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 ABSTRACT 

 In this paper, a refined plate theory is applied to investigate the free vibration analysis of 

functionally graded nanocomposite sandwich plates reinforced by randomly oriented 

straight carbon nanotube (CNT). The refined shear deformation plate theory (RSDT) uses 

only four independent unknowns and accounts for a quadratic variation of the transverse 

shear strains across the thickness, and satisfies the zero traction boundary conditions on 

the top and bottom surfaces of the plate without using shear correction factors. The 

motion equations are derived using Hamilton’s energy principle and Navier’s method and 

is applied to solve this equation. The sandwich plates are considered simply supported 

and resting on a Winkler/Pasternak elastic foundation. The material properties of the 

functionally graded carbon nanotube reinforced composites (FG-CNTRCs) are graded 

along the thickness and estimated though the Mori–Tanaka method. Effects of CNT 

volume fraction, geometric dimensions of sandwich plate, and elastic foundation 

parameters are investigated on the natural frequency of the FG-CNTRC sandwich plates. 

                                              © 2015 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 ECENTLY, the use of carbon nanotubes in polymer/carbon nanotube composites has attracted wide attention 

[1]. A high aspect ratio, low weight of CNTs and their extraordinary mechanical properties (strength and 

flexibility) provide the ultimate reinforcement for the next generation of extremely lightweight but highly elastic and 

very strong advanced composite materials. On the other hand, by using of the polymer/CNT composites in advanced 

multilayered composite materials (sandwich structures) we can achieve structures with low weight, high strength 

and high stiffness in many structures of civil, mechanical and space engineering. Some research papers on material 

properties of nanocomposite reinforced by CNT are available [2-6]. Also, some investigations show that the 

mechanical, electrical and thermal properties of these nanocomposites can considerably improve by the addition of 

small amount of CNT in the matrix [6-9].Molecular dynamic (MD) is one of the techniques that can be used to study 

on CNTs. Han and Elliott [5] successfully used MD method to determine the elastic modulus of composite 

structures under CNTs reinforcement and they investigated the effect of CNT volume fraction on mechanical 
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properties of nanocomposites. Wuite  and Adali [10] studied about the deflection and stress of nanocomposite 

reinforced beams by a multi-scale analysis and observed that small amount of nanotube reinforcement significantly 

improves beam stiffness. 

Functionally graded materials (FGMs) are inhomogeneous composites characterized by smooth and continuous 

variations in both compositional profile and material properties. Such excellent performances allow them to be 

fabricated as different structures in accordance to various service requirements. To obtain the required optimum 

performance, the gradient variation of material properties can be achieved by gradually changing the volume 

fraction of the constituent materials. Reddy [11] presented static and dynamic analysis of the FGM plates based on 

third order shear deformation theory and by using the theoretical formulation and finite element models. Cheng and 

Batra [12] used first and third order shear deformation theories to relate deflections of a simply supported 

functionally graded polygonal plate. Also, Cheng and Batra [13] have studied on the buckling and steady state 

vibrations of a simply supported functionally graded polygonal plate based on Reddy’s plate theory. 

The CNTs can be distributed as some grading profiles through a certain direction to improve the mechanical 

properties and to reinforce the composite structures too. The composites, which are reinforced by CNTs with 

grading distribution, are called functionally graded carbon nanotube-reinforced composites. Shen [14] suggested that 

the interfacial bonding strength can be improved through the use of a graded distribution of CNTs in the matrix and 

investigated postbuckling of functionally graded nanocomposite cylindrical shells reinforced by CNTs subjected to 

axial compression in thermal environment and showed that the linear functionally graded reinforcements can 

increase the buckling load. He estimated mechanical properties by a micro-mechanical model in volume fraction 

form with CNT efficiency parameters. Ke et al. [15] investigated the nonlinear free vibration of FG-CNTRC beams 

based on von Karman geometric nonlinearity and Timoshenko beam theory. The material properties were assumed 

to be graded along the thickness and estimated though the rule of mixture. They introduced the CNT efficiency 

parameter to account for load transfer between the nanotube and polymeric phases. However, the rule of mixture is 

not applicable when straight CNTs are oriented randomly in the matrix. In these cases the Mori–Tanaka approach 

