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ABSTRACT
This paper investigates symmetrical buckling of orthotropic circular and annular plates of
continuous variable thickness. Uniform compression loading is applied at the plate outer
boundary. Thickness varies linearly along radial direction. Inner edge is free, while outer edge has
different boundary conditions: clamped, simply and elastically restraint against rotation. The
optimized Ritz method is applied for buckling analysis. In this method, a polynomial function that
is based on static deformation of orthotropic circular plates in bending is used. Also, by employing
an exponential parameter in deformation function, eigenvalue is minimized in respect to this
parameter. The advantage of this procedure is simplicity, in comparison with other methods, while
whole algorithm for solution can be coded for computer programming. The effects of variation of
radius, thickness, different boundary conditions, ratio of radial Young modulus to circumferential
one, and ratio of outer radius to inner one in annular plates on buckling load factor are
investigated. The obtained results show that in plate with identical thickness, increasing of outer
radius decreases the buckling load factor. Moreover, increase of thickness of the plates results in
increase of buckling load factor.
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1 INTRODUCTION

RTHOTROPIC circular and annular plates are always used by mechanical, civil, aerospace and structural

engineers and designers. Some applications of these systems are pressure vessel valve, reinforced circular
plates by radial and circumference supporter, composite plates, cylinder head cover, bulkhead plates in submarines,
separated plates in aircraft, optical lenses, and acoustic transducers in rockets. Woinosky [1], for the first time,
studied the problem of elastic stability of orthotropic circular plates. He introduced numeric results by using Bessel
function for buckling of plates. Menk et al. [2] studied on variation of thickness on buckling of orthotropic
rectangular plate. Laura et al. [3] found critical load of buckling for isotropic annular plate with constant thickness
by optimized Rayleigh-Ritz method. Imposed boundary condition of plate for either inner edge or outer edge was
under different supports. Cianco [4] studied on buckling of circular and annular isotropic plate with variable
thickness that was used as a part of submarine. This plate was considered with free support on inner edge and
clamped support and resistant of rotation for outer edge. The thickness of plate is exponential function of its radius.
He analyzed the plate by optimized Rayleigh-Ritz method. Bremec et al. [5] also introduced one optimized rate of
variation of thickness for buckling of isotropic plates which both in inner edge and outer edge was under constant

: Corresponding author.
E-mail address: farhatnia@iaukhsh.ac.ir (F. Farhatnia).

© 2010 IAU, Arak Branch. All rights reserved. JOURNAL OF SOLID MECHANICS @



F. Farhatnia and A. Golshah 157

radial load and thickness was varied in radial direction. Buckling function was in linear fashion and solved by
numeric method under simply and clamped support. Gutierrez et al. [6] considered buckling and vibration of the
isotropic plate with variable thickness on elastic support using Rayleigh-Ritz method, and obtained acceptable
results. Liang et al. [7] found natural frequencies of one orthotropic circular and annular plate with variable
thickness using Rayleigh-Ritz method that agreed with the result of finite element method.

In this paper, buckling of orthotropic circular and annular plates with linear variation of thickness under constant
compressive radial loading is studied. The boundary condition of annular plates are F-C plates (free inner, and
clamped outer edge) or clamped circular solid ones, F-S plates (free inner, simply outer edge) or simply supported
solid circular ones, and annular plates with free inner support and resistant elastic against rotation outer edge.
Circular plates contain plates with clamped, simply and elastic resistant against rotation boundary condition. Solving
buckling differential equation of orthotropic circular or annular plate with variable thickness is impossible by
analytical method and it should be solved using numerical or energy method. For this reason, optimized Rayleigh-
Ritz method is used. The results of this method is more precisely than Rayleigh-Ritz method. For optimization of
Rayleigh-Ritz method, one exponential parameter in approximate function is considered. Eigenvalues (buckling load
factor) that is obtained, are minimized according to this exponential parameter. Furthermore, the comparison
between results of this method and the results of ANSYS commercial finite element package is done. The effects of
thickness variation, boundary conditions, Young module ratio in radius and circumference axis, variation of ratio of
inner radius to outer one on buckling load factor are considered.

