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ABSTRACT 
In this article, the magneto-thermo-elastic problem of exponentially graded material (EGM) 
hollow rotating disk placed in uniform magnetic and temperature fields is considered. Exact 
solutions for stresses and perturbations of the magnetic field vector in EGM hollow rotating disk 
are determined using the infinitesimal theory of magneto-thermo-elasticity under plane stress. The 
material properties, except Poisson’s ratio, are assumed to depend on variable of the radius and 
they are expressed as exponential functions of radius. The direct method is used to solve the heat 
conduction and Hyper-geometric functions are employed to solve Navier equation. The 
temperature, displacement, and stress fields and the perturbation of the magnetic field vector are 
determined and compared with those of the homogeneous case. Hence, the effect of in-
homogeneity on the stresses and the perturbation of magnetic field vector distribution are 
demonstrated. The results of this study are applicable for designing optimum EGM hollow 
rotating disk. 
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1    INTRODUCTION 

N 1984, a group of material scientist in Japan introduced the concept of functionally graded material (FGM). An 
FGM is usually a combination of two material phases that has an intentional graded transition from one material 

at one surface to another material at the opposite surface. This transition allows the creation of multiple properties 
(or functions) without any mechanically weak junction or interface. Ceramics and metal are examples of these 
different materials. Here, the metal is used as a mechanical support structure and the ceramic -because of its low 
thermal conductivity coefficient and high resistant at high temperature- is used as coating for resisting the high 
temperature. If pure metals are in those environments, creep and large deformation in structure would be inevitable 
due to high temperatures. It is possible with these materials to obtain a combination of properties that cannot be 
achieved in conventional monolithic materials. This makes FGMs suitable for many applications such as the nuclear 
reactors and high-speed space craft industries.  

Up to now, there have only been a few studies on the magneto-thermo-elastic behavior of FGMs. Suresh and 
Mortensen [1] have provided an introduction to the fundamentals of FGMs. Lutz and Zimmerman [2, 3] obtained 
analytical solutions for the stresses in spheres and cylinders made of FGMs. Obata and Noda [4] studied the thermal 
stresses in a functionally graded circular hollow cylinder and a hollow sphere using the perturbation method 
assuming one-dimensional steady-state conditions. Using the infinitesimal theory of elasticity, Eslami et al. [5] 
obtained closed-form solutions for stress and displacement in a functionally graded thick sphere subjected to thermal 
and mechanical loads. Dai and Fu [6] considered the magneto-thermo-elastic problem of FGM hollow structures 
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subjected to mechanical loads. They assumed that the material properties obey the simple power-law variation 
through the structures’ wall thickness. Naghdabadi and Hosseini Kordkheili [7] have derived thermo-elastic analysis 
of a FG rotating disk. They obtained a semi-analytical thermoelasticity solution for hollow and solid rotating 
axsisymmetric disk made of FGMs. Ghorbanpour et al. [8] presented an analytical method to obtain the response of 
magneto-thermo-elastic stress and perturbation of the magnetic field vector for a thick-walled spherical vessel made 
of functionally graded materials. The vessel, which was placed in a uniform magnetic field, was subjected to an 
internal pressure and a transient temperature gradient. They studied the effect of magnetic field vector and material 
in-homogeneity on the stresses in EGM hollow sphere. Ghorbanpour et al. [9] presented a closed-form solution for 
one-dimensional magneto-thermo-elastic problem in a FGM hollow sphere placed in uniform magnetic and 
temperature fields subjected to an internal pressure using the infinitesimal theory of magneto-thermo-elasticity. The 
results of their study are applicable for designing optimum EGM hollow spheres. Khoshgoftar et al. [10] presented 
the thermo-piezoelectric behavior of a thick-walled cylinder with functionally graded materials. The cylinder is 
loaded under the temperature gradient and inner and outer pressures. The main result of their study is that, by 
applying a proper distribution of mechanical and thermal properties in the functionally graded piezoelectric material 
(FGPM) solid structures, the distributions of stresses, electric potential and electric field in the FGPM can be 
controlled. However, exact solution for a hollow rotating disk made of FGM with material properties obeying the 
exponential variation and placed in uniform magnetic and temperature fields remains to be found. 

