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 ABSTRACT 

 The titled problem of coupled thermoelasticity for porous structure has been solved 

with an instantaneous heat source acting on a plane area in an unbounded medium. 

The basic equations of thermoelasticity, after being converted into a one-

dimensional form, have been written in the form of a vector-matrix differential 

equation and solved by the eigenvalue approach for the field variables in the Laplace 

transform domain in closed form. The deformation, temperature and pore pressure 

have been determined for the space time domain by numerical inversion from the 

Laplace transform domain. Finally the results are analyzed by depicting several 

graphs for the field variables. 

                                                 © 2016 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 HE study in the theory of thermoelastic interactions with voids were first initiated by Nunziato and Cowin[1] 

and Iesan [2] to develop a non-linear theory of elastic materials. The linear theory of elastic materials with voids 

has been developed by Cowin and Nunziato [3]. In this linear theory of elastic material with voids, the change in 

void volume fraction and strain are taken as independent kinematic variables. Iesan [4] presented a linear theory of 

thermoelastic material with voids where he derived the basic equations for the system and proved the uniqueness of 

solution, reciprocity relation and variational characterization of solution in the dynamical theory. Dhaliwal and 

Wang [5] formulated the heat flux dependent thermoelasticity theory for an elastic material with voids.  Puri and 

Cowin [6]  analyzed the behavior of plane harmonic waves  in a linear elastic material with voids. Ciarlatta and 

Chirita [7] have pointed out that the basic concept underline this theory is that of a material for which the bulk 

density is written as the product of two fields: the density field of the matrix material and the volume fraction field. 

Cicco and Diacco [8] presented a theory of thermoelastic material with voids without energy dissipation. Other 

relevant work in this field are Cherita and Scalia [9] and Scalia, Pompei and Chirita [10] who enriched the theory 

under the assumption that the constitutive coefficients are positive definite. Chirita and Ciarletta [11] discussed the 

structural stability of thermoelastic model of porous media. The problem on consolidation around a volumic 

spherical decaying heat source has been studied by Giraud and Rousset [12]. Booker and Savvidou [13] presented 

solutions for temperature, pressure and stress fields arising from a spherical heat source buried in a thermally 

consolidating material of infinite extent. 

Thermoelastic vibration analysis of Mems/Nems plate resonators with voids has been studied in Sharma and 

Grover [14]. Kumar and Leena rani [15] investigated the temperature and other field variables in a homogeneous, 
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isotropic, generalized thermoelastic half space with voids due to normal, tangential force and thermal source. Kumar 

and Devi [16] obtained a general solution for the field equations of thermoelastic material with voids of one 

relaxation time parameter (Lord and Shulman theory [17]) depending on modulus of elasticity and thermal 

conductivity on reference temperature.The intended applications of the theory of elastic material with voids are to 

geological materials such as rock and soils and to manufacture porous materials. 

In this paper, the titled problem of coupled thermoelasticity for porous structure has been solved in Laplace 

transform domain when an instantaneous heat source is acting on a plane area in an unbounded medium. The 

deformation, temperature and pore pressure have been determined in the space-time domain by numerical method. 

Finally the results are analyzed by depicting several graphs for the field variables. 

2    FORMULATION AND SOLUTION OF THE PROBLEM    

We consider a quasi-static, infinitesimal deformation of isotropic fully saturated rocks with porous structure. If an 

instantaneous heat source is acting on a plane area in an unbounded medium in which the solid and fluid phases are 

chemically inert and where the inertial forces are negligible, then the complete set of differential equations for linear 

thermoporoelasticity (vide Rice and Cleary [18] , Coussy [19] ) are given by 
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where u  is the displacement vector of matrix particles, v  denotes the volume strain, P  is the excess pore pressure, 

  is the excess temperature, G is the shear modulus, 0K is the drained bulk modulus, b is the Biot dimensionless 

coefficient of effective stress, M is the Biot bulk modulus of the fluid, k  is the Darcy conductivity, 0  is the drained 

expansion coefficient of matrix particles, m  is a differential expansion coefficient between the matrix and the 

fluid, T  is thermal conductivity, c is the volumetric specific heat and  vQ  denotes the intensity of any distributed 

heat source. The poroelastic parameters b and M were introduced by Biot [20]. 