2 THEORY
2.1 Basic formulation of the problem

The formulation of the problem is derived under the following assumptions:

1. The plate is in the state of plane stress.

2. The stress-strain relationship follows orthotropic material.

3. The plate is thin. Therefore, the Kirchhoff assumptions are incorporated.

4. The thickness is varied in the direction of radius of the plate.

Consider a circular annular plate with variable thickness %(r), a, b inner and outer radius, respectively as shown
in Fig. 1. For buckling analysis, the in-plane displacement ¥ and v may be neglected and only out-of-plane
deformation w is considered. The governing energy functional can be given by:

J=U+V (1)

where U is the stored strain energy per unit volume that in the polar coordinate system for plane stress is given as
follows [8]:

1
U :Efff(a,é‘, +0o,6,+71.,1,) rdrdfdz o

The work done by in-plane radial force is given as:

V:%j;f

2 2
N, [aa—‘:}] +N, [g—g] rdrdé 3)

Fig. 1
Schematic view of annular plate with variable thickness
(centrally thicker circular plate).
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In the present study, the axial radial symmetry is assumed. Therefore, plate is independent of azimuthal variable:

a aw 2
V—E[Nr[a]rdr (4)

For orthotropic annular plate, V is derived as follows [9]

owY
[E] rdr 5)

2p
P b
s

@’ — b’

Also, using the stress-strain relation for orthotropic material, substituting into Eq. (1), one may obtain:
d

vl e

As shown in Fig 1 the thickness of plate is continuously varying A(r), with integrating along the thickness, the
stored strain energy can be expressed by the following equation:

2 2
—W] +2E v,

rdrdédz 6)
dr’

T dw| d’w(aw (dwY
U_”[ oo [7] o [W][E]w [rd_rJ ra %
where
D.(r) = E R (r) E _ D,(r) _p ©

0
12(1-v,0,) E  D.(r)

In above equation, D (r) and D,(r) denote circumferential and radial bending stiffness of the plate,

respectively. In this study, annular and solid circular plates with continuously varying thickness are considered. The
variation of thickness along the radius direction can be expressed as follows:

a

where h, and a represent the thickness in the centre (inner radius for annular plate) and the outer radius of plate,
respectively. In order to consider the influence of non uniform thickness on buckling load factor, two values are
assigned for the parameter n, n=0, 1 for uniform and linearly varying thickness, respectively. y is non-dimensional
geometric parameter that may be positive (centrally thinner circular plate ) or negative (centrally thicker circular
plate) and is defined as follows:

For circular solid plates:

h(r) 9)

y=---1 (10)

b 0
V= " 11
h,(r,) (1)
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In above equation, r, is the ratio of inner radius to the outer one (=b/a). In the sake of convenience, the variables in
Egs. (7) and (15) are transformed to dimensionless one, so the total potential energy functional is as follows:

2 1 217 )2 2 2 258 2
a d*wW d*W|( aw aw yl 1 | (aw
JW)= R +2v — |+ || |- Al _ b [—] R dR 12
zD, e fg( )[dRQ] | dr? [RdR] d [RdR] 1-1? R | dR (12)
that,
(R)=(1+yR)’ ___Eh R=1 13
s =1 " 120-vu,)’ T a )

where / is the buckling load factor that is related to buckling load as follows:

(14)

2.2 Optimized Ritz method

Considering the fact that Rayleigh-Ritz method is an upper bound method, the determined eigenvalue is more than
real one. Therefore, if one can optimize it somehow, the results will be closer to real one. In general, the function

which introduces the unknown quantity, is a linear combination of shape modes ¢, , as follows:
N
f)=3c,p,(x) (15)
n=l1

where ¢, is the unknown constants. According to the idea of optimization, by performing the Optimized Rayleigh-
Ritz method, it is quite convenient to approximate f{x) by means of a summation:

f@)=Yc,p,(x.k) (16)

n=1

Note that k in above equation is the exponential optimization parameter. Regarding to the Eq. (16), out-plane
displacement W(R) is given as follows:

