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ABSTRACT 
This paper investigates symmetrical buckling of orthotropic circular and annular plates of 
continuous variable thickness. Uniform compression loading is applied at the plate outer 
boundary. Thickness varies linearly along radial direction. Inner edge is free, while outer edge has 
different boundary conditions: clamped, simply and elastically restraint against rotation. The 
optimized Ritz method is applied for buckling analysis. In this method, a polynomial function that 
is based on static deformation of orthotropic circular plates in bending is used. Also, by employing 
an exponential parameter in deformation function, eigenvalue is minimized in respect to this 
parameter. The advantage of this procedure is simplicity, in comparison with other methods, while 
whole algorithm for solution can be coded for computer programming. The effects of variation of 
radius, thickness, different boundary conditions, ratio of radial Young modulus to circumferential 
one, and ratio of outer radius to inner one in annular plates on buckling load factor are 
investigated. The obtained results show that in plate with identical thickness, increasing of outer 
radius decreases the buckling load factor. Moreover, increase of thickness of the plates results in 
increase of buckling load factor. 
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1    INTRODUCTION 

RTHOTROPIC circular and annular plates are always used by mechanical, civil, aerospace and structural 
engineers and designers. Some applications of these systems are pressure vessel valve, reinforced circular 

plates by radial and circumference supporter, composite plates, cylinder head cover, bulkhead plates in submarines, 
separated plates in aircraft, optical lenses, and acoustic transducers in rockets. Woinosky [1], for the first time, 
studied the problem of elastic stability of orthotropic circular plates. He introduced numeric results by using Bessel 
function for buckling of plates. Menk et al. [2] studied on variation of thickness on buckling of orthotropic 
rectangular plate. Laura et al. [3] found critical load of buckling for isotropic annular plate with constant thickness 
by optimized Rayleigh-Ritz method. Imposed boundary condition of plate for either inner edge or outer edge was 
under different supports. Cianco [4] studied on buckling of circular and annular isotropic plate with variable 
thickness that was used as a part of submarine. This plate was considered with free support on inner edge and 
clamped support and resistant of rotation for outer edge. The thickness of plate is exponential function of its radius. 
He analyzed the plate by optimized Rayleigh-Ritz method. Bremec et al. [5] also introduced one optimized rate of 
variation of thickness for buckling of isotropic plates which both in inner edge and outer edge was under constant 
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In the present study, the axial radial symmetry is assumed. Therefore, plate is independent of azimuthal variable: 
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For orthotropic annular plate, V is derived as follows [9] 
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Also, using the stress-strain relation for orthotropic material, substituting into Eq. (1), one may obtain: 
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As shown in Fig 1 the thickness of plate is continuously varying h(r), with integrating along the thickness, the 

stored strain energy can be expressed by the following equation: 
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In above equation, ( )rD r  and ( )D r  denote circumferential and radial bending stiffness of the plate, 

respectively. In this study, annular and solid circular plates with continuously varying thickness are considered. The 
variation of thickness along the radius direction can be expressed as follows: 
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where ho and a represent the thickness in the centre (inner radius for annular plate) and the outer radius of plate, 
respectively. In order to consider the influence of non uniform thickness on buckling load factor, two values are 
assigned for the parameter n, n=0, 1 for uniform and linearly varying thickness, respectively.  is non-dimensional 
geometric parameter that may be positive (centrally thinner circular plate ) or negative (centrally thicker circular 
plate) and is defined as follows: 

For circular solid plates: 
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In above equation, rb is the ratio of inner radius to the outer one (b/a). In the sake of convenience, the variables in 
Eqs. (7) and (15) are transformed to dimensionless one, so the total potential energy functional is as follows: 
 

2 2 21 22 2 2
2 1

2 2 2 1
0

( ) ( ) 2  d
1

b

b

br

ra d W d W dW dW dW
J W g R R R R

D RdR RdR dRdR dR r R




  

 


