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 ABSTRACT 

 In this paper a variationally consistent trigonometric shear deformation theory is presented for the 
free vibration of thick isotropic square and rectangular plate. In this displacement based theory, 
the in-plane displacement field uses sinusoidal function in terms of thickness coordinate to include 
the shear deformation effect. The cosine function in terms of thickness coordinate is used in 
transverse displacement to include the effect of transverse normal strain. Governing equations and 
boundary conditions of the theory are obtained using the principle of virtual work. Results of 
frequency of bending mode, thickness-shear mode and thickness-stretch mode are obtained from 
free vibration of simply supported isotropic square and rectangular plates and compared with those 
of other refined theories and frequencies from exact theory. Present theory yields exact dynamic 
shear correction factor π2/12 from thickness shear motion of the plate. 
                                                                                  © 2011 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 LATES are the basic structural components that are widely used in various engineering disciplines such as 
aerospace, civil, marine and mechanical engineering. The transverse shear and transverse normal deformation 

effects are more pronounced in shear flexible plates which may be made up of isotropic, orthotropic, anisotropic or 
laminated composite materials. In order to address the correct structural behavior of structural elements made up of 
these materials; development of refined theories, which take into account refined effects in static and dynamic 
analysis of structural elements, becomes necessary.  

The study of plate vibration dates back to the early eighteen century, with the German physicist, Chladni (1787), 
who observed the nodal patterns for a flat square plate. Since then there has been a tremendous research interest in 
the subject of plate vibrations. Several thin plate vibration solutions based on Kirchhoff’s plate theory are available 
in the literature. The classical plate theory based on Kirchhoff's hypothesis [1, 2] is not adequate for the analysis of 
shear flexible plates due to the neglect of transverse shear deformation and the rotary inertia in the theory; as a 
consequence, it under predicts deflections and over predicts all the vibration frequencies for thick plates, and the 
higher frequencies for the thin plates. The most suitable starting point for the analysis of both thin and thick plates 
seems to be a theory in which the classical hypothesis of zero transverse shear strains is relaxed. At first, Reissner 
[3, 4] proposed that the rotations of the normal to the plate mid-surface in the transverse plane could be introduced 
as independent variables in the plate theory. Reissner has developed a stress based theory which incorporates the 
effect of shear. Mindlin [5] simplified Reissner’s assumption that normal to the plate mid-surface before 
deformation remains straight but not necessarily normal to the plate mid-surface after deformation and the stress 
______ 
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normal to the mid-surface is disregarded as in the case of classical plate theory of Kirchhoff.  Mindlin employed 
displacement based approach. In Mindlin’s theory, transverse shear stress is assumed to be constant through the 
thickness of the plate, but this assumption violates the shear stress free surface conditions. The theory includes both 
the shear deformation and rotary inertia effects. Both effects decrease the frequencies. There are still other effects 
not accounted for by the Mindlin are stretching in the thickness direction and the warping of the normal to the mid-
plane, which are more important in case of thick plates. Mindlin’s theory satisfies constitutive relations for 
transverse shear stresses and shear strains by using shear correction factor. The value of this factor is not unique but 
depends on the material, geometry, loading and boundary condition parameters. Wang et al. [6] discussed these 
theories in detail and developed the relationships between bending solutions of Reissner and Mindlin plate theories. 
Reissner’s formulation comes out as special case of Librescu’s approach [7] presented for elastostatic analysis of 
anisotropic shell type structures. Donnell [8] make correction to the classical plate theory by assuming uniform 
distribution of shear stress across the thickness of the plate, and, rectify the effect of this assumption.  