[16] is applicable to predict material properties of composites reinforced. Yas and Heshmati [17] used the Mori–

Tanaka approach to study on the vibrational properties of FG-nanocomposite beams reinforced by randomly 

oriented straight CNTs under the action of moving load. Sobhani Aragh et al. [18] presented vibrational behavior of 

continuously graded CNT–reinforced cylindrical panels based on the Eshelby–Mori–Tanaka approach. They used 

the 2D Generalized Differential Quadrature Method (GDQM) to discretize the governing equations and to 

implement the boundary conditions. Also, Pourasghar et al. [19] and Moradi-Dastjerdi et al. [20] investigated free 

vibrations analysis FG nanocomposite cylinders reinforced by randomly oriented straight and local aggregation 

CNTs based on three-dimensional theory of elasticity and a mesh-free method, respectively. They estimated material 

properties of FG- CNTRCs through the Eshelby–Mori–Tanaka approach too. 

The simplest model for the elastic foundation is the Winkler model, which regards the foundation as a series of 

separated springs without coupling effects between each other, resulting in the disadvantage of discontinuous 

deflection on the interacted surface of the plate. This was later improved by Pasternak [21] who took account of the 

interactions between the separated springs in the Winkler model by introducing a new dependent parameter. In a 

new and near work, Pourasghar and Kamarian [22] used the Winkler/Pasternak elastic foundation in their study. 

They presented free vibrational analyses of FG nanocomposite cylindrical panels reinforced by multiwalled CNTs 

resting on the Winkler/Pasternak elastic foundation based on the three-dimensional theory of elasticity.  

Since the first shear deformation plate theory (FSDT) violates the equilibrium conditions on the top and bottom 

surfaces of the plate, a shear correction factor is required to compensate for the error due to a constant shear strain 

assumption through the thickness. The shear correction factor not only depends on the material and geometric 

properties but also it depends on the loading and boundary conditions. Although the FSDT provides a sufficiently 

accurate description of response for thin to moderately thick plate, it is not convenient for use due to the difficulty in 

determination of the correct value of the shear correction factor. To avoid the use of shear correction factor, many 

RSDTs have been developed such as the sinusoidal shear deformation plate theory (SSDT) [23-24], RSDT [25-26] 

and hyperbolic shear deformation plate theory (HSDT) [27-29]. RSDT is based on assumption that the in-plane and 

transverse displacements consist of bending and shear components in which the bending components do not 

contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The 

motion equation can be derived by using of Hamilton’s energy principle and Navier’s method solves this equation.   

In this work, a RSDT is developed to investigate the free vibration analysis of simply supported FG-CNTRC 

sandwich plates resting on the Winkler/Pasternak elastic foundation. The material properties of the nanocomposites 

plates are graded along the thickness and estimated through the Mori–Tanaka method because of its simplicity and 

accuracy even at a high volume fraction of inclusions. The effects of CNT volume fraction, geometric dimensions of 
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sandwich plate, and elastic foundation parameters are investigated on the natural frequency of these FG-CNTRC 

sandwich plates.  

2    MATERIAL PROPERTIES IN FG-CNT REINFORCED COMPOSITE 

Consider a CNTRC made from a mixture of single-walled CNTs (with randomly orientation) and matrix which is 

assumed to be isotropic. The single-walled CNT reinforcement is either uniformly distributed (UD) or FG in the 

thickness of plates. In this section, the effective mechanical properties of these composites are obtained based on the 

Mori–Tanaka approach. The resulting effective properties for the randomly oriented CNT composite are isotropic, 

despite the CNTs having transversely isotropic effective properties. The orientation of a straight CNT is 
characterized by two Euler angles α and β, as shown in Fig. 1. When CNTs are completely randomly oriented in the 

matrix, the composite is then isotropic, and its bulk modulus K and shear modulus G are derived as [30]: 
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where subscripts m and r are referred to matrix and CNT respectively, f  is volume fraction and also, 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 

Representative volume element with randomly oriented, 

straight CNTs [17]. 
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kr, lr, mr, nr, and pr are the Hill’s elastic moduli for the reinforcing phase (CNTs). As mentioned before, the 

CNTs are transversely isotropic and have a stiffness matrix given below (Hill’s elastic moduli) 
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where EL, ET, EZ, GTZ, GZL, GLT, TZ , ZL  and LT  are material properties of the CNT reinforced composite which 

can be determined from the inverse of the rule of mixture.  

