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ABSTRACT 
This paper concentrates on the reflection of plane waves in the mixture of generalized thermo 
elastic solid half-space. There exists quasi dilatational waves i.e. qP1, qP2, qT and two rotational 
waves S1, S2 in a two dimensional model of the solid. The boundary conditions are solved to 
obtain a system of five non-homogeneous equations for amplitude ratios. These amplitude ratios 
are found to depend on the angle of incidence of incident wave, mixture and thermal parameters 
and have been computed numerically and presented graphically. The appreciable effects of 
mixtures and thermal on the amplitude ratios are obtained. 
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1    INTRODUCTION 

URING the past year there has been much effect to develop continuum theories of mixtures. The modern 
formulation of continuum theories of mixtures goes back to papers by Trusedell and Tupin [1], Eringen and 

Ingram [2], Green and Naghdi [3]. Bedford and Stern [4, 5] used for the first time the Lagrangian description in 
order to derive mixture theory of elastic solids. In this theory, the independent constitutive variables are the 
displacement gradients and the displacement fields.  Much of the theoretical progress in the field is discussed in 
great detail in the review articles by Bowen [6], Atkin and Craine [7, 8], and in the book by Rajagopal and Tao [9]. 

The theory of binary mixtures of thermoelastic solids, in which the component interaction force depends on a 
difference of partial displacements, was constructed by Iesan [10]. He presented a theory for a binary mixture of 
thermoelastic solids in which the independent constitutive variables are the displacement gradients, relative 
displacement, temperature and temperature gradient whereas [11-13], the theories for mixture of thermoelastic solids 
studied the independent constitutive variables are the displacement gradients, relative velocity, temperature and 
temperature gradient. The existence theorems of weak solutions of dynamic problems for the linear theory of two 
thermoelastic solids are proved by the semigroup theory in [14] and obtain some qualitative results for the linear 
theory of binary mixtures of thermoelastic solids. Pompei and Scalia [15] addressed the linear dynamic theory of 
binary mixtures of thermoelastic solids and established the continuous dependence of solutions upon initial data and 
body loads and proved uniqueness theorems of the solutions for initial boundary value problems Burchuladze and 
Svanadze [16] investigating the boundary value problems of steady oscillations using the potential methods in the 
linear theory of binary mixtures of thermoelastic solids. Pompei and Scalia [17] study the continuous dependence of 
solutions on initial data and body sources in the linear theory of binary mixtures of thermoelastic solids and also 
establish the existence and uniqueness theorems. Passarella and Victoria [18] study the time-harmonic vibrations for 
some classes of homogeneous and isotropic thermoelastic mixtures for which the constitutive coefficients are 
‒‒‒‒‒‒ 
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supposed to satisfy some mild positive definiteness conditions. Sharma and Gogna [19] studied the reflection and 
refraction of plane harmonic waves at an interface between elastic solid and orous solid saturated by viscous liquid 
and Vashisth, Sharma and Gogna [20] studied the reflection and transmission of elastic waves at a loosely bonded 
interface between an elastic solid and liquid-saturated porous solid. In the present we study the reflection of thermo 
elastic plane waves in the mixture theory of generalized thermoelastic solid half space. 

2    BASIC EQUATIONS 

The fundamental equations for the theory of mixtures are constituted from the following equation of motion Steel 
[12] in thermoelastic solid without body forces are given by 
 

, 1ji j i iT p u- =   (1) 

, 2ji j i iS p w+ =   (2) 
 
and the equation of energy  

 

0 ,= i iT qr h  

(3) 

 
where 1r  and 2r  are the constants densities; ijT  and ijS  are the components of the partial stress tensors 

associated with the two constituents 1s  and 2s  respectively; ip are the components of the diffusive force vector; 

h  is the entropy per unit mass and iq  are the components of the heat flux vector. If iu  and iw  represents the 

components of the displacement vector fields associated with the two constituents 1s  and 2 ,s  respectively. Then, 

the infinitesimal strain measures are defined by 

 

  

, , , ,

1
( ),

2ij i j j i ij i j j ie u u h w u= + = +  (4) 

 
Following Apice et al. [21], Lord and Shulman [22] the constitutive equations for an isotropic and homogeneous 
mixture are Green and Steel [11-12]. 