Usually, in two dimensional plate theories, displacement components are considered power series expressions 
in thickness coordinate (z). Depending on the number of terms retained in the power series expressions, various 
higher order theories for homogeneous and laminated plates can be developed. Detailed discussion on the 
applicability and accuracy of these theories is presented by Lo et al. [9, 10]. It is observed that most of the 
displacement based theories such as theories of Levinson [11], Murty and Vellaichamy [12] and Reddy [13, 14, and 
15] utilize some simplification of the generalized displacement function given by Lo et al. The simplified higher 
order theories, generally third order shear deformation theories give parabolic variation of transverse shear stress 
through the thickness of the plate satisfying the shear stress free boundary conditions on the top and bottom surfaces 
of the plate. Thus, these theories do not require shear correction factors. Levinson [9] formulated a theory based on 
displacement approach which does not require shear correction factor. However, Levinson’s theory is variationally 
inconsistent since the field equations and boundary conditions are not derived using principle of virtual work.  
Srinivas et al. [16, 17] developed exact elasticity solutions for the flexure and free vibration of simply supported 
homogeneous, isotropic, thick rectangular plates. The exact elasticity solutions play important role in validation of 
results of two dimensional thick plate theories.  Comprehensive reviews of these theories have been given by Noor 
and Burton [18], Reddy [19], Reddy and Robbins [20], and Liu and Li [21] whereas Liew et al. [22] surveyed plate 
theories particularly applied to thick plate vibration problems.  In the development of such theories use of 
polynomials, trigonometric functions, hyperbolic functions and exponential functions in terms of thickness 
coordinate is widely and wisely made. A recent reviews such refined shear deformation theories are presented by 
Ghugal and Shimpi [23] and Kreja [24]. 

Levy [25] developed a refined theory for thick isotropic plate for the first time using sinusoidal functions in the 
displacement field to take into account shear deformation effect. Stein [26] has used trigonometric functions in terms 
of thickness coordinates for the analysis of laminated beams and plates, but the shear stress free conditions at the top 
and bottom surfaces are not satisfied. Shimpi et al. [27] have developed a new refined theory for the analysis of 
isotropic and orthotropic plate using trigonometric function in terms of thickness coordinates which includes the 
effect of transverse normal strain. Recently, Shimpi and Patel [28] developed two variable refined plate theory for 
the analysis of isotropic plates; however, theory of these authors yields the frequencies identical to those of 
Mindlin’s theory. Ghugal and Pawar [29, 30] have developed hyperbolic shear deformation theory for the flexure, 
buckling and vibration analysis of thick shear flexible plates. Ghugal and Sayyad [31, 32] have used trigonometric 
shear deformation theory for the free vibration analysis of orthotropic plates and Ghugal and Kulkarni [33] 
employed it for the thermal analysis of isotropic, orthotropic and laminated composite plates.  

In the present paper, a variationally consistent trigonometric shear deformation theory for free vibration of 
homogenous, isotropic plate is developed. It has four variables and includes effects of transverse shear and 
transverse normal strain. The theory satisfies the tangential traction free boundary conditions (zero shear stress 
conditions) on the top and bottom surfaces of the plate. The primary objective of this investigation is to present the 
frequencies of flexural mode, thickness shear and thickness stretch modes of free vibration of thick plates. 

2    THEORETICAL FORMULATION 

Consider an undeformed rectangular plate of length a, width b, and thickness h composed of an isotropic 
homogenous material. The rectangular Cartesian coordinate system is such that the middle plane of the plate 
coincides with the xy plane, and z axis is normal to the middle plane. The plate is bounded by the coordinate planes 
x0, a and y0, b. The reference surface is the middle surface of the plate defined by z0 and z represents the 
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thickness coordinate measured from the undeformed middle surface. Thus, the plate occupies in O - x - y - z right-
handed rectangular Cartesian coordinate system, a region: 
 

0 , 0 , / 2 / 2x a y b h z h£ £ £ £ - £ £  (1)
 

 
The displacement field of the present plate theory is of the following form [32] 
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where u and v are the inplane displacements in x- and y- directions respectively and w is transverse displacement in 
z- direction. The sinusoidal function is assigned according to the shear stress distribution through the thickness of 
the plate. The and,    represent rotations of the plate at neutral surface with respect to yz, xz and xy planes due 

to bending, respectively, which are unknown functions to be determined. The generalized displacements 
and, ,w    on the right hand side of Eqs. (2) are the independent variables.  