So, the effective Young’s modulus E and Poisson’s ratio   of the composite is given by: 
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3    REFINED PLATE THEORY 

Consider a rectangular nanocomposite sandwich plate resting on the Winkler-Pasternak type elastic foundation with 

the Winkler stiffness of k0 and shear stiffness of k1. This sandwich plate is composed of three layers referring to 

rectangular coordinates (x, y, z), as shown in Fig. 2. The top and bottom layers of the plate are FG-CNTRC with 

thickness of hf, and the edges of the plate are parallel to axes x and y. Also, the mid layer is made of the 

homogeneous polymer with thickness of hm. The volume fractions of CNTs in n
th

 layer n

rf  (n=1, 2 3) are varied as 

the following: 
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where h is the total thickness of the sandwich, p (0 )p  is the volume fraction exponent and max

rf  is the 

maximum volume fraction of the CNTs in the FG-CNTRC layers and it is equal to max 0.2rf  . Therefore, the 

effective Young’s modulus E and Poisson’s ratio   of each layer are obtained from Eqs. (8-9). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

CNTRC sandwich plate resting on elastic foundation. 

 

3.1 Basic assumptions 

The assumptions of the present theory are as follows [25]: 

a) The displacements are small in comparison with the plate thickness and thus the strains involved are 

infinitesimal. 

b) The transverse displacement W  includes two components: bending 
bw  and shear 

sw , and these components 

are functions of coordinates x, y only.  
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c) The transverse normal stress 
z  is negligible in comparison with the in-plane stresses 

x  and 
y . 

d) The displacements U in the x-direction and V in the y-direction consist of extension, bending, and shear 

components. 
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The bending components bu  and bv  are assumed to be similar to the displacements given by the classical plate 

theory. Therefore, the expression for bu  and bv  can be given as: 
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The shear components 
su  and 

sv  give rise, in conjunction with 
sw , to the parabolic variations of shear strains 

,xz yz    and hence to shear stresses ,xz yz   across the thickness of the plate in such a way that the shear stresses 

,xz yz   are zero at the top and bottom faces of the plate. Consequently, the expression for 
su  and 

sv can be given as: 
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3.2 Kinematics and constitutive equations 

Based on the assumptions made in the preceding section, the displacement field can be obtained [25] 
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The strains associated with the displacements in Eq. (15) are: 

 
0 0

0

( ) , ( )

( ) , ( ) , ( )

0

b s b s

x x x x y y y y

b s s s

xy xy xy xy yz yz xz xz

z

zk f z k zk f z k

zk f z k g z g z

   

     



     

    



 

 

 

(17) 

 

where 

 
2 2

0 0

2 2

2 2
0 0

2 2

2 2
0 00 0

0

, ,

, ,

, 2 , 2

( )
, , ( ) 1

b sb s
x x x

b sb s
y y y

sb s
xy xy xy

ss s
yz xz

u w w
k k

x x x

v w w
k k

y y y

u v w w
k k

y x x y x y

w w df z
g z

y x dz







 

  
    
  

  
    
  

   
     
     

 
   

 

 

 

 

 

 

(18) 

 

For elastic and isotropic materials, the constitutive relations can be written as: 
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where n is the number of each layers, ( , , , ,x y xy yz xz     ) and ( , , , ,x y xy yz zx     ) are the stress and strain 

components, respectively. Using the material properties defined in Eq. (10), stiffness coefficients, ijQ , can be 

expressed as: 
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3.3 Governing equations 

Using Hamilton’s energy principle derives the motion equation of the isotropic plate: 
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where U is the strain energy, K is the kinetic energy of the isotropic plate, 
FU  is the strain energy of foundation. 