 
( ) 2( ) ( ) (2 ) (2 ) ( )ij ss ij ij ss ij ij ji ijT e e h h h b             = + + + + + + + + + - +  (5) 

2 2 2ij ss ij ij ss ij ji ij ijS e e h h h b       = + + + + -  (6) 

i i ip v g = +  (7) 
= + +ss sse b h arh b q  (8) 
= +i i iq kg mv  (9) 

 
where 
 

= - =, ,i i i i iv u w g    (10) 
 
where   is the variation of the temperature measured from the reference temperature 0T  and λ, , , , , , , , , 

, m, a, and b are constitutive constants. By substituting the relations (4) and (5)-(10) into the basic Eqs. (1)-(3), we 
obtain the following equations in terms of ,i iu w and q  

 

, , ,

, , 1

( 2 2 ) ( 2 2 2 ) (2 )

( 2 2 ) ( ) ( )

+ + + + + + + + + +

+ + + + + - - + + =
i jj j ji i jj

j ji i i i i

u u w

w u w b u

m V k l a m n V g g V

a n k V x b s q r  
 

(11) 

, , , , , 2(2 ) ( 2 ) 2 (2 ) ( ) ( )+ + + + + + + + + - - - =i jj j ji i jj j ji i i i iu u w w u w b wg V a n V k k g a x s q r    (12) 
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, 0 0 , 0 0 , 0 0( ( ) (1 )) ( (1 )) (1 ) 0ii s s s sK m b T u m bT w aT
t t t

     ¶ ¶ ¶
+ - + + - + + - + =

¶ ¶ ¶
   

(13) 

3    FORMULATION OF THE PROBLEM 

We consider an isotropic homogeneous binary mixture of generalized thermoelastic materials with one relaxation 
time. The rectangular Cartesian co-ordinate system (x, y, z) having origin on the surface z0 with z-axis pointing 
vertically in to the medium is introduced. For two dimensional problems, we assume 
 

1 3 1 3( ,0, ), ( ,0, )u u u w w w= =
 

 (14) 
 

Using the expression relating displacement components ( , , )iu x z t  and ( , , )iw x z t  to the scalar potential functions 

( , , ),  ( , , )x z t x z t   and ( , , ),  ( , , )x z t x z t   in dimensionless form 

 
¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶

= - = + = - = +
¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶1 3 1 3, , ,u u w w

x z z x x z z x

       
 (15) 

 
To facilitate the solution, following dimensionless quantities are introduced: 
 

* * * * * *
1 1 1 1 1 1

1 3 1 3
1 1 1 1 1 1

, , , , , ,
x z u u w w

x z u u w w
c c c c c c

     ¢ ¢ ¢ ¢ ¢ ¢= = = = = =  

* *33 31 33 31
33 31 33 31 1 0 1 0, , , , , ,

o

T T S T
T T S S t t

T

    
   

¢ ¢ ¢ ¢ ¢ ¢ ¢= = = = = = =  

(16) 

 
where 
 

1
22

* 1
1 1

2
, ec c

c
K

  


æ ö+ ÷ç ÷= =ç ÷ç ÷çè ø
  

 
Using Eqs. (14)-(16) in Eqs. (11)-(13) (after suppressing the primes), we obtain 

 
2 2

1 2 3 4 5 6(1 ) ( ) ( )a a a a a a     +  + +  - - - =   (17) 
2 2

2 4 6( )a a a     +  - - =   (18) 
2 2

7 8 9 10 11 12(1 ) ( ) ( )a a a a a a     +  + +  + - - =   (19) 
2 2

8 10 12( )a a a     +  + - =   (20) 

2 2 2
13 14 0 13 15 0 16 0{ (1 )} { (1 )} (1 ) 0a a a a a

t t t
      ¶ ¶ ¶

 + - +  - + +  - + =
¶ ¶ ¶

  (21) 

 
We assume the solution of Eqs. (17)-(21) as 

 
* * * * *{ , , , , } { , , , , }exp{ { ( sin cos ) }}k x z t             = - -  (22) 

 
Using Eq. (22) in Eqs. (17), (19) and (21) (by omitting the star), we get 

 
2 2 2

1 4 6 2 3 4 5{ (1 ) } { ( ) } 0a k a a a a k a a     - + + + + - + - - =  (23) 
2 2 2

