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 ABSTRACT 

 All impact analyses performed so far for the composite plates, have treated central impacts. 
Furthermore, investigations on influences of the in-plane biaxial compression, tension, or 
tension-compression preloads on various responses of the low-velocity impact, especially 
the indentation, have not been performed so far. In the present research, a finite element 
formulation is presented for response prediction of a low-velocity eccentric impact between 
a rigid spherical indenter and a laminated composite rectangular plate with asymmetric 
lamination scheme. Different contact laws are considered for the loading and unloading 
phases. A parametric study is performed to investigate influence of the specifications of the 
plates and the indenter, the eccentric value, and the in-plane preloads on the indentation and 
force time histories. Results show that the compressive and tensile in-plane preloads reduce 
and increase the contact force (and consequently, the indentation values), respectively. 
Therefore, the extensive tensile preloads may lead to higher damages.                          

                                                                        © 2012 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

ANY load carrying composite structures, often in the form of thin-walled components, are vulnerable to 
impacts with rigid indenters. The composite plates used in construction of the external or internal portions of 

the structures of the ground, space, aerospace, and marine vehicles may experience low-velocity impacts with rigid 
foreign indenters during their service lives. Although many papers have been published on investigation of various 
aspects of the low-velocity impact of the composite plates, there are still some important aspects, such as impact 
eccentricity and preloads that have not been fully investigated.  

 Some researchers have employed discrete models for behavior simulation of plates subjected to low-velocity 
impacts. However, these models cannot incorporate effects of the higher vibration modes whose effects are in some 
cases comparable to those of the fundamental vibration mode of the plate. Gong and Lam [1] used a discrete model 
with two degrees-of-freedom in order to determine the history of the contact force. Jacquelin et al. [2] presented an 
extended single degree-of-freedom model for the impacted structures. Pashah et al. [3] provided guidelines for 
prediction of the structural responses on the basis of the impact time duration and the fundamental period of the 
impacted structure through using discrete models. Anderson [4] used a single-degree-of-freedom model for 
analyzing large mass impacts on composite sandwich laminates. Abrate [5,6] has comprehensively reviewed various 
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models of impact of the sandwich and composite structures. Chai and Zhu [7] reviewed the research progress on 
dynamic response of composite sandwich structures subjected to low-velocity impacts. Qiu and Yu [8] reviewed 
some topics related to the advances and applications of the structural impact dynamics in recent years.  

Some of the researches performed on the basis of the consistent continuous models, have investigated the global 
displacements and/or forces. Therefore, local deformations of the contact region and the relevant local effects are 
have been ignored. Therefore, only the global displacements or stresses of the structure have been of concern [9,10]. 
Some others have analyzed plates without lateral movability (e.g., plates resting on rigid substrates). They mainly 
assumed that deformations of the impacted region of the plate conform to the indenter surface [11-15].  

Apart from the geometrically consistent models, models based on Hertzian-type contact laws have also been 
developed. Guan and Yang [16] and Zheng and Binienda [17] used modified Hertzian contact laws. For orthotropic 
plates, it has been assumed that the contact pressure and contact area could be obtained from the usual formulas for 
isotropic materials, but with the isotropic modulus of elasticity replaced by the orthotropic modulus in the loading 
direction. Olsson [18] presented an analytical model for small mass impact on orthotropic laminated composite 
plates.  

Very rare researches have investigated influence of the initial stresses on the dynamic [19] or low-velocity 
impact responses of the rectangular [20,21] or circular [22] plates. Khalili et al. [23] discussed transverse impact 
response of a composite plate with an in-plane biaxial tension. Sveklo-Hertz contact law for the orthotropic 
materials was used to describe the interaction between the plate and the indenter. Heimbs et al. [24] reported 
experimental and LS-DYNA finite element results for the rectangular plates. Choi [25] studied low-velocity 
eccentric impact of composite plates subjected to in-plane preloads. However, the reported results do not enable a 
clear conclusion, because the results were oscillatory and almost no effects have been observed on the indentation 
value.   

The foregoing brief review reveals that the previous researches focused on centric low-velocity impacts. 
Furthermore, influences of the compression, extension, or extension-compression in-plane biaxial preloads on 
various responses of the low-velocity impact, especially the indentation, have not been fully investigated so far. In 
the present research, a finite element formulation is presented for response prediction of a low-velocity eccentric 
impact between a rigid spherical indenter and a laminated composite rectangular plate with asymmetric lamination 
scheme. Different contact laws are considered for the loading and unloading phases. A parametric study is 
performed to investigate influence of the specifications of the plate and the indenter, the eccentric value, and the in-
plane preloads on the indentation and contact force time histories. 