The normal strains ( , , )x y z    and shear strains ( , , )xy xz yz    are obtained within the framework of linear 

theory of elasticity. The infinitesimal strains associated with the displacement field (2) are as follows 
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The stress strain relationships for the linear isotropic elastic plate can be written as 
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where and G are the Lame’s constants as given below / (1 )(1 2 )E   = - -  and / 2(1 )G E = +  in which 

E is the Young’s modulus, G is the shear modulus and  is the Poisson’s ratio. The Strain-displacement and stress-

strain relations used in Eqs. (3) through (5) are discussed by Timoshenko and Goodier [34]. 
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2.1 Derivation of governing equations and boundary conditions 

Using Eq. (3) through (5) and principle of virtual work, variationally consistent differential equations and boundary 
conditions for the plate under consideration are obtained. The principle of virtual work when applied to the plate 
leads to: 
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Employing Green’s theorem in Eq. (6) successively, we obtain the coupled Euler-Lagrange equations of the 

plate and the associated boundary conditions of the plate. The governing equations in terms of stress resultants are as 
follows: 
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The boundary conditions along edges 0 andx x a= = obtained are of the following form:  
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and along 0 andy y b= = edges, the boundary conditions are as follows: 
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At corners ( 0, 0),  ( , 0),  ( 0, ),  ( , )x y x a y x y b x a y b= = = = = = = =  boundary condition is: 
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The stress resultants appeared in the governing equations and boundary conditions are defined as follows: 
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where , ,x y xyM M M  are the bending and twisting moment resultants or the stress couples analogous to classical 

plate theory, , ,  s s s
x y xyM M M  are refined moments or stress couples due to transverse shear deformation effects and 

, ,s s s
xz yz zzV V V  are the transverse shear and transverse normal stress resultants and ( ) ( / )sin / ,f z h z h =  

( ) ( / ) cos /g z h z h =  and the prime () indicates the differentiation of function with respect to z. The inertia terms 

iI  appeared in the governing equations and boundary conditions are expressed as follows: 
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The governing equations in terms of displacement variables can be expressed as follows: 
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and the associated boundary conditions can be expressed as follows: 

1. On edges 0 andx x a= = , the following conditions hold: 
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2. On edges 0 andy y b= = , the following conditions hold: 
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3. At Corners ( ) ( ) ( ) ( )0, 0 , 0, , , 0 and ,x y x y b x a y x a y b= = = = = = = = the following condition hold: 

 
2

17 11 0
w

D D
x y x y

 æ ö¶ ¶ ¶ ÷ç ÷- + =ç ÷ç ÷ç¶ ¶ ¶ ¶è ø
                                                                                           or w is prescribed (17)

 

 
where constants 1D  through 17D  and 1I  through 6I  appeared in the governing equations and boundary conditions 

are given in Appendix A. 

2.2 Superiority of the present theory 

The present theory is a displacement-based refined theory, and refined shear deformation theories are known to be 
successful techniques for improving the accuracy of displacement and stresses [21]. The kinematics of the present 
theory is much richer than those of the higher order shear deformation theories available in the literature, because if 
the trigonometric term (involving thickness coordinate z) is expanded in power series, the kinematics of higher order 
theories (which are usually obtained by power series in thickness coordinate z) are implicitly taken into account to 
good deal of extent. Also, it needs to be noted that every additional power of thickness coordinate in the 
displacement field of other higher-order theories of Lo et al. [9, 10] type not only introduces additional unknown 
variables in those theories but these variables are also difficult to interpret physically [20]. Thus use of the sine term 
in the thickness coordinate (in the kinematics) enhances the richness of the theory, and also results in the reduction 
of the number of unknown variables as compared to other theories [35, 36] without loss of physics of the problem in 
modeling. The theory gives the realistic variation of transverse shear stress through the thickness of plate which is 
governed by a cosine-law distribution and satisfies the shear stress free boundary conditions on the top and bottom 
surfaces of the plate.The theory obviates the need of a shear correction factor due to the realistic variation of 

transverse shear stress. The present theory yields the exact value of dynamic shear correction factor 2( /12).  Thus, 
the displacement field chosen is superior to those of others. The boundary value problem of the theory is derived 
using principle of virtual work; hence the present theory is variationally consistent. 