0K  and 0  can be related to the undrained bulk modulus K  and the undrained coefficient of linear thermal 

expansion   by the relations 
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The basic equations of thermoelasticity after being converted in one-dimensional form are given by 
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In order to non-dimensionalize the system of Eqs. (6)-(8), we define the following quantities 
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  Introducing (9) into Eqs. (6)-(8) and suppressing the primes, we obtain 
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Eqs. (10), (11) and (12) can be written as: 
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Let 0x   be the plane area over which the instantaneous heat source  ( , )vQ x t  of the form 
 

 

   0Q Q x H t    

      
 

Acts. 0Q  is the strength of heat source and ( )x  and ( )H t  are respectively the Dirac delta function and 

Heaviside unit step function. For the solution of these equations, we shall use the Laplace transform of parameter  p 

of the function  ( )f t  defined by  
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Taking the Laplace transform on Eqs. (13), (14) and (15), we get 
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Substituting (18) in Eqs. (19) and (20), we get 
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In order to apply eigenvalue method of Lahiri et.al [21], Eqs. (21) and (22) can be written in the form of vector-

matrix differential equation as follows 
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where  
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The prime indicates differentiation with respect to x. 

Eq. (23) can be compactly written as: 
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The characteristic equation of the matrix A takes the form 
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The roots of this equation which are also the eigenvalues of the matrix A are of the form: 
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The eigenvector X corresponding to the eigenvalue   can be calculated as: 

 

   2 2
42 41 42 41, , ,

T

X c c c c        
  

 
(28) 

 

Let 

 

       
1 1 2 2

1 2 3 4 1 2 3 4  
,    ,    ,       ,     V X V X V X V X V V V V V

            
         (29) 

 

Now we consider 

 
1A V V    (30) 

 

where 

1

2

0

0 n







 
 
  
 
 
 

 is a diagonal matrix whose elements 1 2, ,........., n    are the distinct eigenvalues of A.  

Substituting (30) in (24) and premultiplying the resulting equation by  1V  , we get  
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The solution of Eq. (32) is given by 
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Since 1y V v  and the field variables in v  vanish at infinity we neglect the first term on the right hand side of 

(34). Thus from (34) 
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The solution for v can be written as: 

 
4

2 2 4 4

1

r r

r

v V y V y V y



    
 

(36) 

  

Since 1y  and 3y  are neglected from the physical considerations of the problem. Thus considering first two 

elements of v  and using (29) we can write from (36), 
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The elements 23  and 43  can easily be calculated as: 
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Substituting these values in (37), we get the complete solution for the temperature  and pressure P  in the 

Laplace transform domain as: 
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Using (39) and (40) in (18) and solving the resulting equation with appropriate condition, we get the 

displacement component in the Laplace transform domain as: 
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In order to invert the field variables    , , ,x p P x p and  ,u x p from Laplace transform domain to the space 

time domain, we use Zakian algorithm [22]. 

3    NUMERICAL RESULTS AND DISCUSSIONS   

In order to illustrate the preceding results graphically, we have chosen compressible clay for numerical evaluation. 

As in [12] the thermoporoelastic parameters are taken as: 
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We now present the graphs of pore pressure P,  temperature T and displacement u  which vary when x vary. 

Fig.1 depicts the variation of pressure P along the distance x for different values of time t. At  0x  , P assumes the 

values of 0.01796, 0.03112, 0.04017, 0.04753 and 0.05389 for 1,3,5,7t  and 9 respectively. As x increases, the 

values gradually decreases like an exponentially decaying curve for each prescribed value of t and ultimately 

approaches to zero when 10x  . We may further infer from Fig.1 that in the range (9 10)x , the pore pressure 

P approaches zero whatever be the values of time t. 

Fig.2 shows the variation of temperature T along the distance x for different prescribed values of t. At  0x  , the 

temperature assumes the values of 0.5647, 0.9781, 1.263, 1.494 and 1.694 at 1,3,5,7t  and 9 respectively. After 

that the temperature decreases gradually in all cases and finally tends to zero when 10.x   It may be noted that the 

variation of pressure and temperature as in Fig.1 and Fig.2 respectively are similar in nature. In this case also, it is 

predicted that the temperature tends to zero in the range (9 10)x  for all values of t. 

Fig.3 exhibits the variation of displacement u  for different values of time t  along the distance x. It is observed 

that initially when 0x  , displacement u is contractive in nature in the range (-0.17,-0.01889) for prescribed values 

of t as assumed in earlier cases. Then it gradually increases and approached to zero at about  10x  . When the 

displacement u varies with respect to time t , we may infer that 0u t   in the range (9 10)x . 

 

 

 

 

 

 

 

 

 

 

Fig.1 

The pressure distribution for fixed t. 

  

 

 

 

 

 

 

 

 

 

 

Fig.2 

The temperature distribution for fixed t. 
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Fig.3 

The displacement distribution for fixed t. 

4    CONCLUSIONS 

We developed a solution scheme of one-dimensional coupled thermoelasticity problem for porous structure to 

determine the field variables in the space-time domain. From Figs. 1-3, it is observed that the displacement 

distribution shows the opposite behavior compared to temperature and pressure distribution. As time increases the 

temperature and pressure increases whereas the displacement decreases and ultimately all the three field variables 

approach to zero in the range (9 10)x . 
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