7 10 8 9 10 12 11{ (1 ) } { ( ) } 0a k a a a k a a a     - + - + - + + + - =  (24) 
2 * 2 * 2 2 *

13 14 0 13 15 0 16 0( ) ( ) ( ) 0k a a k a a k a        + + - + + - =  (25) 
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For non-trivial solution of the system of Eqs. (23)-(25), we have 
 

2 2 2
1 4 6 2 3 4 5

2 2 2
7 10 8 9 10 12 11

2 * 2 * 2 2 *
13 14 0 13 15 0 16 0

(1 ) ( )

(1 ) ( ) 0

( ) ( )

a k a a a a k a a

a k a a a k a a a

k a a k a a k a

   
   

      

- + + + - + - -
- + - - + + + - =

+ - + - +

 (26) 

i.e. 6 2 4 4 2 6( )( , , ) 0+ + + =V AV BV Cw w w f f q   (27) 

 

Eqs. (27) is cubic in 2V therefore the roots of this equation give three values of 2.V  Each value of 2V
corresponds to a velocity of propagation of three possible wave. The waves with velocities 1 2 3, ,V V V  corresponds to 

1 2,qP qP  and qT-waves, respectively. 

 
where 

 

3 2 1

4 4 4

, , ,= = = =
A A A

A B C V
A A A k

w
 

 

 
with 
 

2 3 * 4 * 4 *
4 4 6 0 10 16 0 12 16 4 10 16 0{( )( ) }= + + +A a a a a a a a a aiw w iw t w t w t  

2 2 * 2 2 *
3 4 6 10 12 8 9 16 0 11 13 11 15 0

* 3 4 2 * 2 *
1 0 16 10 12 4 11 13 11 14 0 10 7 16 0

3 * 3 * 3 3
2 3 10 16 0 5 10 15 0 12 13 10 14 0

{( )( ( ) )

(1 ) ( ) ( (1 ) )

( ) (

A a a a a a a a a a a a

a a a a a a a a a a a a

a a a a a a a a a a a

        

         

      

= + - - - + - -

- + + + - - + - +

- + - - + * 4 *
12 14 0 )},a a  +

 

2 2 * 2
2 8 9 4 6 1 10 12 8 9 16 0 11 13

2 * * 2 *
11 15 0 4 7 0 2 3 11 13 11 14 0 10

2 * * 2 2
7 16 0 5 7 13 15 0 8 9 13 8 9 14 0

{( )( ) (1 )( ( )

) (1 ) ( )(

(1 ) ) ((1 )( ) ( ) ( )

A a a a a a a a a a a a a

a a a a a a a a a a a

a a a a a a a a a a a a

      

       

       

= + + - + - - - + -

+ + + - + - + -

+ + - + + + + - + * )}

 

1 1 8 9 2 3 7{ (1 )( ) ( )(1 )}= - + + + + +A a a a a a a  
* 1
0 0 1 2 3

2 2 2 2 2
( ), , , ,

2 2 2 2 2 2
a a a

             
        

- + + + + + + + + +
= + = = =

+ + + + + +
 

2 2
01 1 1

4 5 6 7*
1

( ) 2
, , , ,

2 2 2 2 2( 2 2 )

b Tc c
a a a a

      
          
+ + + + +

= = = =
+ + + + ++ +

 

2 2
01 2 1

8 9 10 11 12*
1

( )2 2
, , , , ,

2 2 2 2(2 )

b Tc c
a a a a a

   
         

-+
= = = = =

+ + + ++
 

22 2 2
0 11 1 1

13 14 15 16* * * *
1 0 1 1 1

( )
, , ,

aT cmc b c bc
a a a a

K T K K K


   

+
= = = =  

 
 

From Eq. (26), we obtain ,  .= =ii im mq f f f  

 
with 

 

, 1,2,3ii i

DetIII DetII
m m i

DetI DetI

-
= = =

 
  

where 
  

2 2 2 2 * 2 *
8 9 10 12 0 16 11 13 0 15(( ) )( ) ( )DetI a a k a a k a k a a a     = + + + - + + - +   
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2 2 2 2 * 2 *
1 4 6 0 16 5 13 0 14( (1 ) )( ) ( )DetII a k a a k a a k a a     = - + + + - + + +  