2    THE GOVERNING EQUATIONS 
2.1 The apparent modulus of elasticity of the contact region based on the global-local approach 

Consider a rectangular plate whose geometric parameters and coordinate system are shown in Fig. 1. In-plane 
dimensions and thickness of the plate are denoted by a, b, and h, respectively. The plate is impacted by a spherical 
indenter or a projectile with a spherical nose whose initial velocity and radius are denoted by v0 and R, respectively.  

The stress-strain relation of the kth layer of the plate in the material coordinate may be written as [26]: 
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where the first two stress/strain components are normal components and the remaining components are shear ones.  
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If the material axis, in-plate transverse direction, and out-of-plane transverse direction are denoted by X, Y, and 
Z, one has for example: 
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If the fiber angle with the geometric x axis is denoted by , the stress-strain relation in the geometric coordinates 

may be expressed as [26]:       
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Turner [27] claimed that for a transversely isotropic plate impacted by a rigid spherical indenter, the contact 

force may be related through the contact stiffness to the indentation value as follows:  
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For a multilayered composite plate, effect of the underneath layers may be incorporated through using the 
apparent stiffness concept. It is evident that the stiffness of the lower layers can affect stiffness of the contact region.   
For this reason, some researchers have proposed using the integral mean of the stiffness of the layers [22].  

For the unloading phase, the modified Hertzian contact law proposed by Yang and Sun [28] is employed. In this 
regard, the indentation force of Eq. (6) has to be substituted by: 
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for the unloading phase, where maxF is the maximum contact force reached during the impact, max is the maximum 

indentation which corresponds to maxF  and 0 is the permanent indentation, if any. 

3    THE GOVERNING EQUATIONS OF IMPACT OF THE PRELOADED PLATE 

Based on Mindlin’s first-order shear deformation theory, the displacement field of the plate may be described as 
[26]: 
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where 0u , 0v , and 0w are displacements of the reference plane of the plate and x and y are rotations of the cross 

section relative to x and y axes, respectively.  
Using von Karman-type assumptions, strain components of the reference plane of the plate may be related to the 

displacement components of the mentioned plane through the following nonlinear relations: 
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The governing equations may be derived using Hamilton’s principle [26]: 
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where 

0
Ω and  represent the reference plane area and the plate boundary and the subscripts, n and, s ,and i denote 

directions normal and tangent to the boundary, and the indenter  respectively. Substituting Eqs. (14-16) into Eq. 
(13), using the following definitions: 
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On the other hand: 
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Because    0 0, ,0 0 T D X D X , where 0D  is the displacement vector. The results may be confirmed noting 

that the result of Eq. (19) is (negative of) the work of the translational inertia forces. In a similar manner: 
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Hence, Eq. (18) may be rewritten as: 
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Substituting Eq. (12) into Eq. (17) leads to: 
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where 5 / 6k  is the shear correction factor [26] and. The following quantities are defined to present compact forms 
for the next equations: 
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Based on Eq. (25), Eq. (22) may be rewritten as: 
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On the other hand, based on Eqs. (24,25) one may write: 
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Using four-noded elements, one may express the displacement vector based on the nodal values of the 
displacement parameters 
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where ψ is the shape functions vector of the rectangular element [29]: 
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and  and  are the natural coordinates of the element, in the x and y directions, respectively. Therefore, the 

following vectors may be defined in relation to Eq. (26): 
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Sine Eq. (26) has to be valid for any arbitrary time intervals, the integrand of the time integral should be set 

equal to zero: 
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Eq. (31) holds for any arbitrary  ( )
0

te d . Thus, one may deduce that: 
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and in a compact form: 
 

( ) ( )
0 0 e e e e eM d K d F  (34)

 
where: 
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The system of Eq. (34) has to be solved with the indenter equation of motion 
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where IM , IW , and Id  are mass and displacement of the indenter, and lateral deflection of the impacted node of the  
plate, respectively. Based on the second-order Runge-Kutta numerical integration method [30], system of Eqs. (34) 
and (37) may be reduced to an algebraic system of equations. 
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where for example: 
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and n is the time step counter. Since the resulting system of equations is highly nonlinear, solutions associated with 
each time step may be determined based on an iterative procedure. 

For a simply supported plate, the following boundary and initial conditions may be chosen: 
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The initial acceleration may be determined as 
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However, since Eq. (38) is a nonlinear equation, a Picard or Newton-Raphson technique has to be used in each 

time step to reach a convergent solution. The following convergence criterion is employed in the present paper  
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where m is the iteration counter and is a sufficiently small number. In the present research, 0.0001  is used as a 
convergence criterion. 

