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 ABSTRACT 

 In this study, free vibration of a foam-core orthotropic smart composite cylindrical shell (SCCS) 
filled with a non-viscous compressible fluid, subjected to combined electro-thermo-mechanical 
loads is investigated.  Piezoelectric polymeric cylindrical shell, is made from polyvinylidene 
fluoride (PVDF) and reinforced by armchair double walled boron nitride nanotubes (DWBNNTs). 
Characteristics of the equivalent composite are determined using micro-electro-mechanical 
models. The poly ethylene (PE) foam-core is modeled based on Winkler and Pasternak 
foundations. Employing the charge equation for coupling electrical and mechanical fields, the 
problem is turned into an eigenvalue one, for which analytical frequency equations are derived 
considering free electrical and simply supported mechanical boundary conditions at circular 
surfaces at either ends of the cylindrical shell. The influence of electric potential generated, filled-
fluid, orientation angle of DWBNNTs, foam-core and a few other parameters on the resonance 
frequency of SCCS are investigated. Results show that SCCS and consequently the generated Φ 
improve sensor and actuator applications in several process industries, because it not only 
increases the vibration frequency, but also extends economic viability of the smart structure. 
                                                                                  © 2012 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 ANO smart composites (NSCs) are materials containing dispersion of nanoparticles in a piezoelectric matrix. 
Recently, composites with smart nano-reinforcements such as DWBNNTs in piezoelectric polymer like PVDF 

have been the subject of intense research. In applications where structural integrity is required, NSCs show 
improved tensile strength, heat deflection temperature, stiffness, and toughness.  

Cylindrical shells have vast applications in many engineering fields such as chemical, mechanical aerospace, 
civil, naval, and nuclear industries. The study of free vibration behavior of circular cylindrical shells has therefore 
been carried out extensively by many investigators. [1-11]  

Fluid-filled cylindrical shells are used in many engineering unit operations and structures, such as pressure 
vessels, oil tankers, aeroplanes, storage tanks under earthquake waves, nuclear fuel storage poolships, and marine 
crafts. Junger and Mass [12], and later Jain [13] studied coupled vibrations of fluid-filled cylindrical shells based on 
shear shell theory and discussed the free vibrations of orthotropic cylindrical shells filled partially or completely 
with an incompressible, non-viscous fluid. Frequency response of cylindrical shells partially submerged or filled 
with liquid was investigated by Goncalves and Batista [14]. An exact solution to the free vibration of a transversely 
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isotropic cylindrical shell filled with fluid was proposed by Chen and Ding [15]. Chung [16] compared analytical 
and experimental investigations carried out by him on the vibration characteristics of cylindrical shells filled with 
fluid. Amabili [17] studied natural frequencies and mode shapes of a simply-supported circular cylindrical shell, 
partially filled with liquid and further extended his study to include the free vibrations of these shells entirely filled 
with a dense fluid and partially immersed in various fluids under different end conditions (Amabili [18]). Pellicano 
and Amabili [19] studied the stability and vibration of empty and fluid-filled circular cylindrical shells under static 
and periodic axial loads. Chen et al. [20, 21] improved the previous work by introducing three-dimensional vibration  
analysis of fluid-filled orthotropic functionally graded piezoelectric cylindrical shells. Later, free vibrations of fluid- 
filled cylindrical shells on elastic foundations were investigated by Gunawan Tj et al. [22] who studied the effect of 
fluid and foundation parameters such as spring stiffness on the natural frequency of the shell vibration. Recently, 
Daneshmand and Ghavanloo [23] investigated the coupled free vibration analysis of a fluid-filled rectangular 
container with a sagged bottom membrane. Also, coupled vibrations of a partially fluid-filled cylindrical shell was 
studied by Askari et al. [24] who considered the effect of free surface waves in their analysis. 