2 2 2 2
1 4 6 8 9 10 12

2 2
2 3 4 7 10

( (1 ) )( ( ) )

 ( ) )( (1 ) )

DetIII a k a a a a k a a

a a k a a k a

   

 

= - + + + - + + +

+ + + - + -
 

 
Using Eq. (22) in Eqs. (18) and (20) (by omitting the star), we obtain the non-trivial solution of the system of 

Eqs. (18)-(20), as 
 

2 2 2
4 6 2 4

2 2 2
10 8 10 12

0
k a a a k a

k a a k a a

  
  

- + + - -
=

- - - + +
 (28) 

i.e. 4 2( )( , ) 0+ + =V DV E y y   (29) 

 

Eq. (29) is quadratic in 2V  Therefore, two values of V  will be velocity of propagation of 1 2,S S -waves, 

respectively, where 
 

= =
0 0

, ,D EC C
D E

C C
  

with 
 

3 4
0 6 10 4 12 6 12( )C a a a a a a = + +  

3 4
4 8 10 4 2 10 6 8 12( ) ( )DC a a a a a a a a a =- + + + - +  

4
8 2( )EC a a= -  

 

 
Also from Eq. (28), we have , 4, 5= =jm jy y  

where 
 

j

DetII
m

DetI
=   

with 
 

2 2
8 10 12DetI a k a a =- + +  

2
10DetII k a= -   

 
 
 

 
Fig. 1 
Geometry of the Problem (Reflection). 
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4    REFLECTION 

When we consider an incident quasi dilatational waves 1 2, ,qP qP qT -waves or rotational waves 1 2,S S -waves 

incident on the free surface then five waves are reflected, namely 1 2 1, , ,qP qP qT S  and 2 ,S  respectively at complex 

angles 1 2 3 4 5, , , ,q q q q q  as shown in Fig. 1. 

5    BOUNDARY CONDITIONS 

The boundary conditions are given by vanishing of the stress component (normal and tangential), vanishing of 
relative velocities of the two constituents (normal and tangential) and also vanishing of the temperature gradient 
field. Mathematically these can be written as 
 

33 33 31 31 1 1 3 30,    0,    0,    0,    0T S T S u w u w
z

¶
+ = + = - = - = =

¶
        at    0z =  (30) 

 
The appropriate potentials satisfying the boundary conditions can be written as 

 
3

0
1

( , , ) (1, , ) ( ( ) ( ))
=

¢= +å i ii i i i i
i

m m A Exp P A Exp Pf f q i i  (31) 

5

0
4

( , ) (1, ) ( ( ) ( ))
=

¢= +å j j j j j
j

m B Exp P B Exp Py y i i  (32) 

 
where 0iA and 0 jB  are the amplitudes of the incident 1 2, ,qP qP qT  and 1 2,S S  waves, respectively. 

0 0( sin cos )i i iP k x z t  = - -  

( sin cos ) , 1,2,3i i i i iP k x z t i  ¢= + - =  

0 0( sin cos )j j jP k x z t  = - -  

( sin cos ) , 4,5j j j j jP k x z t j  ¢= + - =  

02 03 04 05 0A A B B= = = =       for incident 1qP -wave 

01 03 04 05 0A A B B= = = =       for incident 2qP -wave, 

01 02 03 04 0A A A B= = = =       for incident qT -wave 

01 02 04 05 0A A B B= = = =       for incident 1S -wave 

01 02 03 05 0A A A B= = = =       for incident 2S -wave, respectively (32) 
 

Making use of Eqs. (31)-(32), the boundary conditions (30) can be satisfied if the angles 1 2 3 4 5, , , ,q q q q q  satisfy 

the relations i.e. Snell’s law  given as 
 

= = = = =0 3 51 2 4

0 1 2 3 4 5

sin sin sinsin sin sin

v v v v v v

    
 (33) 

 
where 
 

, ( 1, 2, 3, 4, 5)= =j
j

V j
k

w
     at      0z =  (34) 
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and 
 