-
+

ì é ùï üé ùæ ö æ ö ïæ ö æ ö æ öï ê ú ï÷ ÷ï ïç ç ÷ ÷ ÷ç ç çê ú÷ ÷= + + - -÷ ÷ ÷ç çí ýç ç çê ú÷ ÷ ÷ ÷ ÷ç ç ê ú÷ ÷ ÷ç ç ç÷ ÷ï ç ç ïè ø è ø è ø-è ø è øê úï ïë û ïþë ûïî
ò  (12) 

 
that, 
 

3
3

0( ) (1 ) , ,
12(1 )

r o

r

E h r
g R R D R

a


 

= + = =
-

 (13) 

 
where λ is the buckling load factor that is related to buckling load as follows: 
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2.2 Optimized Ritz method 

Considering the fact that Rayleigh-Ritz method is an upper bound method, the determined eigenvalue is more than 
real one. Therefore, if one can optimize it somehow, the results will be closer to real one. In general, the function 
which introduces the unknown quantity, is a linear combination of shape modes n , as follows: 
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where cn is the unknown constants. According to the idea of optimization, by performing the Optimized Rayleigh-
Ritz method, it is quite convenient to approximate f(x) by means of a summation: 
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Note that k in above equation is the exponential optimization parameter. Regarding to the Eq. (16), out-plane 

displacement W(R) is given as follows: 
 

1

( ) ( , )
N

i i
i

W R c w R k
=

=å  (17) 

 
By minimizing potential energy functional in Rayleigh-Ritz method: 
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Total number of N linear homogenous algebraic equations are generated that the unknowns are constants cn. It 

forms the eigenvalue problem that the eigenvlaues are the values of buckling load parameter. The non-trivial 
condition leads to a transcendental equation in whose lowest root is the desired buckling load factor [4]. Since 

/ 0,k¶ ¶ =  by requiring, one is able to optimize the fundamental eigenvalue. 
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2.3 Buckling of annular plate 

Regarding to the Eq. (17), wi (R,k) is defined as follows [9] 
 

1 1( ) ( 1)k i
i i iw R a R b R R+ -= + +  (19) 

 
Unknown constants ai and bi are determined by applying boundary conditions. 

2.3.1 Clamped outer edge (F-C) plate  

For a clamped outer edge, in ra or R1, the governing boundary conditions are: 
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By substitution Eq. (19) into eq. (20), the ai and bi values are determined as follows: 
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2.3.2 Simply supported outer edge (S-F) plate 

For a simply supported outer edge, the out-plane displacement must satisfy the following conditions: 
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Considering the boundary condition in outer edge, the ai and bi values are determined: 
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2.3.3 Elastically restrained against rotation 

For the case of elastically restrained against rotation: 
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where ai and bi values are determined as follows: 
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In above equation, Si, Qi, and Li are defined as follows: 
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where 0/ak D =  represents the dimensionless flexibility coefficient. Using the Eq. (18), total number of N linear 

homogenous algebraic equations is generated. The non-trivial condition leads to set zero the determinant of 
coefficients matrix, as follows: 
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where Aij and Bij are determined as follows: 
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In the above equation, for the case of simply supported and clamped in outer edge, =0 and =, respectively. 

2.4 Buckling of circular solid plate 

Regarding to Eq. (17), for circular solid plate wi (R) is defined as follows [9] 
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In order to obtain ai and bi as constants, the following boundary conditions must be satisfied: 

2.4.1 Clamped outer edge, (C-F) plate  
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2.4.2 Simply supported outer edge, (S-F) plate 
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2.4.3 Elastically restrained against rotation 
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where 
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where Aij and Bij are determined as follows: 
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In the above equation, like before, for the case of simply supported 0 and clamped in outer edge . 

3    NUMERICAL RESULTS 

This section presents a number of numerical examples that shows the good performance of the proposed method, 
which was implemented in Mathematica 5.1 computer program. The results of the developed optimized Ritz method 
are compared with some other results which were obtained from FE method that are developed in ANSYS 10 
commercial package. All calculation has been performed for Er10000 Mpa, υө0.3, a=1 m, ho0.08 m. It was 
revealed that convergent buckling load factor is obtained with 4-term series. Table (1) shows this convergence for 
centrally thicker annular orthotropic plate. In presenting results, the dimensionless buckling load factor is used. 
Value of this factor is obtained for plates of uniform and linearly continuously thickness. 