Employing the minimum of the total energy principle leads to a general equation of motion and boundary 

conditions. Taking the variation of the above equation and integrating by parts: 
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where represents the second derivative with respect to time and 
ef  is the density of reaction force of foundation. For 

the Pasternak foundation model: 
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The equations of motion can be obtained by substitution of Eqs. (15) and (17) into Eq. (22) and by considering 

following assumptions. The stress resultants N,M,S and the mass moments of inertia are defined by: 
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where 1nh   and 
nh  are the top and bottom z-coordinates of the nth layer. So, the equation of motion can be written 

as:  
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Substituting Eq. (19) into Eq. (24) and integrating through the thickness of the plate, the stress resultants are 

given as: 
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And stiffness components are given as: 
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3.4 Navier’s solution for simply supported rectangular sandwich plates 

Rectangular sandwich plates are generally classified in accordance with the type support used. We are here 

concerned with the analytical solutions of Eq. (25) for simply supported FG-CNTRC sandwich plate. The following 

boundary conditions are imposed at the side edges [25]: 
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The displacement functions that satisfy the equations of boundary conditions (Eq.(32)) are selected as the 

following Fourier series: 
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where 
mnu ,

mnv ,
bmnw and 

smnw  are the arbitrary parameters to be determined,   is the eigen frequency associated 

with (m,n) th eigen mode, 
m

a


   and 

n

b


   . Substituting Eq. (33) into equations of motion (25) we get the 

below eigenvalue equations for any fixed value of m and n:  
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And the elements of the coefficient matrix k and M are given in Appendix A. To avoid of trivial solution of Eq. (34), 

the following equations should be solved: 

 

   2 0k M                 (36) 

 

Or, with pre-multiplying Eq. (36) by  
1

M


, becomes 
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                 (37) 

 

The natural frequencies ( ) can be derived by solving of this equation. 

4    RESULTS AND DISCUSSIONS 

In this section, at first the accuracy of applied method is examined by comparing obtained results of FGM plates 

with reported results in the literatures and then effects of sandwich plates dimension, elastic foundation parameters, 

CNTs volume fraction and their variation patterns are investigated on the frequency parameters of FG-CNTRC 

sandwich plates.  

4.1 Validation of models 

At first, to validate the vibration analyses, first normalized frequency parameters (
11 ) of isotropic FGM plates are 

presented for various values of volume fraction exponent, p, and ratio of length to thickness, a/h, in Table 1. The 

normalized natural frequency is defined as: 
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The subscript of m is used for metal in the applied FGM plate. In these plates, values of the elastic foundation are 

given as zero. The comparisons show that the present results agree very well with other available solutions. Further 

validation of the present results is shown for FGM plates resting on elastic foundation in Table 2. The normalized 

elastic foundation parameters are defined as 
4

0
0

m

k a
K

D
  and 

2

1
1

m

k a
K

D
 . In this table, a comparison is made for 

different values of the elastic foundation parameters and ratio of h/a. As observed, there is a good agreement 

between the results too.  

 
Table 1 

Comparison of the first frequency parameters of square isotropic FGM plates for various values of p and a/h. 

a/h Theory p=0 p=1 p=4 p=10 

2 Matsunaga (2008)  0.9400 0.7477 0.5997 0.5460 

Ait Atmane et al. (2010)  0.9300 0.7725 0.6244 0.5573 

Present  0.9304 0.7360 0.5928 0.5417 

5 Matsunaga (2008)  0.2121 0.1640 0.1383 0.1306 

Ait Atmane et al. (2010)  0.2113 0.1740 0.1520 0.1369 

Present  0.2113 0.1631 0.1378 0.1301 

10 Matsunaga (2008)   0.05777   0.04427   0.03811   0.03642 

Ait Atmane et al. (2010)   0.05770   0.04718   0.04210   0.03832 

Present   0.05769   0.04419   0.03807   0.03637 

 
Table 2 

Comparison of the first frequency parameters of square isotropic FGM plates resting on elastic foundation for various values of 