1

2 2

0 3

4 1

5 2

for incident wave

for incident wave

for incident

for incident wave

for incident wave

v qP

v qP

v v qT wave

v S

v S

ì -ïïïï -ïïïï= -íïïï -ïïï -ïïî

 (33c) 

 
Making use of potentials given by Eqs. (31)-(32), and the Snell’s law given by Eq. (33) in boundary condition 

and with the help of Eq. (16), we get a system of five non-homogeneous equations, which can be written as 
 

=

= =å
5

1

, ( 1,2,3, 4,5)mn n m
m

c Z Y m  (35) 

 
where 
 

*/ , ( 1, 2, 3)= =i iZ A A i and */ , ( 4, 5)= =j jZ B A j  are the complex amplitude ratios of the reflected 

1 2, ,qP qP qT  and 1 2,S S  waves, respectively, and 

 
2 2 2 2

1 1 3 0 2 4 0 0 5 0( )sin ( )[( / ) sin ] ( / )=- + + + - -i i i i iic q q m q q m V V q m Vq q w  
2 2 1/2

1 3 4 0 0 0( ) sin [( / ) sin ]= - -j j jc q q m V Vq q  

2 2 1/2
2 1 2 3 4 0 0 0{ ( ) ( ) }sin [( / ) sin ]= - + - + -i i ic R R R R m V Vq q  

2 2 2
2 1 3 0 2 4 0 0( )sin ( )[( / ) sin ]=- + + - + -j j j jc R R m R R m V Vq q  

3 0(1 )sin= -i ic m q  
2 2 1/2

3 0 0( 1 )[( / ) sin ]= - + -j j jc m V V q  

2 2 1/2
4 0 0(1 )[( / ) sin ]= - -i i ic m V V q  

2 2 1/2
4 0 0(1 )[( / ) sin ]= - -j j jc m V V q  

2 2 1/2
5 0 0[( / ) sin ]= -i ii ic m V V q  

5 0=jc   
with 
 

= + = + = + = + = +1 1 3 2 2 4 3 3 10 4 4 11 5 5 12, , , , ,q b b q b b q b b q b b q b b  

1 7 9 2 6 8 3 9 14 4 8 13, , ,= + = + = + = +R b b R b b R b b R b b  

1 2 3

2 2 2( ) (2 ) (2 )
, , ,b b b

             
  

+ + + + + + + + + + +
= = =  

0
4 5 6

( )(2 ) (2 ) ( ) (2 )
, , ,

b T
b b b

         
  

++ + + + + + + +
= = =  

7 8 9 10 11

( ) (2 ) 2 2 2 2
, , , , ,b b b b b

           
    

+ + + + + + +
= = = = =  

0
12 13 14

2 2
, ,

bT
b b b

 
  

= = =  
 

 
Considering the phase of the reflected waves can easily write using Eqs. (33)-(34)  
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2 2 1/2
0 0

0

cos 1
[( / ) sin ]= -i

i
i

V V
V V

q
q , 2 2 1/2

0 0
0

cos 1
[( / ) sin ]= -j

j
j

V V
V V

q
q . 

 
Following Schoenberg [23], if we write 

 
'

'
0

cos cos
, ( 1, 2, 3, 4, 5)

2
= + =i i i

i i

c
i

V VV

q q
i

p
 

 
Then, 
 

{ } { }
'

2 2 1/2 2 2 1/2
0 0 0 0'

0

cos 1
[( / ) sin ] , 2 [( / ) sin ]= - = -i

i i i
i

R V V c I V V
VV

q
q p q   

 

where ' ,iV , the real phase speed and ' ,iq , the angle of reflection are given by 

 

{ }
1/2' ' 2

2 2 2 1/2
0 0 0

0 0

sin
sin [( / ) sin ]

sin

-é ùé ùê ú= + -ê úê úë ûë û
i i

j
V

R V V
V

q
q q

q
 

 
and ,ic  the attenuation in a depth is equal to the wavelength of incident wave i.e. 02 / .Vp w  