In this article, exact solutions for the stresses, displacement and perturbation of the magnetic field vector in a 
hollow rotating disk made of EGM are obtained using the infinitesimal theory of magneto-thermo-elasticity. The 
properties of the disk, except Poisson’s ratio, are assumed to obey exponential variation on the radius. The objective 
of the present study is to investigate the effect of material in-homogeneity on the magneto-thermo-elastic stresses 
and perturbation of the magnetic field vector and, thereby, to be able to design optimum hollow disks made of EGM. 

2    HEAT CONDUCTION PROBLEM 

The disk’s material is graded through the r-direction. Thus, the material properties are functions of r. The first law 
of thermodynamics for energy equation in the steady-state condition without energy generation for an axisymmetric 
EG one-dimensional disk is given by 
 

1
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It is assumed that the non-homogeneous thermal conductivity k(r) is an exponential function of the radius.  
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where k  in the above relation is the nominal thermal conductivity coefficient and K is in-homogeneity material 
parameters. Substituting Eq. (2) into Eq.(1) and solving the resulting equation, yields 
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where 1D  and 2D  are obtained from the thermal boundary conditions 
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where ( )¢  denotes differentiation with respect to r and ( , 1,2)ijA i j =  are either designate the thermal conductivity 

or the heat transfer coefficient depending on the type of thermal boundary conditions employed. The constants 1f   
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and 2f  have known values on the inner and outer radius, respectively. Substituting Eq.(4) into Eq.(3), yields 
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(5) 

3    BASIC FORMULATIONS  

Consider a thin hollow axisymmetric EG disk with perfect conductivity and a constant thickness, inner and outer 

radii a and b, respectively, as shown in Fig. 1. This disk placed in a uniform magnetic field (0,0, )zH H


 and rotating 

with an angular velocity .  The disk is thin and the plane stress condition is assumed. Moreover, cylindrical 
coordinate system ( , , )r z  are used and axial symmetry is assumed. 

For the axisymmetric plane stress problem, the constitutive relations are 
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1 11 12 2 12 11,r rc c c c      = + = + (7) 
 

where 11c and 12c are elastic constants, r  and   are the thermal expansion coefficients, r  and   are the stress 

components. Assuming that the magnetic permeability   at the outer surface of the EGM disk to be equal to the 

magnetic permeability of the medium around it, the medium to be non-ferromagnetic and non-ferroelectric, and 
omitting displacement electric currents, the governing electro-dynamic Maxwell equations for a perfectly 
conducting elastic body can be written as [11, 12] 
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Applying an initial magnetic field vector (0,0, )zH H


 in the cylindrical coordinates ( , , )r z  to Eq. (8), yields 

 
 

 

 
 
 
 
 
Fig. 1 
Configuration of thin-walled finitely radius of the EGM hollow 
rotating disk. 

 



A. Ghorbanpour Arani et al                   171 

 

© 2010 IAU, Arak Branch  

( , 0,0), ( )(0, ,0)z
u

U u e r H
t

 ¶
= =-

¶

 

(0,0, ), (0, ,0), ( )z
z z z

h u u
h h J h H

r r r

¶ ¶
= = - =- +

¶ ¶

 
 

(9) 
 

The equilibrium equation of the FG rotating disk in the absence of body force is expressed as 
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where zf  is the Lorentz’s force [11, 12] which can be expressed 
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It is now considered that all material coefficients obey the exponential variation on the radius 
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(12) 
 
Here, r ,  ,  ,  , 11c  and 12c  are constant and K is in-homogeneity material parameter. 11c  and 12c  for plane 

stress are given by 
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where E  is the elasticity modulus and   is Poisson’s ratio. 1  and 2  from Eqs. (7) and (12) are given by 
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3.1 Solution of the Navier equation 