K0, K1 and h/a. 

h/a K0 , K1 Akhavan et al. (2009) Ait Atmane et al. (2010) Present 

0.001       0.0    19.7391 19.7392 19.7396 

 100.10 26.2112 26.2112 26.2115 

1000.100 57.9961 57.9962 57.9963 

0.1    0.0 19.0840 19.0658 19.0658 

 100.10 25.6368 25.6236 25.6235 

1000.100 57.3969 57.3923 57.3922 

0.2    0.0 17.5055 17.4531 17.4530 

 100.10 24.3074 24.2728 24.2728 

1000.100 56.0359 56.0311 56.0363 

 
Table 3 

Three normalized frequency parameters of FG-CNTRC sandwich square plates for various values of a/h and p (h/hf =3 and n=1). 

a/h m 
p 

0 0.01 0.1 1 5 10 20 

2 1    89.2953    88.6761    83.5435    53.9178    24.4815   19.6993   18.1649 

2 157.6137 156.4234 146.6261   92.3052    41.0945   32.8613   30.5083 

3 238.7703 236.9411 221.9257 139.6636    62.0514   49.0900   45.4684 

5 1 144.3772 143.6796 137.8069 99.9862    51.5519   41.2564   35.8894 

2 296.8109 295.0554 280.3743 190.5451    90.7716   73.0240   65.9360 

3 482.0430 478.8072 451.9273 294.7039 134.9870 108.6693   99.8395 

10 1 166.8645 166.2409 160.9811 126.3465   74.5209   58.8787   47.8630 

2 385.6784 383.9938 369.7884 276.9041 149.7368 119.3423 101.4107 

3 694.1500 690.6235 660.9720 471.9599 238.1464 190.9032 167.8024 
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4.2 Vibration of the FG-CNTRC sandwich plates 

After validation of the applied method, vibration behaviors of FG-CNTRC sandwich plates are investigated. The top 

and bottom layer are considered FG-CNTRC plates and made of Poly (methyl- methacrylate, referred as PMMA) as 

matrix, with CNT as fibers. PMMA is an isotropic material with 2.5mE GPa , 0.34m   and 31150 /m Kg m  . 

The (10,10) single-walled CNTs are selected as reinforcements. The adopted material properties for SWCNT are: 

1 5.6466CNTE TPa , 
2 7.0800CNTE TPa , 

12 1.9445CNTG TPa , 0.175CNT   and 31400 /CNT Kg m   [14]. Table 3. 

reports three normalized frequency parameters (for n=1 and m=1, 2, 3) of FG-CNTRC sandwich square plates 

(a/b=1) with h/hf =3 and for various values of a/h and volume fraction exponent, p. As observed, increasing of the 

ratio of a/h increases all the frequency parameters of the sandwich square plates, also increasing of the volume 

fraction exponent decreases the frequencies because of the CNT volume was decreased.  

In Table 4. the effects of h/a ratio and elastic foundation parameters (based on the mechanical properties of 

PMMA) are investigated for FG-CNTRC sandwich square plates with h/hf =3 and exponent of p=0.01. It can be seen 

that, increasing of the h/a ratio leads to decrease in the frequency parameter; also elastic foundation increases the 

frequencies and improving of their parameters increase the frequencies.  

 
Table 4  

Frequency parameters of FG-CNTRC sandwich square plates resting on elastic foundation for various values of K0, K1and h/a 

(h/hf =3 and p=0.01.) 

h/a K0 K1   

   0.001 0 0 176.9648 

    100   10 177.7798 

      1000     100 184.9529 

0.1 0 0 166.2409 

    100   10 167.0968 

      1000     100 174.6111 

0.2 0 0 143.6796 

    100   10 144.6517 

     1000     100 153.1230 
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Fig.3 

First frequency parameters versus volume fraction values of 

CNTRC sandwich plates for various values of hf (a/b=1, 

a/h=10 and 0 1 0k k  ). 
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Fig.4 

First frequency parameters versus volume fraction 

values of CNTRC sandwich plates for various values 

of a/h (a/b=1, hf/h=0.3 and 0 1 0k k  ). 

