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 ABSTRACT 

 This paper deals with frequency analysis of annular plates having a small core and 

guided edges at both inner and outer boundaries. Using classical plate theory the 

governing differential equation of motion for the annular plate having a small core is 

derived and solved for the case of plate being guided at inner and outer edge 

boundaries. The fundamental frequencies for the first six modes of annular plate 

vibrations are computed for different materials and varying values of the radius 

parameter. The fundamental frequencies thus obtained may be classified into to 

axisymmetric and/or non-axisymmetric modes of vibration. The exact values of 

fundamental frequencies presented in this paper clearly show that no mode switching 

takes place for the case of annular plates with guided edges. The results presented in 

this paper will be of use in design and also serve as benchmark values to enable the 

researchers to validate their results obtained using numerical methods such as 

differential quadrature or finite element methods.  

                                                 © 2016 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 IBRATION characteristics of annular plates are of interest in design since annular plates are commonly used 

structural components. There exists a considerable amount of literature on frequencies of annular plates with 

classical boundary conditions [1-7]. Except for an annular plate being free at both inner and outer edges, the plate 

fundamental axisymmetric frequency generally corresponds to the mode with no nodal diameter. Moreover, as the 

core radius for the annular plate with clamped or simply supported inner periphery and outer periphery being free is 

continuously decreased, the plate fundamental frequency may switch from no nodal diameter to one nodal diameter 

[8-10]. 

An unconstrained completely free thin circular or annular plate can vibrate transversely in nodes which may be 

characterized by any number of nodal circles crossed by uniformly spaced nodal diameters. Southwell [11] studied 

the vibration behavior of the annular plate with clamped-free boundary conditions by using the asymptotic 

expansions method and the special case of inner radius bR shrinking towards zero. Through this study, he found that 

the frequency varies singularly from zero for smaller values of bR. Kim and Dickinson [12] studied the problem of 

the effect of elastic edge restraints on the natural frequencies of isotropic and polar orthotropic annular and circular 
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plates. Recently the present authors [13] presented results for buckling of annular plates involving elastic restraints 

and guided ends. In another study [14], the present authors analyzed the problem of vibrations of circular plates 

resting on elastic foundation and involving guided edge conditions. Wang and Wang [15] studied and presented the 

results for the fundamental frequencies of annular plates having values of bR less than 0.1 R. However, their study 

deals with annular plates having classical boundary at both interior and exterior periphery.  

The present study aims at determination of fundamental frequency of the annular plates having small core and 

both edges being guided edges at both interior and exterior periphery. The annular plates having small core 

problems are very significant in various applications like vibration control by nailing or bolting the interior of a 

plate. Also, importantly the condition such as guided edge needs to be modeled to simulate the dynamics of moving 

parts such as piston heads. In addition, the following issues will be addressed in this paper:  (i). Is there any mode 

switch observed? (ii). Is the fundamental frequency governed by symmetric or asymmetric mode? (iii). Is the 

fundamental frequency zero or finite as 0b  ? (iv). Where is the location of the mode switch? (v). How much does 

the Poisson’s ratio influences the transition core radius parameter? (vi). How does the boundary condition affect the 

core radius parameter? (vii). How does the fundamental frequency vary with the boundary conditions?  (viii) How 

does the fundamental frequency vary with the Poisson’s ratio? The present paper therefore aims at presenting results 

obtained from using an exact method of solution for the problem and further addressing the above listed questions 

for the case of annular plate having guided edges at the inner and outer plate boundaries.  

2    MATHEMATICAL FORMULATIONS 

Consider a thin circular annular plate of outer radius R, inner radius bR, uniform thickness h, Poisson’s ratio v, 

Young’s modulus E, and flexural rigidity D. The material of the annular plate is assumed to be isotropic, linearly 

elastic and homogeneous. Let the subscripts I and II denote respectively the outer region 1b r   and the inner 

region 0 r b  . All lengths are normalized with respect to R, i.e., the radius of outer region is 1 and that of inner 

region is bR.  

According to the classical plate theory [1], the following fourth order differential equation describes the free 

flexural vibrations of a thin circular uniform plate: 
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where. Here, lateral displacement of the vibration of thin plate can be expressed as ( )cos( ) i tw u r n e  , where w is 

the transverse displacement, n is the integer and   is the frequency. The displacement ( )u r in this case turns out to 
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the square root of the non-dimensional frequency [1]. 

The general solution is therefore given by  

 

1 2 3 4( ) ( ) ( ) ( ) ( )n n n nu r C J kr C Y kr C I kr C K kr                 (2) 

 

The boundary conditions considered in this study are guided (G) and guided (G) edges (i.e., G-G annular plate as 

shown in Fig. 1.  

 

    

 

 

 

 

Fig.1 

Annular plate with small core (G-G annular plate). 