W(R) =) cw,(R.k) a7

i=1
By minimizing potential energy functional in Rayleigh-Ritz method:

ﬂ:(), i=1,...N (18)
dc,

Total number of N linear homogenous algebraic equations are generated that the unknowns are constants c,. It
forms the eigenvalue problem that the eigenvlaues are the values of buckling load parameter. The non-trivial
condition leads to a transcendental equation in whose lowest root is the desired buckling load factor [4]. Since
04/ 0k =0, by requiring, one is able to optimize the fundamental eigenvalue.
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2.3 Buckling of annular plate

Regarding to the Eq. (17), w; (R,k) is defined as follows [9]

w,(R) = (a,R* + bR’ + HR™" 19)

Unknown constants a; and b; are determined by applying boundary conditions.

2.3.1 Clamped outer edge (F-C) plate

For a clamped outer edge, in r=a or R=1, the governing boundary conditions are:

w,(1)=0
dw, = (20)
E(l) =0

By substitution Eq. (19) into eq. (20), the a; and b; values are determined as follows:

- k
%:———li, h=— Q1)
1+ p—k 1+ 8-k

2.3.2 Simply supported outer edge (S-F) plate
For a simply supported outer edge, the out-plane displacement must satisfy the following conditions:
w.(1)=0

d*w

dr?

) dw.
' <1>+ugd—v;<1) =0 )

Considering the boundary condition in outer edge, the a@; and b; values are determined:

- A+ B(=2+2i+ f+v,)
L (1= B2+ 2i+k+ f+0,)
k(=342i+k+uv,)
(1= BHk)(=242i+k+f+0,) (23)

2.3.3 Elastically restrained against rotation

For the case of elastically restrained against rotation:

w,(1)=0

d*w

dRZ

(24)

Wy — z- dw
T D=8 +u, (1)]

where a; and b; values are determined as follows:
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(25)

In above equation, S;, Q;, and L; are defined as follows:

S, = (k+i—D[1+gR) p(~2+i+k+0,)|
L=(@i+pA[1+gR) p(—1+i+p+v,)] (26)
O, =@{—D[1+gR) p(—2+i+uv,)]

where @ = ak, / D, represents the dimensionless flexibility coefficient. Using the Eq. (18), total number of N linear

homogenous algebraic equations is generated. The non-trivial condition leads to set zero the determinant of
coefficients matrix, as follows:

|[A—2B|=0 27)

where A;; and Bj; are determined as follows:

1 2w [ d*w, d*w. | dw, dw. )| dw. dw [ dw.
A-- — R i J +2U i J + 2 i J dR+ i J 2
i f s®w I ar "aw |\ 7ar)T? \Rar)\ R ar Yar )| ar (28)
A r* 1 dw. [ dw,
= RFI b —L L|R dR 29
N R R fm[dR} dR 29)

In the above equation, for the case of simply supported and clamped in outer edge, ¢=0 and @=o0, respectively.

2.4 Buckling of circular solid plate
Regarding to Eq. (17), for circular solid plate w; (R) is defined as follows [9]
w,(R) = (a,R* + bR + )R> (30)

In order to obtain @; and b; as constants, the following boundary conditions must be satisfied:

2.4.1 Clamped outer edge, (C-F) plate

k —1—
= ==L 31)
1+ -k 1+ 45—k
2.4.2 Simply supported outer edge, (S-F) plate
Y A+ pB)(—4+4i+p+v,)
" (—1=B+k)(—4+4di+k+B+v,)
B k(—=5+4i+k+v,)
T (1= k(4 +4i+k+ 40, 32)
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2.4.3 Elastically restrained against rotation

0L S -0,
a =—=1_—t h =1 =i
s —L S —L (33)

where
S, = (k+2i=2)[1+ g(R) K,(-3+2i+k+0,)]
L =Qi+p-D[1+gR) K,(-2+2i+ B+v,)| (34)
0, =26~ D[1+g(R) K,(~3+2i +0,)]

where A;; and Bj; are determined as follows:

! d*w, |[d*w, dw. | dw, dw, [ dw, dw, (1) )(dw, (1)
A, = R ' L1+ 20, =%+ 8| . +o|——|—"— 35
1= B dvra i e [RdR] RdR (p[ RdR )| RdR ©5)
1 dw, || dw,
B, =AR"" | |||
i j;[dR] dr G0

In the above equation, like before, for the case of simply supported ¢=0 and clamped in outer edge ¢=co.