3    ILLUSTRATIVE EXAMPLES 

Simply supported isotropic square and rectangular plates occupying the region given by the Eq. (1) are considered 
for detail numerical study. The governing differential equations (14) in terms of displacement variables by setting 
the external transverse load q equal to zero are used. The associated boundary conditions for free vibration of plates 
under consideration can be obtained directly from Eqs. (8) and (9). The following boundary conditions are imposed 
at the simply supported edges: 
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A solution to resulting governing equations, which satisfies the associated boundary conditions (time dependent), 

is of the form: 
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where mnw  is the amplitude of translation and andmn mn mn , ψ ξ  are the amplitudes of rotation and mn  is the 

natural frequency of mth and nth mode of vibration. Substitution of this solution form into the governing equations 
of free vibration of plate results in following standard eigen value problem. 
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where [ ]K  is the stiffness matrix, [ ]M is the mass matrix and { }D  is the vector of amplitudes of translation and 

rotation. The elements of these matrices are given in Appendix 2. From this solution lowest natural frequency for all 
modes of vibration can be obtained. Following material properties of plate given by Ghugal and Sayyad [31] are 
used. 
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where E is the Young’s modulus, G is the shear modulus, µ is the Poisson’s ratio and   is density of the material. 

4    NUMERICAL RESULTS 

In this paper, free vibration analysis of simply supported square and rectangular plates for aspect ratio (side to 
thickness ratio, a/h) 10 is attempted. The simply supported plates considered are composed of isotropic material. 
The results obtained using trigonometric shear deformation theory are compared with exact results and with those of 
other refined theories available in literature. Following non-dimensional form is used for the purpose of presenting 
the results in this paper.  

 

/mn mn h G  =  (22)
 

 
The non-dimensional frequency corresponding to flexural (bending) mode is denoted by w  and frequencies 

corresponding to thickness shear modes are denoted by ,   and that of thickness stretch mode is denoted by .  

The percentage error in results obtained using a particular model with respect to the results of exact elasticity 
solutions is calculated as follows: 

 
value by a particular value byexact

%error = ×100
value byexact

theory theory

theory

-
 (23)
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Table 1 
Comparison of non-dimensional natural frequencies of isotropic square plate (b/a = 1) for aspect ratio 10. 

 
(m, n) 

Exact [17] Present Reddy [13] Mindlin [5] CPT [1] 

w      w      
 

w      w      w  

(1, 1) 0.0932 3.1729 3.2465 0.0933 3.1729 3.2469 13.5360 0.0931 3.1749 3.2555 0.0930 3.1730 3.2538 0.0955 

(1, 2) 0.2226 3.2192 3.3933 0.2231 3.2191 3.3940 13.5460 0.2219 3.2212 3.4125 0.2219 3.2193 3.4112 0.2360 

(1, 3) 0.4171 3.2949 3.6160 0.4184 3.2949 3.6178 13.5517 0.4150 3.2969 3.6517 0.4149 3.2951 3.6510 0.4629 

(2, 2) 0.3421 3.2648 3.5298 0.3431 3.2648 3.5312 13.5567 0.3406 3.2668 3.5589 0.3406 3.2650 3.5580 0.3732 

(2, 3) 0.5239 3.3396 3.7393 0.5258 3.3396 3.7414 13.5626 0.5208 3.3415 3.7848 0.5206 3.3397 3.7842 0.5951 

(2, 4) 0.7511 3.4414 4.0037 0.7542 3.4414 4.0082 13.5649 0.7453 3.4433 4.0720 0.7446 3.4416 4.0720 0.8926 

(3, 3) 0.6889 3.4126 3.9310 0.6917 3.4126 3.9351 13.5694 0.6839 3.4145 3.9928 0.6834 3.4128 3.9926 0.8090 

(4, 4) 1.0889 3.6094 4.4013 1.0945 3.6094 4.4102 13.5773 1.0785 3.6112 4.5092 1.0764 3.6096 4.5098 1.3716 

 
 

Table 2 

Comparison of non-dimensional natural frequencies of isotropic rectangular plate (b/a = 2 ) for aspect ratio 10 . 