 

Case (i) : Outer edge of an annular plate is guided. 
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Boundary conditions at outer region of annular plate is  
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( , ) 0IV r             (4) 

 

At 1r  , the Eqs. (2), (3) and (4) can be written as: 
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Case (ii): Inner edge of an annular plate is guided. 

Boundary conditions at inner region of annular plate is 
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( , ) 0IIV r             (8) 

 

At r b , the Eqs. (2), (7) and (8) can be written as: 

 

( ) 0u b            (9) 
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Eqs. (2), (5), (6), (9) and (10) yields the following 
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where  
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3    SOLUTION 

For a set values , ,&n b , Eqs. (11)-(14) given above results in an exact characteristic equation for non-trivial 

solutions involving the constant coefficients such as 
1 2 3 4, , & .C C C C  appearing in these equations. To obtain non-

trivial solutions, the determinant of  
4 4x

C must be factored out solved accordingly. Frequency parameter k is 

determined for a chosen accuracy from the characteristic equation by applying a simple root search method such as 

bisection method. Using, Mathematica software with symbolic capabilities is effectively utilized in obtaining 

solutions for this problem. 

4    RESULTS AND DISCUSSIONS 

Poisson ratio ranges from 0.1 for Beryllium to 0.2 for marble to 0.3 for metals to 0.4 for polymers to 0.5 for rubber. 

The values of frequency parameters k  for 5n   modes, for various values of Poisson’s ratio ( 0.1,0.2,0.3,0.4&0.5  ) 

and core radius parameter ( 0.1b  to 0.5b  ) are tabulated (Table.1). Frequency parameter k, is presented for first six 

modes of vibration ( 0n   to 5n   mode) in Figs. 2-6 corresponding to 0.1,0.2,0.3,0.4&0.5  .  

Table 1  

First frequency parameter, k ( 0n   to 5n   mode) for small core radius parameter b, and 0.1  . 

b 0n   1n   2n   3n   4n   5n   

0 3.83171 1.8365 2.9364 4.08419 5.20275 6.3033 

0.02 3.83639 2.00674 2.93715 4.08419 5.20275 6.3033 

0.04 3.85018 2.0523 2.93939 4.0842 5.20275 6.3033 

0.06 3.87254 2.08418 2.94305 4.08425 5.20275 6.3033 

0.08 3.90295 2.10796 2.948 4.08437 5.20275 6.3033 

0.1 3.94094 2.12536 2.9541 4.08462 5.20276 6.3033 

0.2 4.23575 2.13259 2.99316 4.08924 5.20315 6.30333 

0.3 4.70578 2.03814 3.01459 4.09696 5.20449 6.3035 

0.4 5.39118 1.90073 2.97549 4.08274 5.19734 6.30014 

0.5 6.39316 1.76276 2.86962 4.00574 5.14427 6.26697 
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Fig.2 

Frequencies for small core radius parameter b, and 0.1   

(G-G annular plate). 

  

0

1

2

3

4

5

6

7

0 0.1 0.2 0.3 0.4 0.5

Core radius parameter, b

F
re

q
u

e
n

c
y
 p

a
ra

m
e
te

r,
 k

n=0

n=1

n=2

 

 

 

 

 

 

 

 

 

 

Fig.3 

Frequencies for small core radius parameter b, and 0.2   

(G-G annular plate). 
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Fig.4 

Frequencies for small core radius parameter b, and 0.3   

(G-G annular plate). 
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Fig.5 

Frequencies for small core radius parameter b, and 0.4   

(G-G annular plate). 
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Fig.6 

Frequencies for small core radius parameter b, and 0.5   

(G-G annular plate). 

 

Adopting poisson ratio 0.1  , Fig. 2 represents frequency parameter k for 1n   mode and it gives the 

fundamental frequency for lower values of b. This fundamental frequency is completely governed by asymmetric 

mode ( 1n   mode). It is noticed from Figs. 3-6, that the fundamental frequency is always governed by asymmetric 

( 1n  ) mode irrespective of its core sizes.  There is no mode switch observed for G-G annular plate. For 0.1b   the 

fundamental frequency parameter is 2.12536, 2.11395, 2.0998, 2.08225, 2.06035 for 0.1,0.2,0.3,0.4&0.5   

respectively. The frequency parameter decreases with increase in Poisson ratio. However, the change is just 

considerable. The percentage decrease is just about 3% (3.059%). However, when 0b  , the frequency parameter is 

3.83171, that is independent of Poisson’s ratio and obtained from 0n   mode.  

5    CONCLUSIONS 

Fundamental frequency for annular plates with small core sizes are determined exactly and are presented in this 

paper and a closed form solution for vibration of annular plate with small core and guided edges is given. Results are 

presented for the first six modes of vibrations. The fundamental frequency is related to asymmetric ( 1n ) mode 

only. There is no transition or mode switching observed for the case considered in this paper. The results presented 

in this paper are expected to be of use in design of such annular plates with small core and guided edge at both 

peripheries the annular plate. 
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