 

The effects of FG-CNTRC layers thickness, hf, sandwich length, a, and volume fraction exponent on the first 

frequency parameter are investigated in Figs. 3-4. No elastic foundation is considered for these sandwich plates and 

the ratios of a/b and a/h are equal to 1 and 10, respectively. As observed in Fig. 3, increasing of the volume fraction 

exponent or decreasing of the FG-CNTRC layers thickness decrease first frequency parameter because of the 
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decreasing in the CNTs volume fraction of sandwich plates. Also, Fig. 4 shows increasing of the a/h increases the 

first frequency parameter for these sandwich plates with hf/h =0.3.  
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Fig.5 

First frequency parameters versus volume fraction values of 

CNTRC sandwich plates for various values of a/b (a/h=20, 

hf/h=0.3 and 0 1 0k k  ). 
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Fig.6 

Various modes of frequency parameters versus volume 

fraction values of CNTRC sandwich plates (a/b=2, hf/h=0.3, 

a/h=20 and 0 1 0k k  ). 
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Fig.7 

First frequency parameters versus maximum values of CNT 

volume fraction for CNTRC sandwich plates with various 

values of p (a/b=1, a/h=2, h/hf=3 and 0 1 0k k  ). 
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Fig.8 

First frequency parameters versus shear parameter values of 

elastic foundation for CNTRC sandwich plates with various 

values of 1k  (a/b=2, a/h=20, hf/h=0.3 and 0.1p  ). 
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Fig.9 

First frequency parameters versus Winkler parameter values 

of elastic foundation for CNTRC sandwich plates with 

various values of 0k  (a/b=2, a/h=20, hf/h=0.3 and 0.1p  ). 
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First frequency parameters are shown in Fig. 5 for these sandwich plates with a/h=20, hf/h =0.3 and various 

values of volume fraction exponent and a/b. This figure shows that increasing of a/b ratio increases frequency 

parameter. Consider other FG-CNTRC sandwich plates with a/b=2, a/h=20, hf/h =0.3 and without elastic 

foundation. Fig. 6 shows variations of 
11 12 21 31, , ,    versus volume fraction exponent in these sandwich plates. 

This figure shows that frequency parameters are decreased by increasing p. In the other case, consider square 

nanocomposite sandwich plates with a/h=2, h/hf =3 and with various values of p and max

rf  same as previous ones. 

Fig. 7 shows that increasing of maximum value of CNT volume fraction increases the natural frequency. Finally, 

effects of elastic foundation parameters of the sandwich plates with a/b=2, a/h=20, hf/h =0.3 and p=0.1, are 

investigated on the first frequency parameters in Figs. 8-9. These figures reveal that increasing the foundation 

parameters increase the first frequency parameter and the shear parameter (
0k ) has more influence than the other 

one (
1k ). 

5    CONCLUSIONS 

In this paper by using a refined plate theory, the effects of various parameters were investigated on the natural 

frequency of the FG-CNTRC sandwich plates. The sandwich plates were simply supported and the Winkler/ 

Pasternak elastic foundation were considered for them. The nanotubes were considered straight with randomly 

oriented and Mori–Tanaka approach was used to estimate the mechanical properties of nanocomposites. The motion 

equation was derived by Hamilton’s energy principle and Navier’s method solved by this equation. The following 

results were obtained from this analysis:  

 Increasing of the ratios of a/h or a/b, increase the frequency parameters of the sandwich plates.  

 Increasing of the volume fraction exponent, (p) or decreasing of the FG-CNTRC layers thickness (hf) 

decrease frequency parameter because of the decreasing in the CNT volume of sandwich plates.  

 Increasing of maximum value of CNT volume fraction increases frequency parameter. 

 Increasing in the foundation parameters increase the first frequency parameter and the shear parameter (
0k ) 

has more influence than the other one (
1k ). 