It is worth noting that none of the articles mentioned above considered NSCs. Vibration analysis of SCCS with 
great potentials in manufacturing of actuators and sensors slows the transmission of gases and moisture vapor as a 
consequence of their exceedingly high surface area-to-volume ratio. Regarding composites, Gibson and Ronald [25] 
studied their numerical behavior when subjected to mechanical and thermal loading. The embedding of piezoelectric 
materials in the form of fibers into a polymer matrix was implemented by Bent et al [26]. Free vibration of 
composite plates and cylindrical shell panels were studied by Messina and  Soldatos [27] using a higher-order 
theory. Micro-electro-mechanical models were afterwards used by Tan and Tong [28] to predict the characteristics 
for piezoelectric-fiber-reinforced composite materials. They investigated effects of geometrical parameters on the 
effective electroelastic constants, and discussed the convergence of the rectangle-cylinder model. Free vibration and 
buckling analysis of composite cylindrical shells conveying hot fluid was proposed by Kadoli and Ganesan [29]. 
Active control of laminated cylindrical shells using piezoelectric fiber reinforced composites was investigated by 
Ray and Reddy [30]. In another study, vibration and buckling of cross-ply laminated composite circular cylindrical 
shells were studied by Matsuna [31] based on a global higher-order theory. Rahmani et al. [32] investigated free 
vibration response of composite sandwich cylindrical shell with flexible core. Buckling and vibration analysis of 
these plate/shell structures via a smoothed quadrilateral flat shell element with in-plane rotations was studied by 
Nguyen-Van [33]. Recently, electro-thermo-mechanical torsional buckling of a piezoelectric polymeric cylindrical 
shell reinforced by DWBNNTs with an elastic core was studied by Mosallaie Barzoki et al. [34]. 

So far, very few researchers have used charge equation for coupling between electric and mechanical fields, and 
hence the studies carried out by them mistakenly over-simplify the important influence of electric potential on the 
resonance frequency.  Including this in the analysis presents a complex governing equation with respect to axial, 
circumferential, longitudinal displacements as well as the electric potential, whose solution can no longer be solved 
as a normal eigenvalue problem. However, using matrices algebraic rules, the problem is turned into a solvable 
eigenvalue one. Hence, in this study, effects of the fluid, electric potential and foam-core on the resonance frequency 
of SCCS, subjected to electro-thermo-mechanical loadings are investigated. Consequently, analytical frequency and 
electric potentials are derived for free electrical and simply supported mechanical boundary conditions.  

2    ELECTROMECHANICAL BEHAVIOUR OF SMART COMPOSITE 

Consider a SCCS whose shell is polymeric piezoelectric PVDF as matrix, and is reinforced by armchair DWBNNTs, 
whose constituents are assumed to be homogeneous. The stresses (mechanical) and electric fields are taken as 
independent variables in the piezoelectric constitutive equations, and when coupled may be written as [35, 36] 
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where ij  and ij  are the stresses, ij  is the strain, iiE  is the electric field, iiD  is the electric displacement and
 ijC , 

ije , ii are elastic, piezoelectric, and dielectric constants, while ii  and T  refer to thermal expansion coefficient 

and thermal gradient, respectively. Using approach adopted by Tan and Tong [28] in which they use representative 
volume element (RVE) base on micro-electro-mechanical models, the mechanical, thermal and electrical properties 
of the SCCS are determined using Eq. (1) as presented in Appendix A. 

3    STRESS - STRAIN RELATIONS 

Shear strains ,xz z   are considered negligible in the Kirchhoff deformation theory. Hence, the tangential 

displacements u , v  become linear functions of z , the radial coordinate [37]. In other words 
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The strain components xx ,   and x  at an arbitrary point of the shell are related to the middle surface strains 

xx ,   and x and to the changes in the curvature and torsion of the middle surface xxk , k  and xk by the 
following relationships   
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where u , v  and w ,  describe the displacements in the orthogonal coordinate system x ,  , z  , established at the 
middle surface of the shell . 

4    MATHEMATICAL EQUATION OF MOTION FOR SCCS  

Fig. 1 illustrates a SCCS filled with fluid, in which l , sR , h , and s , correspond to length, mean radius, thickness 

and density of the shell, respectively. The foam-core has radius cR , elastic module cE  and Poisson's ratio c .  

