses 

,xx yy  are zero at the beginning (irrespective of inhomogeneity parameter m), which agrees with the prescribed 

traction free boundary conditions given in Eq. (16). 

Fig. 5(a) shows the variation of dimensionless stresses in the plane strain field along x–axis for different values 

of parameter m. It is observed that the absolute value of the stresses ,xx zz 
 
is exponentially increasing along x–
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axis in both homogeneous and nonhomogeneous regions. The stresses are tensile and the magnitude is low in the 

nonhomogeneous region as compared to homogeneous region. The stress xy  is tensile in the region 0 1.457x 
 

and is compressive towards the end in the nonhomogeneous region, whereas it is compressive throughout, in the 

homogeneous region. 

Fig. 5(b) shows the variation of dimensionless stresses in the plane strain field along y–axis for different values 

of parameter m. It is seen that all the stresses are linearly increasing from the lower part of the plate towards the 

upper part. The stresses ,xx zz 
 

are tensile and have a peak value at the upper part of the plate in both 

homogeneous and nonhomogeneous regions. The magnitude is high in the nonhomogeneous region as compared to 

that of homogeneous region.  

 

 
(a) 

 
(b) 

Fig.4 

a) Variation of dimensionless stresses (plane stress field) along x–axis. b) Variation of dimensionless stresses (plane stress field) 

along y–axis. 

  

 
(a) 

 
(b) 

Fig.5 

a) Variation of dimensionless stresses (plane strain field) along x–axis. b) Variation of dimensionless stresses (plane strain field) 

along y–axis. 

5    CONCLUSIONS 

In this paper, we have investigated temperature and thermal stresses in a rectangular plate subjected to sectional 

heating. The material properties except Poisson’s ratio and density are considered to vary by simple power law 

along x direction. Solution for the transient two-dimensional heat conduction equation with internal heat generation 

and its associated thermal stresses for a rectangular plate with inhomogeneous material properties is obtained in the 

form of Bessel’s and trigonometric series. Numerical computations are carried out for a mixture of Copper and Zinc 

metals in the ratio 70:30 respectively and the transient state temperature field and thermal stresses are examined. 



212                             Thermoelastic Analysis of a Rectangular Plate with Nonhomogeneous… 

© 2018 IAU, Arak Branch 

The influence of inhomogeneity grading is investigated by changing parameter m. We have obtained the following 

results during our investigation.  

The nature of temperature distribution and displacement is exponential when plotted along x–direction and 

sinusoidal when plotted along y–direction for different values of parameter m. 

The nature of stresses in the plane stress field is exponential along x-direction and linear along y-direction for 

both homogeneous and nonhomogeneous regions. Whereas in the plane strain field it is exponential along both x and 

y-directions. 

With increase in the parameter m the magnitude of temperature is found to be increased along both x and y-

directions. Due to internal heat generation, sudden change in temperature is observed for 1X  and 0.5Y  .   

By choosing some different material for numerical computations, particular cases of special interest can be 

studied. Also by assigning suitable values to the material parameters in the equations of temperature and thermal 

stresses special case study can also be done.  

 

 

APPENDIX A  

 

Consider the differential equation 

 
2 2 0, [ , ], 0, 0x x x a b a b                          (A.1) 

 

with boundary conditions 

 

0,   

0,     

at x a

at x b





 

 
               

  

 (A.2) 

 

The general solution of (A.1) is given by 

 

1 2( ) cos( log ) sin( log ), 0x C x C x x                     (A.3) 

 

where 
1C  and 

2C  are arbitrary constants. 

To obtain the solution of (A.1) that satisfies conditions (A.2), we have 

 

1 2cos( log ) sin( log ) 0C a C a                   (A.4) 

 

 1 2cos( log ) sin( log ) 0C b C b                  (A.5) 

 

From (4) and (5), we get 

 

  

1

2

1

2

tan( log )

tan( log )

C
a

C

C
b

C





 

 

            

  

 

(A.6) 

 

Then the function given by (A.3) is a solution of (A.1) subject to conditions (A.2), if   is a root of the 

transcendental equation 

 

sin( log )cos( log ) sin( log )cos( log ) 0a b b a                    (A.7) 

 

Hence we take ( 1,2,3,........)i i   to be the real and positive roots of Eq. (A.7).  