By means of Eqs. (12) and (14), substituting Eqs. (6) and (11) into Eq. (10), and by considering Eqs. (3) and (5), the 
Navier equation in terms of displacement is written as 
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The non-homogeneous term on the right-hand-side of Eq. (15) is denoted by F as follows 
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The general solution of Eq. (15) can be written as 
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where 1C  and 2C  are arbitrary integration constants, P and Q are homogeneous solutions, and R is the particular 

solution. Using the method of variation of parameters, the particular solution is written as 
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The non-homogeneous differential equation, Eq. (15), is of confluent hyper-geometric type which may be solved 

by introducing the transformations ( )u r ry=  and 1 .x A r=-  Using these transformations, the homogeneous part is 

transformed into 
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where   and   are given by 
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Equation (21) is a standard confluent hyper-geometric differential equation and its solution is written as [13] 
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 Using ( )u r ry=  and 1x A r=- , finally,the following homogeneous solutions are obtained 
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By the virtue of Eqs. (19) and (25), the following expressions for the stresses and the perturbation of magnetic 
field vector in the EGM hollow disk are derived  
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where 1C  and 2C  are constants obtained from boundary conditions.  

3.2 Boundary conditions 

The following traction conditions on the inner and outer surfaces of the hollow rotating EG disk free-free must be 
satisfied 
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In addition, for a hollow rotating EG disk fixed-free the boundary conditions are 
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By substituting Eq. (31) into Eq. (26), the constants 1C  and 2C  for hollow disk free-free are derived as follows 
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By substituting Eqs. (26) and (18) into (32), the constants 1C  and 2C  for hollow disk fixed-free are derived as 

follows 
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4    NUMERICAL RESULTS AND DISCUSSION 

To conduct the numerical calculation, the material constants 0.3, =  200 GPa,E =  74 10 H / m,  -= ´
52.0 10 (1 / K),r

-= ´  51.0 10 (1 / K),
-= ´  37860(kg / m ) =  are used for the EGM hollow disk. Following 

Dai and Fu [6], the magnetic intensity is taken as 92.23 10 (A / m).zH = ´  The inner and the outer radii of the 

hollow disk are 0.5 ma =  and 1 m,b =  respectively, and the disk rotates with an angular velocity 6  rad / s. =  

The thermal boundary conditions are taken as ( ) 40 CT a =   and ( ) 10 C.T b =   The temperature, displacement, 
magneto-thermo-elastic stresses and perturbation of the magnetic field vector for the EGM hollow rotating disk are 
normalized to demonstrate the effect of in-homogeneity as below  
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For different values of K, temperature profile, radial displacement, radial stress, circumferential stress and 

perturbation of magnetic field vector along the radial direction are plotted in Figs. 2-10 for the two following 
boundary conditions. 

4.1 Hollow disk free-free 

Fig. 2 shows the variation of temperature along the radial direction for different values of K. It is shown that the 
radial temperature at the internal and external surfaces of the EG hollow rotating disk satisfy the given boundary 
conditions for the temperature and it decreases with increasing index K. The variations of the radial displacement 
along the radius for different values K are shown in Fig. 3. It is seen from this figure that the maximum displacement 
occurs at the outer radius. The magnitude of the radial displacement is increased as the index K is increased. The 
radial and circumferential stresses are plotted along the radial direction and shown in Figs. 4 and 5. Fig. 4 depicts the 
distribution of radial stress along the radius for different values of K. The figure shows that the radial stresses at the 
internal and external surfaces of the EGM hollow disk satisfy the given boundary conditions. It is also seen from this 
figure that the maximum value of the radial stress decreases with increasing index K for 0K £  and the reverse trend 
is observed for positive values of K. 

Fig. 5 shows the variations of circumferential stress along the radius for different values of K. It is seen from this 
figure that for different values of the index K, the circumferential stress is decreased as r is increased. It is also noted 
that for different values of K, circumferential stresses always attain their maximum values at the inner surface and 
for the positive values of K, the distribution of circumferential stress throughout the radius is nearly linear. It is seen 
from Figs. 4 and 5 that the non-homogeneity parameter K has a major effect on the magneto-thermo-elastic stresses 
so that a negative K yields compressive radial and circumferential stresses in the whole EGM hollow rotating disk 
while a positive K gives the opposite result. As can be seen from Figs 4 and 5, the magnitude of circumferential 
stress is larger than that of the radial stress with increasing K at the same point of the EGM hollow rotating disk. 