3 NUMERICAL RESULTS

This section presents a number of numerical examples that shows the good performance of the proposed method,
which was implemented in Mathematica 5.1 computer program. The results of the developed optimized Ritz method
are compared with some other results which were obtained from FE method that are developed in ANSYS 10
commercial package. All calculation has been performed for E,=10000 Mpa, v,=0.3, a=1 m, /,=0.08 m. It was
revealed that convergent buckling load factor is obtained with 4-term series. Table (1) shows this convergence for
centrally thicker annular orthotropic plate. In presenting results, the dimensionless buckling load factor is used.
Value of this factor is obtained for plates of uniform and linearly continuously thickness.

3.1 Annular plate

Table 2 depicts the influence of parameters 7, £, r, on the buckling load factor. It is observed that with increasing
the amount of B, buckling load factor is increased too. One observes that orthotropic plate (4*>1) has more stiffness
against buckling occasion in comparison to isotropic one. Furthermore, increasing parameter y toward positive
values makes the buckling load factor to increase. Regarding to Table 1, some values of r, (r,>1) decreases the
buckling load factor A, meanwhile some other values makes it decrease. As it was expected, shown in Table 3,
clamped boundary condition represents the highest value of factor while the simply supported one shows the lowest.
The influence of parameters 7, /, r, is the same as clamped case. Tables 4-6 depict the influence of rotational
constant ¢ on buckling load factor for different value of /4. It is revealed that when ¢—0, the boundary condition is
closer to simply supported case and the loading factor shows lower than when g—oo the outer edge is clamped and
stiff against rotation.