APPENDIX  

11 12 66

66

66

11

2 2

11 11 66

12 12 66

2 2

13 11 12 66

2 2

14

2 2

22 22 66

2 2

23 12 22

2 2

24 12 22

4 2 2 4 2 2

33 12 22 66 0 1

( )

( )

( ( 2 ))

( ( 2 ))

( )

( ( 2 ) )

( ( 2 ) )

( 2 4 (

s s s

S s s

a A A

a A A

a B B B

a B B B

a A A

a B B B

a B B B

a D D D D k k

 



  

  

 

  

  

     

 

 

   

   

 

   

   

     

11 12 22 66

11 12 22 66

2 2

4 2 2 4 2 2 2 2

34 0 1

4 2 2 4 2 2 2 2 2 2

44 0 1 44 55

11 22 44 1

13 2 14 4 23 2 24 4

2 2 2 2

33 3 1 34 5

)

( 2 4 ( )

( 2 4 ( )

( ( ) ) ( ( )

s s s s

s s s s s s

a D D D D k k

a H H H H k k A A

m m m I

m I m I m I m I

m I I m I

 

       

         

   

   



      

        

   

   

        1)I

 

 

 



                                                                                                                                                      R. Moradi-Dastjerdi et al.         171           

© 2015 IAU, Arak Branch 

REFERENCES 

[1] Wagner H.D., Lourie O., Feldman Y., 1997, Stress-induced fragmentation of multiwall carbon nanotubes in a polymer 

matrix, Applied Physics Letters 72: 188-190. 

[2] Griebel M., Hamaekers J., 2004, Molecular dynamic simulations of the elastic moduli of polymer-carbon nanotube 

composites, Computer Methods in Applied Mechanics and Engineering 193: 1773-1788. 

[3] Fidelus J.D., Wiesel E., Gojny F.H., Schulte K., Wagner H.D., 2005, Thermo-mechanical properties of randomly 

oriented carbon/epoxy nanocomposites, Composite Part A 36: 1555-1561. 

[4] Song Y.S., Youn J.R., 2006, Modeling of effective elastic properties for polymer based carbon nanotube composites, 

Polymer 47:1741-1748. 

[5] Han Y., Elliott J., 2007, Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube 

composites, Computational Materials Science 39: 315-323. 

[6] Zhu R., Pan E., Roy A.K., 2007, Molecular dynamics study of the stress–strain behavior of carbon-nanotube reinforced 

Epon 862 composites, Materials Science and Engineering A 447: 51-57. 

[7] Manchado M.A.L., Valentini L., Biagiotti J., Kenny J.M., 2005, Thermal and mechanical properties of single-walled 

carbon nanotubes-polypropylene composites prepared by melt processing, Carbon 43: 1499-1505. 

[8] Qian D., Dickey E.C., Andrews R., Rantell T., 2000, Load transfer and deformation mechanisms in carbon nanotube–

polystyrene composites, Applied Physics Letters 76: 2868-2870. 

[9] Mokashi V.V., Qian D., Liu Y.J., 2007, A study on the tensile response and fracture in carbon nanotube-based 

composites using molecular mechanics, Composites Science and Technology 67: 530-540. 

[10] Wuite J., Adali S., 2005, Deflection and stress behaviour of nanocomposite reinforced beams using a multiscale 

analysis, Composite Structures 71: 388-396. 

[11] Reddy J.N., 2000, Analysis of functionally graded plates, International Journal for Numerical Methods in Engineering 

        47: 663-684. 

[12] Cheng Z.Q., Batra R.C., 2000, Deflection relationships between the homogeneous Kirchhoff plate theory and different 

functionally graded plate theories, Archive of Mechanics 52:143-158. 

[13] Cheng Z.Q., Batra R.C., 2000, Exact correspondence between eigenvalues of membranes and functionallygraded 

simplysupported polygonal plates, Journal of Sound and Vibration 229: 879-895. 

[14] Shen H.S., 2011, Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part I: 

Axially-loaded shells, Composite Structures 93: 2096-2108. 