 
 
 
 
 
 
 
 
Fig.1 
Smart composite cylindrical shell with an elastic core 
containing fluid. 
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Charge equation for coupling electrical and mechanical fields is [21] 
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Hence, the three equations of motion for the linear analysis of a cylindrical shell using Donell's shell theory [38] 
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where xxN , N  and xN  express the membrane forces of the middle surface; xxM , M  and xM  refer to the 
internal moments; xxP , P  and zzP  are axial, circumferential and longitudinal external forces; and xxD , D  and 

zzD  represent axial, circumferential and longitudinal electric displacements, respectively. At free vibration here, the 
external forces become zero and since the electrodes are located at either ends of the cylindrical shell with 
DWBNNTs laid out in the longitudinal direction, D  and zzD become zero. xD on the other hand may be written as 

[35]: 
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where electric field, xxE  , in term of electric potential is [35]: 
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Using Eq. (3), the constitute relations expressed in Eq. (1) are reduced to  
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where ijQ  is the corresponding elastic constant in global coordinate, defined as: 
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Here,   is the orientation angle between the global and local cylindrical co-ordinates, corresponding to the angle 

between DWBNNTs and the main axis of the matrix.  
Integrating the stresses and the remaining electric displacement across the thickness of shell yields 
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where 
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4.1 Boundary conditions 

As mentioned before, in the free vibrations of a SCCS, the boundary conditions defined for two ends circular 
surfaces are free electrical and simply supported mechanical boundary conditions. For the electrical boundary 
conditions, 0 , and for the mechanical one 0,  xxwwvu .The mechanical boundary condition is selected 

because in practice simply supported ends could be achieved approximately by connecting the shell to thin end 
plates and rings. Hence, the three displacement and one electric potential mode shapes may be written as [21]: 
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where  represents vibration frequency of shell, m  and n  are half axial and circumferential wave numbers, 
respectively. It should be noted that m is any positive number, while n  is an integer, and

 
)4,..,1(, iAi  represent 

displacement and electric potential amplitudes. 

4.2 Solution procedure 

To generalize the solution, all variables are made dimensionless. For this, the following dimensionless quantities are 
introduced 
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4.2.1 Fluid structure 

For a hollow cylinder completely filled with compressible, non-viscous fluid, the mechanical force can be written as 
[21]: 
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(16)   

  
 

 
where f  is the density of fluid and therefore 0f , corresponds to a case where no fluid is present. Also, )(vJ n  

and )(vI n  are Bessel and modified Bessel functions of the first kind, respectively. v  is on the other hand a 
dimensionless parameter defined as : 

 

,)/( 2222 mVv   

          
(17)         

 

where fs ccV  , in which fc  is the sound velocity in fluid and ss Cc 11  is the velocity of elastic wave in the  

solid and 
11C

h s  is dimensionless frequency. 

4.2.2 Foam core structure 

In this study, the elastic foam core, made from PE is modelled as the Winkler spring constant and the Pasternak 
shear constant for the SCCS. The foam core force applied to the SCCS is then expressed as [38]: 
 

),()2( 2wKwKRPF Gwsoo    
         (18)   

 
where wK and GK  are Winkler and Pasternak modules, respectively, and oP  is also the pressure generated on the 
foam core outer interface due to shell vibration. Based on the assumption of a linear, homogeneous and isotropic 
foam core the pressure oP  may be written as [39]: 
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where in-fill ratio   (corresponding to the thickness of the foam core) is also defined as sc RR . Replacing the 
boundary condition in z  direction, w , in Eq. (18), yields the foam-core force as: 
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4.2.3 Overall governing equations 

In order to obtain the expressions for forces and moments of the shell, the surface strains and curvatures in Eq. (3) 
are substituted into Eqs. (6-11). Replacing these into the shell dynamic Eq. (5) and charge Eq. (4), the overall 
governing equations for a modified SCCS in which fluid and foam-core forces are taken into account, may be 
written in the differential operator form as: 
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However, as can be seen from Eq. (22), in the  ( 44M ) matrix, there are both a row and a column with zero 

arrays, making the problem unsolvable using eigenvalue technique. Applying algebraic rules for matrices, could 
assist in omitting these zero arrays and turning the governing equation into the following linear relation, which can 
now be solved using the eigenvalue technique. 
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Let the matrix determinant be zero to obtain the non-dimensional frequency  . Replacing   in Eq. (25) yields 

the displacement amplitudes 1A , 2A  and 3A . However, the electric amplitude may be expressed as: 
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The amplitude ratios of the vibration modes associated with Eq. (25) becomes 
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In Eq. (27), the ratios 31 AA and 32 AA describe the amplitude ratios. In the above, 3A , the remaining third 

coefficient in Eq. (25), is treated as a scale factor representing the vibration amplitude.  