4    RESULTS AND DISCUSSIONS 

In the present section, after validation of the results, influence of the in-plane in-phase/anti-phase biaxial preloads 
and eccentricity of the impact are studied, in addition to the other parametric studies. Since the numerical time 
integration procedures manifest an error accumulation phenomenon that is especially affected by the time 
integration steps and in order to trace the time history of the quantities more adequately, the integration time steps 
have to be much less than the fundamental period time of the structure and especially much less than the response 
time of the structure. For this reason, a time step that is equal or less than 610  (sec) is adopted.  

Some characteristics of the impact are investigated in the present section for the first time. For derivation of the 
results, the plate is discretized into rectangular elements, as shown in Fig. 1.      
 

 
 
 
 
 
Fig.1 
Geometric parameters and the coordinates system 
of the considered preloaded functionally graded 
composite plate under the low-velocity impact. 

4.1 Verification of the results 

To verify results of the present formulations and results, an example previously adopted by Tiberkak et. al. [31] is 
chosen. The plate is simply supported and has 0.127*0.0762*0.00465m3 dimensions. Material properties and 
geometric data of the fiber reinforced composite [45/90/-45/0]3S plate and indenter are as follows [31]: 
 

3
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Mass and initial velocity of the indenter are 0.314 kg and 2.92 m/s, respectively. Present results for the contact force 
are compared with results of Tiberkak et al. [31] in Fig. 2. Tiberkak et al. used a finite element formulation based on 
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the first-order shear deformation plate theory, but considered the central impact and determined in determination of 
the stiffness of the contact region, ignored influence of the stiffness of the underneath layers on the apparent contact 
stiffness of the plate. However, as Fig. 2 reveals, there is a good agreement between present results and results of 
Tiberkak et al.  
     

 
 
 
 
 
 
 
 
 
 
Fig.2 
Time histories of the contact force predicted by present 
formulation and Tiberkak et al. [31]. 

4.2 Influence of various parameters on characteristics of  the low-velocity impact characteristics of responses of the 
plate. 

For in the present and next sections, the following information is employed for the steel indenter and the asymmetric 
[0/90/0/90/0/90/0/90/0/90] graphite/epoxy laminated composite plate, unless otherwise stated [32]:  
 

3
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Dimensions of the plate are 20x20x0.269 cm. It is assumed that the plate is impacted through a central/eccentric 

low-velocity impact by a steel indenter with a spherical nose. The boundary conditions. All edges of the plate are 
clamped and immovable . 

The original responses and influence of the indenter velocity on the indentation, contact force, and lateral 
deflection of the plate are illustrated in Figs. 3 to 5, respectively. As it may be expected, magnitudes of all responses 
are have increased with an increase in the indenter velocity. Although the maximum contact force has occurred in a 
time instant that is almost coincident with that of the maximum indentation value (this is evident only if a static 
contact with a half space occurs), the maximum lateral deflection of the plate has occurred in a quite different time 
instant. Influence of the higher vibration modes of the plate on time histories of the responses may be easily detected 
in Figs. 3 to 5.  

 

 

 
 
 
 
 
 
 
 
 
 
Fig.3 
Effect of the initial velocity of the indenter on time history 
of the indentation. 
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Fig.4 
Effect of the initial velocity of the indenter on time history 
of the contact force. 
 

  

 
 
 
 
 
 
 
 
 
Fig.5 
Effect of the initial velocity of the indenter on time history 
of the lateral deflection of the plate. 

 
Influence of the radius (and simultaneously, mass) of the indenter are investigated through studying the time 

histories of the indentation, contact force, and lateral deflection plotted in Figs. 6 to 8. In this regard, the following 
cases are considered: 
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Other parameters are similar to the base values. As it may be seen from Figs. 6 to 8, amplitudes of the 

indentation, contact force and lateral deflection increase with an increase in the indenter radius/mass. Furthermore, 
the contact duration time increases with the indenter mass. Influence of the plate thickness may be deduced from 
Figs. 9 to 11. Increased thickness of the plate leads to increased bending stiffness for the plate. Therefore, the lateral 
movability (lateral deflection) of the plate decreases and consequently, the indentation and contact force of the plate 
increase. 

  

 
 
 
 
 
 
 
 
Fig.6 
Effect of the mass and radius of the indenter on time 
history of the indentation. 
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Fig.7 
Effect of the mass and radius of the indenter on time 
history of the contact force. 

 

 
 
 
 
 
 
 
 
 
 
Fig.8 
Effect of the mass and radius of the indenter on time 
history of the lateral deflection of the plate. 

 

 
 
 
 
 
 
 
 
 
Fig.9 
Effect of the plate thickness on time history of the 
indentation. 

 
 

 
 
 
 
 
 
 
 
Fig.10 
Effect of the plate thickness on time history of the contact 
force. 