Fig. 6 shows the distribution of the perturbations of magnetic field vector along the radial direction for different 
values of K. It is seen from this figure that the magnitude of perturbation of magnetic field vector becomes small 
with increasing K. 
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Fig. 2 
The radial temperature distribution along the radius in the 
EGM hollow rotating disk for different values of K. 

  

 

 
 
 
 
 
 
 
 
 
Fig. 3 
The radial displacement distribution along the radius in the 
EGM hollow rotating disk (free-free boundary conditions) 
for different values of K. 

  

 

 
 
 
 
 
 
 
 
 
Fig. 4 
The radial stress distribution along the radius in the EGM 
hollow rotating disk (free-free boundary conditions) for 
different values of K. 

  

 

 
 
 
 
 
 
 
 
 
 
Fig. 5 
The circumferential stress distribution along the radius in the 
EGM hollow rotating disk (free-free boundary conditions) 
for different values of K. 
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Fig. 6 
The perturbation of magnetic field vector along the radius in 
the EGM hollow rotating disk (free-free boundary 
conditions) for different values of K. 

  

 

 
 
 
 
 
 
 
 
 
 
Fig. 7 
The radial displacement distribution along the radius in the 
EGM hollow rotating disk (fixed-free boundary conditions) 
for different values of K. 

  

 

 
 
 
 
 
 
 
 
 
Fig. 8 
The radial stress distribution along the radius in the EGM 
hollow rotating disk (fixed-free boundary conditions) for 
different values of K. 

4.2 Hollow disk fixed-free 

The variations of the radial displacement along the radius of the EGM hollow rotating disk for different values K are 
demonstrated in Fig. 7. The magnitude of the radial displacement is increased as the power index K is increased. It is 
seen from this figure that the radial displacement satisfies the zero at the internal surface of the EGM hollow rotating 
disk and the maximum displacement occurs at the outer radius. Fig. 8 shows the distribution of the radial stress 
along the radius for different values of K. It is shown that the radial stress satisfies the zero at the outer radius. As 
shown in this figure, non-homogeneity parameter K as a major effect on the radial magneto-thermo-elastic stresses 
so that a negative K yields compressive radial magneto-thermo-elastic stress distribution along the radius of the disk, 
while for values nearly 0K ³  gives the contrary result. Fig. 9 shows the distribution of circumferential stress along 
the radius of the disk for different values of K. It is seen easily that the circumferential stress is decreased as the 
index K is increased. 
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Fig. 9 
The circumferential stress distribution along the radius in the 
EGM hollow rotating disk (fixed-free boundary conditions) 
for different values of K. 

  

 

 
 
 
 
 
 
 
 
 
Fig. 10 
The perturbation of magnetic field vector along the radius in 
the EGM hollow rotating disk (fixed-free boundary 
conditions) for different values of K. 

 
 
The variations of the perturbation of magnetic field vector along the radius of the fixed-free hollow EGM 

rotating disk for different values of K are demonstrated in Fig. 10. This figure shows that the magnitude of 
perturbation of magnetic field vector becomes small with increasing K. 

5    CONCLUSIONS 

Using the infinitesimal theory of magneto-thermo-elasticity, exact solutions for EGM hollow disks -placed in a 
uniform magnetic field and temperature gradient- are obtained. The magneto-thermo-elastic stresses are obtained 
through the direction method of solution of the Navier equation. The material properties through the graded 
direction are assumed to be nonlinear with an exponential distribution.  The results show that the material in-
homogeneity has a significant effect on the magneto-thermo-elastic stresses and the perturbation of the magnetic 
field vector. Moreover, the in-homogeneous constants presented in the present study are useful parameters from a 
design point of view in that they can be tailored for specific applications to control the distributions of magneto-
thermo-elastic stresses. Using the results of this study, it is possible to determine the optimum values for variable K 
in order to have an almost constant circumferential stress with minimal variation along the radial direction. 
Therefore, the fatigue life of such components can be significantly improved by imposing a magnetic field and 
optimum values of K. 
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