From Eq. (A.4) and (A.5), we have 
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 1( ) cos( log )sin( log ) sin( log )cos( log )
sin( log )

i i i i i
i

C
x x a x a

a
    


                

  

(A.8) 

 

 1( ) cos( log )sin( log ) sin( log )cos( log )
sin( log )

i i i i i
i

C
x x b x b

b
    


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(A.9) 

 

We define 

 

sin( log ) sin( log )

cos( log ) cos( log )

i i i

i i i

Z a b

W a b

 
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 

 
              

  

 

                

Then   

 

( ) cos( log ) sin( log )i i i i iS x Z x W x                  (A.10) 

 

Is taken to be the solution of (A.1) - (A.2). By Sturm-Liouville theory [2], the functions of the system (A.10) are 

orthogonal on the interval [a, b] with weight function x that is 

 

( );
( ) ( )
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i j

a

S i j
x S x S x dx

i j


 


 


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(A.11) 

 

where 
2

2
( ) ( )i iS x S x   is the weighted 2L  norm. If a function f(x) and its first derivative are piecewise 

continuous on the interval[ , ]a b , then the relation 

 

[ ( ), , ; ] ( ) ( ) ( )

b

i i i

a

T f x a b f x f x S x dx                   

 

(A.12) 

 

Defines a linear integral transform. To derive the inversion formula for this transform, let 

 

1

( ) [ ( )]i i

i

f x a S x




               
 

(A.13) 

 

On multiplying Eq. (A.13) by ( )ix S x and integrating both sides with respect to x, we obtain the coefficients 

as: 

 

( )1
( ) ( ) ; 1,2,3,..........

( ) ( )

b

i
i i

i ia

f
a x f x S x dx i

S S




 
                 

 

(A.14) 

 

Hence the inversion formula becomes 

 

1

( )
( ) ( )

( )

i
i

ii

f
f x S x

S










               
 

(A.15) 

 

We derive the transform of the following operator 
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2 2

2 2

1
( ) ( ) ( ) ( ); [ , ]

d d
D f x f x f x f x x a b

x d xd x x


                  

 

(A.16) 

 

Let I be the transform of first two terms of D, that is 

 

[ ( ) (1/ ) ( )] ( )

b

i

a

I x f x x f x S x dx                 

 

 

On solving I, we get 

 

1 2 2[ ( ) ( ) ( ) ( )] [ ( ) ( )] ( )

b
b

i i i i i i ia

a

I x f x S x f x S x x x S x xS x f x dx                           

 

(A.17) 

 

Since S satisfies Eq. (A.1), we have 

 

  2 2 2( ) ( ) ( )i i i i i ix S x xS x S x                      

 

and 

        

1 2 2 2 2[ ( ) ( )] ( ) [ / ] ( ) ( )

b b

i i i i i

a a

x x S x xS x f x dx x x f x S x dx                         

 

 

Also from (A.2), we get 

 

 ( ) ( ) 0i iS a S b                 

            

Hence 

 
2 2 2( ) ( ) ( ) ( ) ( ) [ / ] ( )i i i iI b S b f b aS a f a f T x f x                       

 

Therefore 

 
2[ ( )] ( ) ( ) ( ) ( ) ( )i i i iT D f x b S b f b aS a f a f                    (A.18) 

REFERENCES 

[1] Al-Hajri M., Kalla S.L., 2004, On an integral transform involving Bessel functions, Proceedings of the International 

Conference on Mathematics and its Applications. 

[2]    Birkoff G., Rota G. C., 1989, Ordinary Differential Equations, Wiley, New York. 

[3]    Churchill R.V., 1972, Operational Mathematics, Mc-Graw Hill. 

[4]    Ding S.H., Li X., 2015, Thermoelastic analysis of nonhomogeneous structural materials with an interface crack under                                                    

 uniform heat flow, Applied Mathematics and Computation Archive 271: 22-33. 

[5]    Edited by the Japan Society of Mechanical Engineers, 1980, Elastic Coefficient of Metallic Materials, Japan Society of 

Mechanical Engineers. 

[6]    Gupta A.K., Singhal P., 2010, Thermal effect on free vibration of non-homogeneous orthotropic visco-elastic 

rectangular plate of parabolically varying thickness, Applied Mathematics 1: 456-463. 