 



M. Shariyat et al.                    190 

© 2012 IAU, Arak Branch 

 
 
 
 
 
 
 
 
 
 
Fig.11 
Effect of the plate thickness on time history of the lateral 
deflection of the plate. 

4.3 Effects of the eccentric impact  

To investigate effects of an eccentric low-velocity impact on the considered laminated composite plate, the impacted 
point is chosen among the eccentric nodal points. Location of the mentioned nodal point is shown in Fig. 12. Time 
history of the contact force is plotted in Fig. 13 for both central and eccentric impacts. The apparent stiffness 
(hardness) of the contact region show no remarkable change. Although the overall bending stiffness of the contact 
region has been increased (due to less movability in the neighborhood of the clamped edges), due to the increases 
occurred in the distances relative to some corners of the plate, the overall bending stiffness of the plate has 
decreased and consequently, the contact time duration has increased.  
Time histories of the lateral deflection of the plate are compared in Fig. 14 , for the central and eccentric impacts. 

 For eccentric impact, time histories of lateral deflections of both the impacted point and the center point of the 
plate are plotted. As it may readily be noticed, there is a delay between response of the impacted point and that of 
the center point of the eccentric impact. The lag time is required to enable the traveling waves following the impact 
to reach the center point of the plate. Moreover, the lag between the maximum indentation time and the time instant 
of maximum lateral deflection is smaller for the eccentric impact case.        

 

 
 
 
 
 
 
 
Fig.12 
Dimensions of the plate and location of the eccentric 
impact. 

 

 
 
 
 
 
 
 
 
 
Fig.13 
Time histories of the contact force for the central and 
eccentric impacts. 
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Fig.14 
A comparison between time histories of the lateral 
deflection of the plate for central and eccentric impacts. 

4.4 Effect of the in-plane preloads 

To evaluate effects of the initial stresses on the impact responses of the laminated composite plate, a plate with 
material properties and geometric parameters similar to those mentioned in the preceding sections is considered. 
Effect of imposing biaxial in-plane tensile preload on time histories of the indentation, contact force, and lateral 
deflection of the plate are illustrated in Figs. 15 to 17, respectively. In this regard, in-plane tension preloads with 
magnitudes 0, 10, 40, 60, and 100 kN are considered. Therefore, effects of high preloads are investigated. Results 
presented in Figs. 15 to 17 confirm that the tensile preloads increase both the contact force and indentation and 
generally, decrease the lateral deflection of the plate.  
 

 
 
 
 
 
 
 
 
 
Fig.15 
Effects of the tensile preloads on the indentation time 
history of the laminated composite plate. 

  

 
 
 
 
 
 
 
 
 
 
Fig.16 
Effects of the tensile preloads on the contact force time 
history of the laminated composite plate. 
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Fig.17 
Effects of the tensile preloads on the lateral deflection of 
the laminated composite plate. 

 
 
Effect of the biaxial tensile and compressive loads as well as tensile-compressive preloads on the contact force 

and lateral deflection of the plate are compared in Figs. 18 and 19. Since the compressive loads generally tend to 
create larger lateral deflections than in comparison with the tensile loads (and in the limit, lead to buckling), the 
lateral deflection has a greater contribution in absorption of the impact energy in case of a compressive preload. 
Therefore, the plate will have a greater movability and consequently, experience less indentations and contact force. 
Fig. 18 confirms this issue since the resulting contact force (and subsequently, the indentation) is greater for the 
tensile preloads. However, the anti-phase case (i.e., associated with the tensile-compressive preloads), has led to 
results similar to those of the compressive preloads; an evident that reveal the dominant effect of the compressive 
preloads. 
 

 
 
 
 
 
 
 
 
 
Fig.18 
A comparison between time histories of the contact force 
predicted by corresponding to the in-phase and anti-phase 
preloads. 

  

 
 
 
 
 
 
 
 
 
Fig.19 
A comparison between time histories of the contact force 
predicted by corresponding to the in-phase and anti-phase 
preloads. 
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5    CONCLUSIONS 

In the present paper, a nonlinear eccentric low-velocity impact analysis is presented for laminated composite plates 
subjected to eccentric impacts and biaxial in-plane in-phase or anti-phase preloads.  

Some of the novelties included in the present research are: 
o Considering the more general case of an eccentric impact, for the first time. 
o Evaluating effects of various types (i.e., in-phase and anti-phase) preloads, especially, on the indentation and 

contact force. 
o Using nonlinear strain-displacement expressions. 
o Presenting a complete formulation and a solution technique instead of using commercial softwares. 

Among other conclusions, results reveal that compressive and anti-phase tensile-compressive loads preloads lead 
to greater contact forces and indentations and consequently, higher damages.  
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