3.1 Annular plate 

Table 2 depicts the influence of parameters , 2, rb on the buckling load factor. It is observed that with increasing 
the amount of β, buckling load factor is increased too. One observes that orthotropic plate (2>1) has more stiffness 
against buckling occasion in comparison to isotropic one. Furthermore, increasing parameter   toward positive 
values makes the buckling load factor to increase. Regarding to Table 1, some values of rb (rb>1) decreases the 
buckling load factor λ, meanwhile some other values makes it decrease. As it was expected, shown in Table 3, 
clamped boundary condition represents the highest value of factor while the simply supported one shows the lowest. 
The influence of parameters , 2, rb is the same as clamped case. Tables 4-6 depict the influence of rotational 
constant  on buckling load factor for different value of 2. It is revealed that when 0, the boundary condition is 
closer to simply supported case and the loading factor shows lower than when  the outer edge is clamped and 
stiff against rotation.	
 
Table 1 
Convergence study for annular orthotropic plate 
 rb m     
  1 2 3 4 5 
-0.3 0.1 8.06227 7.82111 7.80585 7.65965 7.65696 
 0.3 7.64248 7.26206 7.24417 7.15621 7.15612 
 0.5 10.7017 10.6339 10.6283 10.6069 10.6066 
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Table 2 
Buckling load factor variation with simply supported outer edge 
2  rb     
  0.1 0.2 0.3 0.4 0.5 
1 -0.3 7.65965 7.08443 7.15621 8.17407 10.6069 
 -0.1 11.6538 11.1526 11.9511 14.4785 19.7288 
   0 14.0102 13.6272 14.9707 18.5588 25.7602 
   0.1 16.605 16.4169 18.4444 23.3258 32.8914 
   0.3 23.5623 23.0035 26.8698 35.1226 50.8109 
       
2 -0.3 12.2977 11.7989 11.3131 11.6165 13.4416 
 -0.1 19.4974 18.8195 18.6013 20.0802 24.5068 
   0 23.8244 23.0811 23.1413 25.5038 31.7732 
   0.1 28.6657 27.8789 28.3333 31.807 40.3339 
   0.3 39.9593 39.1814 40.8333 47.3052 61.7521 
       
5 -0.3 23.331 23.2335 22.7974 22.1416 22.4007 
 -0.1 39.3318 39.151 38.4959 38.0138 39.9237 
   0 49.2861 49.0655 48.3052 48.0918 51.309 
   0.1 60.6435 60.3648 59.3648 59.7502 64.6481 
   0.3 87.8954 87.4584 86.6497 88.2489 97.7947 
       
10 -0.3 39.4051 39.2595 39.2595 38.7452 37.9053 
 -0.1 69.3379 69.0895 69.0894 68.2961 67.7093 
   0 88.3379 88.4204 88.1414 87.2232 87.0211 
   0.1 110.615 110.568 110.221 109.203 109.61 
   0.3 164.852 164.774 164.275 163.176 165.608 
 
 
 