 
(i) when 1qP -wave is incident *

01 0 1 ( ),A A  = =  = - =1 4( 1) ,  i
i i j jY c Y c  

(ii) when 2qP -wave is incident *
02 0 2 ( ),A A  = =  = - =2 2( 1) ,  i

i i j jY c Y c  

(iii) when qT  (thermal)-wave  is incident *
03 0 3 ( ),A A  = =  3 3( 1) ,  , 1,2,3;  4,5i

i i j jY c Y c i j= - = = =  

(iv) when 1S -wave is incident *
04 0 4 ( ),A B  = = += - 1

4( 1)i
i iY c  

(v) when 2S -wave is incident *
05 0 5 ( ),A B  = =  += - = =1

4 5( 1) , 0, 1,2,3,4;  i
i iY c Y i  

 
The complex amplitude ratios of various reflected waves are * */ , / ,  ( 1,2,3;  4,5).i i j jZ A A Z B A i j= = = =  

6    PARTICULAR CASES 

Case I: In the absence of second constituent of mixture we have i.e.  0,= = = = = = =bn V a k g x our results 

reduce in generalized thermoelastic solid with one relaxation time as 
 

3
'

1

, 1,2,3nm n m
m

c Z Y m
=

= =å  (36) 

 
where 
 

'' ** 2 ** ** 2 2 ** ** 2
1 1 0 2 0 0 5 0sin [( / ) sin ] ( / )= + - +i i iic q q V V q m Vq q w

 
'' ** ** ** 2 2
13 1 2 0 0 3 0( )sin [( / ) sin ]=- - -c q q V Vq q

 
'' ** 2 2 1/2
2 0 0 0sin [( / ) sin ]= -i ic V Vq q

 
'' 2 ** 2 2
23 0 0 0sin [( / ) sin ]= - -ic V Vq q

 
'' ** ** 2 2
3 0 0[( / ) sin ]= -i ii ic m V V q
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''
33 0 1, 2= =c i

 
 

and the complex amplitude ratios of three reflected waves are * *
3 4/ , /= =i iZ A A Z B A ; 1, 2.=i  

 
(i) when 1qP -wave is incident = = = -* '

01 0 1 1 ( ),  ( 1)i
i iA A Y c   

(ii) when qT (thermal)-wave is incident = = = -* '
03 0 3 2 ( ),  ( 1)i

i iA A Y c   

(iii) when 1S -wave is incident += = = - = =* 1 '
04 0 4 3 3 ( ), ( 1) , 0, 1,2i

i iA B Y c Y i   

 
where 

* ** 2 2
* ** ** ** **14 0 1 1 1

1 5 6 14* * * *
16 0 1

,  , , , ,
(1 )

- +
= = = = =

+
i

ii
i

a kV T c c
m a a a a

a V K

i b r bl m
m m mt w

 

** ** ** ** **0
1 2 5 6 7

2
, , , 1

+
= = = = =

T
b b b b b

bl l m
m m m  

and 
 

**; ( 1, 2)=iV i  can be obtain from the equation *4 ** *2 **( )( , ) 0.+ + =V A V C f q  

 
where 
 

** ** ** ** *
**5 14 6 16 1 0

** ** 1
** * ** *
6 16 0 6 16 0

(1 ) (1 )
,

- + + +
= =

- -

a a a a a a
A C

a a a a

i
t

w
t t

 

and 

 

**
4 **

6

1
=V

a
 

 
Case II: neglecting thermal effect i.e. 0 0,= = = = = = =b m K a aTs b our results reduce in elastic solid with 

mixture as 

=

= =å
4

''

1

, 1,2,3,4nm n m
n

c Z Y m

 
(37)

 
 
where 
 

' * 2 * * 2 2
1 1 3 0 2 4 0 0( )sin ( )[( / ) sin ]=- + + + -i i i ic q q m q q m V Vq q

 
' 2 2 1/2
1 3 4 0 0 0( ) sin [( / ) sin ]= - -j j jc q q m V Vq q

 
' * * 2 2 1/2
2 1 2 3 4 0 0 0{ ( ) ( ) }sin [( / ) sin ]= - + - + -i i ic R R R R m V Vq q

 
' 2 2 2
2 1 3 0 2 4 0 0( )sin ( )[( / ) sin ]=- + + - + -j j j jc R R m R R m V Vq q

 
' *
3 0(1 )sin= -i ic m q  
' 2 2 1/2
3 0 0( 1 )[( / ) sin ]= - + -j j jc m V V q