4.1 Discussion of numerical results 

Results obtained for frequencies are compared and discussed with the corresponding results of classical, refined 
theories of various researchers and exact theory. 
 

a) Bending frequency ) :( w  Table 1 shows comparison of bending frequencies for higher modes when b/a1.0 

and a/h10. It can be observed from Table 1 that the present theory yields excellent values of frequencies for all 
modes of vibration. The minimum % error predicted by present theory is 0.10 % when m1, n1 whereas maximum 
% error is 0.51 % when m4, n4. Theory of Reddy [17] underestimates the value of bending frequency by 0.10 % 
and 0.96 % when m1, n1 and m4, n4 respectively. Mindlin’s theory [5] yields the lower values of bending 
frequency for all modes of vibration compared to those of higher order and exact theories, whereas classical plate 
theory (CPT) of Kirchhoff [1] yields the higher values for this frequency. Table 2  shows comparison of bending 

frequency for rectangular plate ( / 2).b a =  Results of present theory are in close agreement with those of exact 

results whereas Reddy’s theory [13] shows exact value for the same when m1, n1. Mindlin’s theory [5] 
underestimates it by 0.14 % and CPT overestimates it by 1.99 % when m1, n1 (fundamental mode). 

b) Thickness shear mode frequency ) :( From Table 1 it is observed that, for square plate (b/a1.0) present 

theory shows exact result for thickness shear mode frequency for higher modes. Reddy’s theory [13] yields the 

 
(m, n) 

Exact 
[17] 

Present Reddy [13] Mindlin [5] CPT [1] 

w  
w      

 
w      

w      
w  

(1, 1) 0.0704 0.0705 3.2212 3.1652 13.5284 0.0704 3.2283 3.1672 0.0703 3.2265 3.1652 0.0718 

(1, 2) 0.1376 0.1393 3.1885 3.2973 13.5522 0.1374 3.1905 3.3094 0.1373 3.1885 3.3077 0.1427 

(1, 3) 0.2431 0.2438 3.2270 3.4178 13.5548 0.2426 3.2289 3.4378 0.2424 3.2270 3.4365 0.2591 

(1, 4) 0.3800 0.3811 3.2801 3.5750 13.5365 0.3789 4.0917 3.4506 0.3782 3.2801 3.6051 0.4182 

(2, 1) 0.2018 0.2023 3.3704 3.2116 13.5388 0.2041 3.3873 3.2136 0.2012 3.3859 3.2116 0.2128 

(2, 2) 0.2634 0.2642 3.4410 3.2346 13.5628 0.2628 3.4626 3.2366 0.2625 3.4613 3.2346 0.2821 

(2, 3) 0.3612 0.3623 3.2725 3.5534 13.5655 0.3601 3.2745 3.5827 0.3595 3.2725 3.5817 0.3958 

(2, 4) 0.4890 0.4906 3.3249 3.7013 13.5475 0.4874 3.2820 3.6060 0.4861 3.3249 3.7407 0.5513 

(3, 1) 0.3987 0.3999 3.5966 3.2876 13.5445 0.3975 3.6291 3.2895 0.3967 3.6282 3.2876 0.4406 

(3, 2) 0.4535 0.4550 3.6602 3.3100 13.5684 0.4520 3.6971 3.3120 0.4509 3.6963 3.3100 0.5073 

(3, 3) 0.5411 0.5431 3.7622 3.3471 13.5715 0.5392 3.8065 3.3490 0.5375 3.8060 3.3471 0.6168 
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higher values of shear mode frequency compared to those of present and exact theories. Results obtained by 
Mindlin’s theory [5] and CPT [1] are not satisfactory for higher modes.  Results of frequency obtained for 

rectangular plate ( / 2)b a = are shown in Table 2. The frequencies obtained by present theory and theory of 

Mindlin for this plate are more or less identical with each other. However, theory of Reddy predicts higher values of 
this frequency. 

 
c) Thickness shear mode frequency ) :(  For square plate (b/a1.0) present theory shows good accuracy of 

result when m1, n1 whereas Reddy [13] and Mindlin’s theory [5] overestimates the same by 0.28 % and 0.22 % 

respectively when m1, n1. In case of rectangular plate ( / 2)b a =  results obtained by present theory and 

Mindlin’s theory [5] are identical for several modes as can be seen from Table 2.  
The solution for the circular frequency of thickness shear motion (m0, n0) for infinitely long thin rectangular 

plate according to present theory is given by 
 

2 2
22

3
22

2

2 12 d

K G h G h G h
K

M I Ih
 

 
= = ´ = =  (24)

 

 
where 2 /12dK =  is the dynamic shear correction factor given by trigonometric shear deformation theory which is 

matching with the exact value obtained by Lamb [37]. Thus the present theory yields the exact value for the 
dynamic shear correction factor which is a most important parameter in the dynamic analysis of plates. 
 

d) Thickness stretch mode frequency ) :(   Using the present theory, thickness stretch mode frequency can also 

be obtained as can be seen from Table 1 and 2. For comparison, values for this frequency are not available in the 
literature. The two dimensional theories which do not include the effect of transverse normal strain, do not provide 
these frequencies. Hence, the results of this frequency can serve as a benchmark solution for the purpose of 
comparison of results by other two dimensional plate theories.  