 
Table 3 
Buckling load factor variation with clamped outer edge 
2  rb     
  0.1 0.2 0.3 0.4 0.5 
1 -0.3 2.38864 2.08242 1.74291 1.45192 1.22152 
 -0.1 3.40413 2.99726 2.59067 2.25996 2.00307 
   0 3.99418 3.53995 3.10666 2.76324 2.50023 
   0.1 4.64426 4.14536 3.69047 3.33985 3.007638 
   0.3 6.13934 5.56135 5.8046 4.7343 4.48982 
  3.865 3.70686 3.37779 2.95803 2.54578 
2 -0.3 5.91459 5.67527 5.2282 4.70576 4.21785 
 -0.1 7.14892 6.86634 6.36338 5.79828 5.28355 
   0 8.53568 8.20873 7.65316 7.05245 6.51991 
   0.1 11.8043 11.3873 10.7398 10.0932 9.5504 
   0.3 7.44953 7.42653 7.29997 6.95221 6.35169 
  12.4039 12.3628 12.1571 11.6415 10.8251 
5 -0.3 15.5186 15.467 15.2169 14.6124 13.6953 
 -0.1 19.1024 19.0392 18.7421 18.0519 17.0371 
   0 27.8088 27.7192 27.3225 26.4616 25.2822 
   0.1 12.7613 12.7592 12.7332 12.5904 12.1299 
   0.3 22.434 22.4299 22.3826 22.1401 21.4237 
  28.6802 28.6739 28.6134 28.3129 27.4558 
10 -0.3 35.9679 35.9621 35.889 35.5252 34.5213 
 -0.1 54.0108 54.0021 53.8957 53.3922 52.0821 
   0 2.38864 2.08242 1.74291 1.45192 1.22152 
   0.1 3.40413 2.99726 2.59067 2.25996 2.00307 
   0.3 3.99418 3.53995 3.10666 2.76324 2.50023 
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Table 4 
Buckling load factor variation with edge elastically restrained (=1) 
  rb     
  0.1 0.2 0.3 0.4 0.5 
-0.3 0 2.39267 2.08653 1.74474 1.45248 1.22165 
 10 7.02073 6.47188 6.4328 7.14899 8.92773 
  7.78485 7.17253 7.20876 8.21381 10.6283 
       
-0.1 0 3.4185 3.00976 2.59598 2.26171 2.00357 
 10 10.1649 9.62109 9.92857 11.3968 14.4472 
  11.7928 11.2945 12.0246 14.5139 19.7524 
       
  0 0 4.0144 3.55674 3.11384 2.76572 2.50097 
 10 11.7538 11.2724 11.8074 13.6684 17.3273 
  14.1309 13.7553 15.0361 18.5922 25.7854 
       
  0.1 0 4.66952 4.16614 3.6995 3.34309 3.07739 
 10 13.3724 12.9663 13.7373 15.9742 20.1736 
  16.7082 16.5284 18.5018 23.357 32.9186 
       
  0.3 0 6.17125 5.5881 5.0932 4.73918 4.49148 
 10 16.6434 16.4146 17.6377 20.5221 25.5586 
  22.6 23.0801 26.9097 35.1488 50.8404 
 
 
 
 
Table 5 

Load factor variation with edge elastically restrained ( 2) =  

  rb     
  0.1 0.2 0.3 0.4 0.5 
-0.3 0 3.86494 3.70778 3.37948 2.95904 2.54614 
 10 11.1494 10.7466 10.2355 10.2921 11.4907 
  12.3941 11.9712 11.429 11.7022 13.4887 
       
-0.1 0 5.92078 5.68816 5.23808 4.71045 4.21952 
 10 16.3925 15.9406 15.5214 16.0831 18.3679 
  19.6007 19.0235 18.7609 20.168 24.5558 
       
  0 0 7.16249 6.88791 6.37831 5.80537 5.28613 
 10 19.173 18.6768 18.3597 19.2084 22.0132 
  23.9331 23.2797 23.2917 25.5881 31.8244 
       
  0.1 0 8.55772 8.23958 7.67409 7.06221 6.52353 
 10 22.0216 21.1903 21.2775 22.4076 25.679 
  28.762 28.062 28.4736 31.8876 40.388 
       
  0.3 0 11.8246 11.4362 10.7724 10.1088 9.56313 
 10 27.8305 27.2711 27.2789 28.8982 32.897 
  40.0193 39.3203 40.9454 47.3759 61.8092 
 

3.2 Circular solid plate 

Figs. 2 and 3 illustrate the variation of bucking load factor with respect to boundary condition case, orthotropic and 
geometry parameters 2 and . As shown, plate with <0 (centrally thicker solid plate, ha/ho<1) has lower buckling 
load factor than plate with >0 (centrally thinner circular plate, ha/ho>1). Buckling factor pattern for all boundary 
conditions are similar. 
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