Table 1
Convergence study for annular orthotropic plate
V4 rp m
1 2 3 4 5
-0.3 0.1 8.06227 7.82111 7.80585 7.65965 7.65696
0.3 7.64248 7.26206 7.24417 7.15621 7.15612
0.5 10.7017 10.6339 10.6283 10.6069 10.6066
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Table 2
Buckling load factor variation with simply supported outer edge
iz 4 T
0.1 0.2 0.3 04 0.5
1 -0.3 7.65965 7.08443 7.15621 8.17407 10.6069
-0.1 11.6538 11.1526 11.9511 14.4785 19.7288
0 14.0102 13.6272 14.9707 18.5588 25.7602
0.1 16.605 16.4169 18.4444 23.3258 32.8914
0.3 23.5623 23.0035 26.8698 35.1226 50.8109
2 -0.3 12.2977 11.7989 11.3131 11.6165 13.4416
-0.1 19.4974 18.8195 18.6013 20.0802 24.5068
0 23.8244 23.0811 23.1413 25.5038 31.7732
0.1 28.6657 27.8789 28.3333 31.807 40.3339
0.3 39.9593 39.1814 40.8333 47.3052 61.7521
5 -0.3 23.331 23.2335 22.7974 22.1416 22.4007
-0.1 39.3318 39.151 38.4959 38.0138 39.9237
0 49.2861 49.0655 48.3052 48.0918 51.309
0.1 60.6435 60.3648 59.3648 59.7502 64.6481
0.3 87.8954 87.4584 86.6497 88.2489 97.7947
10 -0.3 39.4051 39.2595 39.2595 38.7452 37.9053
-0.1 69.3379 69.0895 69.0894 68.2961 67.7093
0 88.3379 88.4204 88.1414 87.2232 87.0211
0.1 110.615 110.568 110.221 109.203 109.61
0.3 164.852 164.774 164.275 163.176 165.608
Table 3
Buckling load factor variation with clamped outer edge
iz e )
0.1 0.2 0.3 0.4 0.5
1 -0.3 2.38864 2.08242 1.74291 1.45192 1.22152
-0.1 3.40413 2.99726 2.59067 2.25996 2.00307
0 3.99418 3.53995 3.10666 2.76324 2.50023
0.1 4.64426 4.14536 3.69047 3.33985 3.007638
0.3 6.13934 5.56135 5.8046 4.7343 4.48982
3.865 3.70686 3.37779 2.95803 2.54578
2 -0.3 5.91459 5.67527 5.2282 4.70576 4.21785
-0.1 7.14892 6.86634 6.36338 5.79828 5.28355
0 8.53568 8.20873 7.65316 7.05245 6.51991
0.1 11.8043 11.3873 10.7398 10.0932 9.5504
0.3 7.44953 7.42653 7.29997 6.95221 6.35169
12.4039 12.3628 12.1571 11.6415 10.8251
5 -0.3 15.5186 15.467 15.2169 14.6124 13.6953
-0.1 19.1024 19.0392 18.7421 18.0519 17.0371
0 27.8088 27.7192 27.3225 26.4616 25.2822
0.1 12.7613 12.7592 12.7332 12.5904 12.1299
0.3 22.434 22.4299 22.3826 22.1401 21.4237
28.6802 28.6739 28.6134 28.3129 27.4558
10 -0.3 35.9679 35.9621 35.889 35.5252 34.5213
-0.1 54.0108 54.0021 53.8957 53.3922 52.0821
0 2.38864 2.08242 1.74291 1.45192 1.22152
0.1 3.40413 2.99726 2.59067 2.25996 2.00307
0.3 3.99418 3.53995 3.10666 2.76324 2.50023
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Table 4
Buckling load factor variation with edge elastically restrained (f=1)
V4 (4 "p
0.1 0.2 0.3 0.4 0.5
-0.3 0 2.39267 2.08653 1.74474 1.45248 1.22165
10 7.02073 6.47188 6.4328 7.14899 8.92773
00 7.78485 7.17253 7.20876 8.21381 10.6283
-0.1 0 3.4185 3.00976 2.59598 2.26171 2.00357
10 10.1649 9.62109 9.92857 11.3968 14.4472
00 11.7928 11.2945 12.0246 14.5139 19.7524
0 0 4.0144 3.55674 3.11384 2.76572 2.50097
10 11.7538 11.2724 11.8074 13.6684 17.3273
00 14.1309 13.7553 15.0361 18.5922 25.7854
0.1 0 4.66952 4.16614 3.6995 3.34309 3.07739
10 13.3724 12.9663 13.7373 15.9742 20.1736
o0 16.7082 16.5284 18.5018 23.357 32.9186
0.3 0 6.17125 5.5881 5.0932 473918 449148
10 16.6434 16.4146 17.6377 20.5221 25.5586
00 22.6 23.0801 26.9097 35.1488 50.8404
Table 5
Load factor variation with edge elastically restrained (£ = \/E )
e %4 "y
0.1 0.2 0.3 0.4 0.5
-0.3 0 3.86494 3.70778 3.37948 2.95904 2.54614
10 11.1494 10.7466 10.2355 10.2921 11.4907
00 12.3941 11.9712 11.429 11.7022 13.4887
-0.1 0 5.92078 5.68816 5.23808 4.71045 4.21952
10 16.3925 15.9406 15.5214 16.0831 18.3679
o0 19.6007 19.0235 18.7609 20.168 24.5558
0 0 7.16249 6.88791 6.37831 5.80537 5.28613
10 19.173 18.6768 18.3597 19.2084 22.0132
o0 23.9331 23.2797 23.2917 25.5881 31.8244
0.1 0 8.55772 8.23958 7.67409 7.06221 6.52353
10 22.0216 21.1903 21.2775 22.4076 25.679
00 28.762 28.062 28.4736 31.8876 40.388
0.3 0 11.8246 11.4362 10.7724 10.1088 9.56313
10 27.8305 27.2711 27.2789 28.8982 32.897
00 40.0193 39.3203 40.9454 47.3759 61.8092