5    CONCLUSIONS 

In this paper, a variationally consistent trigonometric shear deformation theory is applied to free vibration of 
isotropic square and rectangular plates. The effects of transverse shear and transverse normal deformation are both 
included in the present theory.  The theory gives realistic variation of transverse shear stress through the thickness of 
plate and satisfies the shear stress free boundary conditions on the top and bottom planes of the plate. The theory 
requires no shear correction factor. The results of frequencies of bending and thickness-shear motions are compared 
with exact frequencies and those of other higher order theories. It is observed that the frequencies obtained by 
present theory are in excellent agreement with the frequencies of exact theory. The present theory is capable to 
produce frequencies of thickness-stretch mode of vibration ).(   The theory yields the exact dynamic shear 

correction factor from the thickness shear motion which is a most important factor in the dynamic analysis of plates. 

Appendix A 

The constants appeared in the governing equations and boundary conditions are as under: 
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( ) ( ) ( )

( ) ( ) ( ) ( )

3 3 2 3 3

1 2 3 4 53 2 2 2

3 2 3

6 7 8 9 102

3 3 3 3 2

11 12 13 14 15 163 3 2

3 3

17 1 2 3

2 2
2 , 2 , , 2 , ,

12 2 2

, , , , 4 ,
2 2 2 122

4 2
, , , , , ,

12 2 22

2
, , ,

3 12

h h h h Gh
D G D G D D G D

Gh h h h h
D D G D G D G D G

Gh h h h h Gh
D D D D D D

Gh h
D I h I I

  
   

   


   
   



= + = + = = + =

= = + = + = + = +

= = = = = =

= = = =
3 2 3

4 53 2 2

2
, ,

2

h h h
I I

  
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= =

  

(A.1) 

Appendix B 

The elements of stiffness matrix [ ]K  are as under: 

 
4 2 2 4 3 2 3 2

4 3 3
11 1 12 2 13 24 2 2 4 3 2 3 2

2 2 2 2 2 2 2
2

14 3 21 12 22 7 16 6 23 72 2 2 2

2
, , ,

, , ,

m m n n m mn n m n
K D K D K D

a a b b a ab b a b

m n m n mn
K D K K K D D D K D

aba b a b

  

  

æ ö æ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç= + + =- + =- +÷ ÷ ÷ç ç ç÷ ÷ ÷÷ ÷ ÷ç ç çè ø è ø è ø
æ ö æ ö÷ ÷ç ç÷ ÷ç ç=- + = = + + =÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø

2 2 2 2

24 8 31 13 32 23 33 7 16 6 34 82 2

2 2 2 2

41 14 42 24 43 34 44 16 16 92 2

,

, , , , ,

, , ,

m n m n
K D K K K K K D D D K D

a bb a

m n
K K K K K K K D D D

a b

   

 

æ ö÷ç ÷ç= = = = + + =÷ç ÷÷çè ø
æ ö÷ç ÷ç= = = = + + ÷ç ÷÷çè ø

 

(B.1) 
 
The elements of mass matrix [ ]M  are as under: 

 
2 2 2 2

11 2 2 1 12 3 13 3 14 42 2

21 12 22 5 23 24 31 13 32 23

33 5 34 41 14 42 24 43 34 44 5

, , , ,

, , 0.0, 0.0, , ,

, 0.0, , , ,

m n m n
M I I I M I M I M I

a ba b

M M M I M M M M M M

M I M M M M M M M M I

   æ ö÷ç ÷ç= + + =- =- =÷ç ÷÷çè ø

= = = = = =

= = = = = =

 
 

 

The vector { }D in Eq. (21) is defined as: { } { }T
.mn mn mn mnw   D = . 
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