  
' * * 2 2 1/2
4 0 0(1 )[( / ) sin ]= - -i i ic m V V q  
' 2 2 1/2
4 0 0(1 )[( / ) sin ] , ( 1, 2; j 3, 4 )= - - = =j j jc m V V iq  
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where 
 

2 *
* 7 10

2 * 2 *2
8 9 10 12

(1 )

( )

+ +
=

+ - +
i

i
i i

a k a k
m

a a k ka a k

i J

i J J  

 

 

and
 

*
iV ; 1, 2=i  can be obtain from *4 * *2 *( )( , ) 0,+ + =V A V C f f  with

 
 

3 4 3 3 3
* 8 9 4 6 10 12 1 4 7 10 2 3

2 2
4 6 10 12 4 10

{( )( ) (1 ) (1 ) ( )}

{( ) }

- + + + + + + + +
=

+ +

a a a a a a a a a a a a
A

a a a a a a

iw w iw iw iw

iw iw iw w
 

4 4
* 8 9 1 7 2 3

2 2
4 6 10 12 4 10

{( )(1 ) (1 )( ) }

{( ) }

+ + - + +
=

+ +

a a a a a a
C

a a a a a a

w w

iw iw iw w  

 
and  
 
(i) when 1qP -wave is incident = = = -* ''

01 0 1 1 ( ),  ( 1)i
i iA A Y c   

(ii) when 2qP -wave is incident = = = -* ''
02 0 2 2 ( ),  ( 1)i

i iA A Y c   

(iii) when 1S -wave is incident += = = -* 1 ''
04 0 4 3 ( ),  ( 1)i

i iA B Y c 
 

(iv) when 2S -wave is incident * 1 '
05 0 5 4( ), ( 1) , ( 1, 2, 3, 4).+= = = - =i

i iA B Y c iq q  

 
The complex amplitude ratios of four reflected waves are 
 

51 2 4
1 2 3 4* * * *

, , ,= = = =
BA A B

Z Z Z Z
A A A A

 (36c) 

7    NUMERICAL RESULT AND DISCUSSION 

In order to illustrate theoretical results obtained in the proceeding sections, we now present some numerical results. 
Following Dhaliwal and Singh [24] We take the following values of relevant parameters as 
 

10 -2 10 -2 10 -2 3 -3
12.17 10 Nm , 3.278 10 Nm , 0.75 10 Nm ,  1.74 10 Kg m ,   = ´ = ´ = ´ = ´

3 -3 3 -1 -1 2 -1 -1
2 1.35 10 Kg m ,  298K, 1.04 10 JKg deg , 1.7 10 w m deg ,o eT C K = ´ = = ´ = ´

10 -2 10 -2 10 -2 10 -21.85 10 Nm , 0.5 10 Nm , 0.85 10 Nm ,  1.95 10 Nm ,   = ´ = ´ = ´ = ´
10 -2 6 -2 -1 6 -2 -1 6 -2 -10.75 10 Nm , 2.68 10 Nm K , 1.85 10 Nm K , 2.05 10 Nm K ,m b = ´ = ´ = ´ = ´

6 -2 -2 12 -41.85 10 Nm K , .075 10 Nsma = ´ = ´  

 

The comparison were carried out for nondimensional frequency and relaxation times i.e. *
1( / ) 4,=w w and 

0.02.o =  A computer programme has been developed and an amplitude ratio of various reflected waves has been 

computed. The variations of amplitude ratios for thermoelastic with mixture (TWM), thermoelastic in the absence of 
second constituent of mixture(TWIM) and Elastic with mixture (EWM) have been shown by solid line, small dashed 
line and long dashed line, respectively. The variations of the amplitude ratios ( 1,2,3,4,5)iZ i =  for TWM, EWM, 

TWIM with the angle of incidence of the incident 1qP -wave, incident qT -wave and incident 1S -wave are shown 

graphically in the Figs. 2-14. 
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7.1 Incident 1qP -wave 