[7]    Gupta A.K., Saini M., Singh S., Kumar R., 2014, Forced vibrations of non-homogeneous rectangular plate of linearly 

varying thickness, Journal of Vibration Control 20: 876-884.  

[8]    Hata T., 1983, Thermal stresses in a nonhomogeneous thick plate with surface radiation under steady distribution of 

temperature, The Japan Society of Mechanical Engineers 49: 1515-1521. 



                                                                                                                                                    V.R. Manthena et al.                    215  

 

© 2018 IAU, Arak Branch 
 

[9]    Kassir M.K., 1972, Boussinesq problems for nonhomogeneous solid, Proceedings of the American Society 

of Civil Engineers, Journal of the Engineering Mechanics Division 98: 457-470. 

[10]   Kawamura R., Huang D., Tanigawa Y., 2001, Thermoelastic deformation and stress analyses of an orthotropic 

nonhomogeneous rectangular plate, Proceedings of the Fourth International Congress on Thermal Stresses. 

[11]   Kumar Y., 2012, Free vibrations of simply supported nonhomogeneous isotropic rectangular plates of bilinearly 

varying thickness and elastically restrained edges against rotation using Rayleigh-Ritz method, Earthquake 

Engineering and Engineering Vibration 11: 273-280. 

[12]   Lal R., Kumar Y., 2013, Transverse vibrations of nonhomogeneous rectangular plates with variable thickness, 

Mechanics of Advanced Materials and Structures 20: 264-275.  

[13]   Manthena V.R., Lamba N.K., Kedar G.D., 2016, Transient thermoelastic problem of a nonhomogeneous rectangular 

plate, Journal of Thermal Stresses 40: 627-640. 

[14]   Martynyak R.M., Dmytriv M.I., 2010, Finite-element investigation of the stress-strain state of an inhomogeneous 

rectangular plate, Journal of Mathematical Sciences 168: 633-642. 

[15]   Morishita H., Tanigawa Y., 1998, Formulation of three dimensional elastic problem for nonhomogeneous medium and 

its analytical development for semi-infinite body, The Japan Society of Mechanical Engineers 97: 97-104. 

[16]   Muravskii G.B., 2008, Response of an elastic half-space with power-law nonhomogeneity to static loads, Archive of 

Applied Mechanics 78: 965. 

[17]   Pandita B.B., Kulkarni V.S., 2015, Finite difference approach for nonhomogeneous problem of thermal stresses in 

cartesian domain, International Journal of Advances in Applied Mathematics and Mechanics 3: 100-112. 

[18]   Sharma S., Gupta U.S., Singhal P., 2012, Vibration analysis of nonhomogeneous orthotropic rectangular plates of 

variable thickness resting on winkler foundation, Journal of Applied Science and Engineering 15: 291-300.  

[19]   Sugano Y., 1987, Transient thermal stresses in a nonhomogeneous doubly connected region, The Japan Society of 

Mechanical Engineers 53: 941-946. 

[20]   Tanigawa Y., Ootao Y., Kawamura R., 1991, Thermal bending of laminated composite rectangular plates and 

nonhomogeneous plates due to partial heating, Journal of Thermal Stresses 14: 285-308. 

[21]   Tanigawa Y., 1995, Some basic thermoelastic problems for nonhomogeneous structural materials, Applied Mechanics 

Reviews 48: 287-300. 

[22]   Tanigawa Y., Kawamura R., Ishida S., 2002, Derivation of fundamental equation systems of plane isothermal and 

thermoelastic problems for in-homogeneous solids and its applications to semi-infinite body and slab, Theoretical and 

Applied Mechanics 51: 267-279. 

[23]   Tokovyy Y., Ma C-C., 2009, Analytical solutions to the 2D elasticity and thermoelasticity problems for 

inhomogeneous planes and half-planes, Archive of Applied Mechanics 79: 441-456. 

[24]   Wang C.Y., Wang C.M., 2011, Exact solutions for vibrating nonhomogeneous rectangular membranes with exponential 

density distribution, The IES Journal Part A: Civil & Structural Engineering 4: 37-40. 

[25]   Yang Q., Zheng B., Zhang K., Zhu J., 2013, Analytical solution of a bilayer functionally graded cantilever beam with 

concentrated loads, Archive of Applied Mechanics 83: 455-466. 