3.2 Circular solid plate

Figs. 2 and 3 illustrate the variation of bucking load factor with respect to boundary condition case, orthotropic and
geometry parameters 4 and . As shown, plate with <0 (centrally thicker solid plate, ./h,<1) has lower buckling
load factor than plate with >0 (centrally thinner circular plate, h,/h,>1). Buckling factor pattern for all boundary
conditions are similar.
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Table 6
Load factor variation with edge elastically restrained (£ = \/g)
v @ )
0.1 0.2 0.3 0.4 0.5
-0.3 0 7.44981 7.42763 7.30188 6.95214 6.35201
10 20.398 20.3231 19.9702 19.3557 19.2569
© 23.5367 23.4633 23.0736 23.396 22.5735
-0.1 0 12.4127 12.3628 12.1602 11.6479 10.83
10 31.3392 31.2815 30.8997 30.2359 30.5775
0 39.4941 39.3991 38.8456 38.3133 40.103
0 0 15.5204 15.469 15.2275 14.6276 13.70421
10 37.136 37.0678 36.654 36.058 36.6338
0 49.4286 49.3058 48.672 48.401 51.4971
0.1 0 19.1036 19.0485 18.764 18.0745 17.0509
10 43.1385 43.0614 42.6181 42.0768 42.8725
© 60.7884 60.6234 59.9327 60.0692 64.8462
0.3 0 27.8251 27.7559 27.3754 26.5071 25.3083
10 55.7733 55.6721 55.182 54.7283 55.8625
o0 88.0433 87.7881 87.0796 88.5781 98.01
0 //'
i Pt ~u
o
B -a-02
S 03

Variation of buckling load factor with respect to
0 orthotropic parameter and non-dimensional geometric
parameter with clamped outer edge.

i T il Fig. 2
Z==

Square of Orthotropic parsne B2

\.\
N

//’//’/.///‘ Fig. 3
- Variation of buckling load factor with respect to

orthotropic parameter and non-dimensional geometric
parameter with simply supported outer edge.
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400
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Table 7
Comparison of results for buckling load factor in Optimized Ritz method (I) and ANSYS (II)
Via y
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
1 I 8.05 10.03 12.24 14.68 17.36 20.28 23.43
1T 7.8 9.825 12.11 14.68 17.53 20.69 24.15
1.4 I 9.87 12.43 15.32 18.54 22.1 26.04 30.26
I 9.72 12.31 15.24 18.54 22.21 26.28 30.75
1.8 I 11.56 14.69 18.25 22.24 26.67 31.57 36.94
I 11.55 14.67 18.23 22.23 26.7 31.66 37.11

Fig 4 illustrates the influence of rotational constant ¢ on buckling load factor for different values of f. For
different boundary conditions, the obtained result is the same as the annular plate. In fact, for simply supported outer
edge, the evaluated buckling load factor is lower than clamped and elastically restrained against rotation in outer
edge. As shown in Table 7, the results obtained from present method compare very well with obtained from ANSYS
commercial package. This confirms the accuracy of Optimized Ritz method in buckling analyzing of circular plates.

4 CONCLUSIONS

The buckling analysis of orthotropic circular annular and solid plates under uniform radial compression loading with
uniform and linearly varying thickness was presented. The inner edge is free while the outer edge is under different
types of classical boundary conditions and also with edges elastically restrained against rotation. This is
implemented by optimized Ritz method. In this method, an optimization exponential parameter is utilized that
buckling load factor was minimized with respect to it. Following are some of the concluding remarks:
I. Increasing orthotropic parameter and radius ratio (inner to outer radius), increases the resistance of plate
against buckling phenomena.

II. Plate with clamped boundary condition exhibits the higher value of the buckling parameter, while the simply
supported case shows lowest. Also, plate with edges elastically restrained against rotation has value of between
two boundary condition cases.

III. Centrally thinner circular plate has higher buckling parameter than centrally thicker one.
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