5    RESULT AND DISCUSSION 

Assuming water is the filling fluid, its effects ( 3Kg/m1000f ), as well as those of the partially filled foam-core 

and electric potential on the dimensionless resonant frequencies ( ) and the associated dimensionless amplitude 
ratios ( 31 AA and 32 AA ) of simply supported SCCS with cm20sR , cm100l , cm03.0sh can now be 
investigated using the proposed method. The material properties of SCCS with PVDF as a matrix were found to be 
as follows [34]: 
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Employing DWBNNTs as the matrix reinforcer provides the following material properties [34]: 
 

2
111.8 Tpa, 0.34, 0.95 C/ m , 1.2 6 1 / K, 0.6 6 1/ K .      xE e e e    

 
For PE foam-core, the material properties are [34]: 
 

125 Gpa, 0.30. c cE   
 

 
In the present work, the vibration of SCCS with an elastic core containing fluid has been studied. Since, no reference 
to such a work is found to-date in the literature, its validation is not possible. However, in an attempt to validate this 
work as far as possible, axial buckling of SCCS with an elastic core was studied which in the absence of electric 
field and fluid and considering 0  , 200GPasE  , 0.3s  , 0.1524mmh  , 76.2mmsR  , 100mmsL   and 

0.1f  is similar to that presented by [11]. For this purpose, the displacement satisfying our boundary condition is 
[11]: 
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(28) 

 
where q

 
and   are amplitude and circumferential wave number, respectively. At this stage, shell critical stress 

( crit
x ) is determined by dividing crit

xN  to the thickness of shell ( h ). ( crit
x ) is then normalized, by dividing it to 0  

defined as: 
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Fig. 2 illustrates the results of validation exercise by plotting 
0

 crit
x  versus  for 1/ 10c sE E  in the presence 

and absence of electric field. As can be seen, in case of no electric field, the results obtained are the same as those 
expressed in [11], indicating validation of our work.  

Fig. 3 illustrates the graph of dimensionless frequency  , versus circumferential wave number, n, for different 
half axial wave number, m, in both fluid-filled and empty shells. As can be seen,   is lower for fluid-filled than the 
empty shell, and the higher the m, the higher is the  . The influence of fluid on the vibration frequency is so 
significant that it matches for m=1 in empty shell with that of m=17 for a similar shell filled with fluid. When shell 
is filled with the fluid,   does not vary significantly as m increases, while for empty shells,   increases with 
increase in m.  

Fig. 4 shows the dimensionless frequency   versus orientation angle θ of DWBNNT in the polymer, at various 
sound speeds, V. This is a periodic function with a period of 2π, indicating that higher sound speed in the fluid 
causes the vibration frequency to be raised. The change in frequency is much more significant for low sound speed 
in the fluid, V, than higher ones. The observation that there is little changes in frequency for higher sound speed, 
matches that of reference [21].  

Fig. 5 demonstrates   against ratio of infill, η, for different stiffness ratios of (Ec/Es) without considering the 
charge equation which shows effect of electric potential, Φ generated due to piezoelectric characteristics of the 
SCCS. Fig. 6 is the same as Fig. 5, however the effect of electric potential is considered in it. These figures show 
that in general, the electric potential increases vibration frequency, and also as η increased (or form-core percentage 
is reduced), the frequency   decreases and this decrease appear to be more significant at higher η's. The stiffer the 
foam-core, the higher is the vibration frequency and the higher is the variation in  . In the absence of Φ as in Fig. 
4, little change in   is observed up to η=0.3 which makes foam-cores with η higher than o.3 not economically 
justifiable. However, presence of Φ (as in Fig. 6) extends this limit of η=o.3 to 0.65. This result illustrates the 
economic importance of applying smart composite in this work, since Φ generated along the cylindrical shell not 
only increase   but also reduces the need for the foam-core to bring down the magnitude of  .  