Fig. 2 shows the variations of 1Z  with angle of incidence 0 .  The amplitude ratio 1Z  for TWM, EWM, is 

generally small as compared to 1Z  for TWM but the trend of variations of 1Z  for TWM, TWIM, EWM is similar 

whereas the corresponding values are different in magnitude, respectively. The presence of constituent of mixture 

decreases the amplitude ratio at 0 45»q and increases as 0q  increases further. Fig.3. shows the variations of 

amplitude ratio 2Z  with angle of incidence 0 .  It is observed that the absence of the thermal parameters the 

amplitude ratio 2Z  for TWIM is slightly large in the range 00 10 £ £q  as compared to TWM and decrease in the 

increasing direction of 0 .q  The behavior of variations of amplitude ratios 3 4,Z Z  and 5Z  are oscillatory in the 

whole range of 0q  but the magnitude of oscillation is different for different amplitude ratios, these variations are 

shown in Figs.4-6, respectively. 
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Fig. 2 
The variations of amplitude ratios of reflected waves when qP1-
wave is incident. 
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Fig. 3 
The variations of amplitude ratios of reflected waves when qP1-
wave is incident. 
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Fig. 4 
The variations of amplitude ratios of reflected waves when qP1-
wave is incident. 
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Fig. 5 
The variations of amplitude ratios of reflected waves when qP1-
wave is incident. 
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Fig. 6 
The variations of amplitude ratios of reflected waves when qP1-
wave is incident. 
 

7.2 Incident qT -wave  

Figs. 7-9 represent the variations of amplitude ratios 1 2 3, ,Z Z Z  with angle of incidence 0 .q  The behavior of 

variations of amplitude ratios  1 3,Z Z  is similar i.e. the values of amplitude ratios for TWM decrease in the range 

00 9 £ £q  and oscillate around zero as 0q  increases further and for TWIM increase in the range 00 49 £ £q
and decrease in the rest range of 0 ,q  shown in Figs. 7-9, respectively. But the trend of variations of amplitude ratio 

2Z  for TWM, TWIM is similar for all values of 0 ,q  as depicts graphically in Fig. 8. In the case of incident qT -

wave, resulting reflecting waves are same as that of incident 1qP -wave. 

 
 
 

 

Fig. 7 
The variations of amplitude ratios of reflected waves when qT-
wave is incident. 
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7.3 Incident 1S -wave 

At 0 40»q  the values amplitude ratios 1 2 3, ,Z Z Z , show a sudden fall and vanish as the angle of incidence 

exceeds this angle but the amplitude ratio 4 ,Z  shows a sudden rise for TWM. The values of amplitude ratios 

1 3 4, ,Z Z Z  for TWIM initially start from their minima reach upto their maxima at 0 25»q  and decrease, again 

reach up to their minima. These variations are shown graphically in Figs. 10-13, respectively for the absence of the 
constituent of mixture. The trend of variations of 2 5,Z Z  for EWM is similar i.e. oscillatory in the whole range of 

0 ,q  but the magnitude of oscillation of 2Z is large as compared to 5 ,Z  shown in Figs. 11-14, respectively. 

 
 
 

 

Fig. 8 
The variations of amplitude ratios of reflected waves when qT-
wave is incident. 

  
  
  

 

Fig. 9 
The variations of amplitude ratios of reflected waves when qT-
wave is incident. 
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Fig. 10 
The variations of amplitude ratios of reflected waves 
when S1-wave is incident. 
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Fig. 11 
The variations of amplitude ratios of reflected waves 
when S1-wave is incident. 
 

  
  

 

Fig. 12 
The variations of amplitude ratios of reflected waves 
when S1-wave is incident. 
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Fig. 13 
The variations of amplitude ratios of reflected waves 
when S1-wave is incident. 
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Fig. 14 
The variations of amplitude ratios of reflected waves 
when S1-wave is incident. 
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8    CONCLUSIONS 

The numerical calculation for amplitude ratios of various reflected waves have been derived in thermoelastic solid 
half-space with mixture, without thermal and in the absence of second constituent of mixture for the incident 

1 1, ,qP qT S -waves. It is observed that due to incident 1,qP qT -waves the values of amplitude ratio 1Z  for TWIM 

are maximum at the incident angle 0 50»q  and 0 25»q  for the incident 1S -wave and the amplitude ratio 

decrease at these incident angles for TWM. It is also conclude that due to different incident waves we obtain 
oscillatory behavior of amplitude ratios. We observe that the effect of mixture and thermal are prodigious. 
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