[15] Ke L.L., Yang J., Kitipornchai S., 2010, Nonlinear free vibration of functionally graded carbon nanotube-reinforced 

composite beams, Composite Structures 92: 676-683. 

[16] Mori T., Tanaka K., 1973, Average stress in matrix and average elastic energy of materials with Misfitting inclusions, 

Acta Metallurgica 21: 571-574. 

[17] Yas M.H., Heshmati M., 2012, Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly 

oriented carbon nanotube under the action of moving load, Applied Mathematical Modelling 36: 1371-1394. 

[18] Sobhani Aragh B., Nasrollah Barati A.H., Hedayati H., 2012, Eshelby–Mori–Tanaka approach for vibrational behavior 

of continuously graded carbon nanotube–reinforced cylindrical panels, Composites Part B 43: 1943-1954. 

[19] Pourasghar A., Yas M.H., Kamarian S., 2013, Local aggregation effect of CNT on the vibrational behavior of four-

parameter continuous grading nanotube-reinforced cylindrical panels, Polymer Composites 34: 707-721.  

[20] Moradi-Dastjerdi R., Pourasghar A., Foroutan M., 2013, The effects of carbon nanotube orientation and aggregation on 

vibrational behavior of functionally graded nanocomposite cylinders by a mesh-free method, Acta Mechanica 224: 

2817-2832. 

[21] Pasternak P.L., 1954, On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants, 

Cosudarstrennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture, Moscow, USSR. 

[22] Pourasghar A., Kamarian S., 2013, Three-dimensional solution for the vibration analysis of functionally graded 

multiwalled carbon nanotubes/phenolic nanocomposite cylindrical panels on elastic foundation, Polymer Composites 

34: 2040-2048. 

[23] Zenkour AM., 2006, Generalized shear deformation theory for bending analysis of functionally graded plates, Applied 

Mathematical Modelling 30: 67-84. 

[24] Zenkour AM., 2009, The refined sinusoidal theory for FGM plates on elastic foundations, International Journal of 

Mechanical Sciences 51: 869-880. 

[25] Merdaci S., Tounsi A., A.Houari M.S., Mechab I., Hebali H., Benyoucef S., 2011, Two new refined shear displacement 

models for functionally graded sandwich plates, Archive of Applied Mechanics 81:1507-1522. 

[26] Thai H.T., Choi D.H., 2011, A refined plate theory for functionally graded plates resting on elastic foundation, 

Composites Science and Technology 71: 1850-1858. 

[27] Akavci SS., 2007, Buckling and free vibration analysis of symmetric and antisymmetric laminated composite plates on 

an elastic foundation, Journal of Reinforced Plastics and Composites 26: 1907-1919. 

[28] Benyoucef S., Mechab I., Tounsi A., Fekrar A., Ait Atmane H., Adda Bedia EA., 2010, Bending of thick functionally 

graded plates resting on Winkler-Pasternak elastic foundations, Mechanics of Composite Materials 46: 425-434. 

http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291097-0207


172                       Free Vibration Analyses of Functionally Graded CNT Reinforced …                                                                   

      

© 2015 IAU, Arak Branch 

[29] Ait Atmane H., Tounsi A., Mechab I., Adda Bedia EA., 2010, Free vibration analysis of functionally graded plates 

resting on Winkler-Pasternak elastic foundations using a new shear deformation theory, International Journal of 

Mechanics and Materials in Design 6: 113-121. 

[30] Shi D.L., Feng X.Q., Yonggang Y.H., Hwang K.C., Gao H., 2004, The effect of nanotube waviness and agglomeration 

on the elasticproperty of carbon nanotube reinforced composites, Journal of Engineering Materials and Technology 

126: 250-257. 

[31] Matsunaga H., 2008, Free vibration and stability of functionally graded plates according to a 2D higher-order 

deformation theory, Composite Structures 82: 499-512. 

[32] Akhavan H., Hosseini-Hashemi Sh., Rokni Damavandi Taher H., Alibeigloo A., Vahabi Sh., 2009, Exact solutions for 

rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: Frequency analysis, 

Computational Materials Science 44: 951-961. 