As regards the geometric characteristics, Fig. 7 shows the graph of   versus the aspect ratio (Rs/h) for different 
η's, indicating a sharp decrease in   within the aspect ratio range of 20-40, above which   reduces very slightly. 
This trend is observed irrespective of the η applied.   

To highlight the importance of the influence of generated electric field being investigated in this study, Fig. 8 is 
produced to present variation in Φ generated due to piezoelectric characteristics of the SCCS along the cylinder 
length for various η. As can be seen from Fig. 8 (plotted for m=2 and n=1), the higher the η's, the higher is the 
amplitude of Φ generated, and consequently the lower is the  . It is also concluded that the free electrical boundary 
conditions is satisfied in the circular surfaces at both ends of the SCCS.  

Fig. 9 shows the variations of Φ generated against time for different η's, indicating a period of 12 seconds 
irrespective of η's used. In the solid foam-core (i.e. η=0), the amplitude of Φ generated remains small (up to 0.1), but 
as η is increased, it increases to a maximum of 2.2.  

Graphs of amplitude ratios 31 AA and 32 AA against m for different values of n are plotted in Figs. 10 and 11, 
respectively. As the half axial wave number m is increased from 1 to 10, the dimensionless amplitude ratio is 
reduced and finally converges to a fix value as n is increased.  
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Fig.2 
Dimensionless critical stress versus   for 1/ 10c sE E in 

the presence and absence of electric field. 

 

 
 
 
 
 
 
 
 
Fig.3 
Dimensionless frequency versus circumferential wave 
number for different half axial wave numbers for both 
fluid-filled and empty shell. 
 

 

 

 
 
 
 
 
 
 
 
Fig.4 
Dimensionless frequency versus orientation angle of 
DWBNNT at various sound speeds. 
 

 

 
 

 

 

 

Fig.5 
Dimensionless frequency versus ratio of infill for different 
stiffness ratios of foam-core without considering electric 
potential. 
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Fig.6 
Dimensionless frequency versus ratio of infill for different 
stiffness ratios of foam-core with considering electric 
potential. 

 
 

 
 

 

 

 

Fig.7 
Dimensionless frequency versus the aspect ratio for 
different ratios of infill. 
 

 

 
 
 
 
 
 
 
 
 
Fig.8 
Electric potential versus the cylinder length for different 
ratios of infill. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.9 
Electric potential versus time for different ratios of infill. 
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Fig.10 
Amplitude ratio 31 AA  versus circumferential wave 

number for different values of half axial wave numbers. 
 
 

 

 

 
 
 
 
 
 
 
 
 
Fig.11 
Amplitude ratio 32 AA  versus circumferential wave 

number for different values of half axial wave numbers. 
 
 

6    CONCLUSION 

Applying charge equation for coupling mechanical and electrical fields, the influence of electric potential generated 
due to piezoelectric characteristics Φ, filled-fluid and foam-core were investigated on the resonance frequency   of 
a smart composite cylindrical shell, SCCS, made from PVDF matrix reinforced with DWBNNTs having a PE foam-
core filled with a fluid. Electric potential increases the resonance frequency considerably, indicating a favourite 
potential for this smart structure to be used in actuators and sensors in a range of industrial applications.    

Following investigating the orientation angle of reinforced nanotube, geometrical characteristics   of the structure 
and the stiffness ratio of the foam-core, it could be said that increasing in-fill ratio of the foam-core η, decreased  . 
Application of SCCS and consequently the generated Φ, extend economic viability of the smart structure from in-fill 
ratio η=o.3 to η=0.65, thereby reducing the need for the foam-core to bring down the magnitude of  . Also,   is 
lower for fluid-filled than the empty shell and the influence of filled fluid on the vibration frequency is so significant 
that the   matches for m=1 in empty shell with that of m=17 for a similar shell filled with fluid. 
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APPENDIX A 
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(A.2) 

 
 
Subscripts r  and m  refer to the reinforced and matrix components of the composite, respectively.   is also the 

vol % of the reinforced DBNNTs.  
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