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 ABSTRACT 

 The object of the present paper is to study heat conduction and thermal stresses in 

a hollow cylinder with nonhomogeneous material properties. The cylinder is 

subjected to sectional heating at the curved surface. All the material properties 

except for Poisson’s ratio and density are assumed to be given by a simple power 

law in the axial direction. A solution of the two-dimensional heat conduction 

equation is obtained in the transient state. The solutions are obtained in the form 

of Bessel’s and trigonometric functions. For theoretical treatment, all the physical 

and mechanical quantities are taken as dimensional, whereas we have considered 

non-dimensional parameters, for numerical analysis. The influence of 

inhomogeneity on the thermal and mechanical behaviour is examined. The 

transient state temperature field and its associated thermal stresses are discussed 

for a mixture of copper and tin metals in the ratio 70:30 respectively. Numerical 

calculations are carried out for both homogeneous and nonhomogeneous cylinders 

and are represented graphically. 

                                     © 2018 IAU, Arak Branch. All rights reserved. 

 Keywords: Hollow cylinder; Heat conduction; Thermal stresses; Inhomogeneity; 

Shear modulus.  

1    INTRODUCTION 

 HE advancement in efficient modeling and methodology for thermoelastic analysis of structure members 

requires a variety of the material characteristics to be taken into consideration. Due to the critical importance of 

such analysis for adequate determination of operational performance of structures, it presents a great deal of interest 

for scientists in both academia and industry. However, the assumption that the material properties depend on spatial 

coordinates (material inhomogeneity) presents a major challenge for analytical treatment of relevant heat conduction 

and thermoelasticity problems. The main difficulty lies in the need to solve the governing equations in the 

differential form with variable coefficients which are not pre given for arbitrary dependence of thermophysical and 

thermoelastic material properties on the coordinate. Particularly, for functionally graded materials, whose properties 

vary continuously from one surface to another, it is impossible, except for few particular cases, to solve the 

mentioned problems analytically (Tanigawa, [21]). The analytical, semi analytical, and numerical methods for 

solving the heat conduction and thermoelasticity problems in inhomogeneous solids attract considerable attention in 

recent years. Many of the existing analytical methods are developed for particular cases of inhomogeneity (e.g. in 

the form of power or exponential functions of a coordinate, etc.). The methods applicable for wider ranges of 
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material properties are oriented mostly on representation of the inhomogeneous solid as a composite consisting of 

tailored homogeneous layers. However, such approaches are inconvenient for applying to inhomogeneous materials 

with large gradients of inhomogeneity due to the weak convergence of the solution with increasing the number of 

layers.  

Al-Hajri et al. [1] used an extended integral transform to solve heat conduction equation of a hollow cylinder. 

Arefi et al. [2] studied the thermoelastic analysis of an arbitrary structure (functionally graded piezoelectric) using 

energy method. Cho et al. [4] investigated an elastodynamic solution for the thermal shock stress in an orthotropic 

cylindrical shell using finite Hankel transform and Laplace transform. Deshmukh et al. [5] studied the problem of 

dynamic thermal stresses in a circular plate by a moving heat source. Deshmukh et al. [6] determined quasi-static 

thermal stresses due to an instantaneous point heat source. Ghasemi et al. [8] presented the analytical and numerical 

investigation of a cylindrical shell made of functionally graded materials (FGMs) reinforced by laminated composite 

subjected to internal pressure. Ghorbanpour et al. [9, 10] studied thermopiezoelectric behaviour of a thick walled 

cylinder with functionally graded material and stress analysis of carbon nano-tube reinforced composite cylinder 

made of poly-vinylidene fluoride. Hata [11] studied thermal stresses in a nonhomogeneous medium whose shear 

modulus and coefficient of thermal expansion are assumed to vary axially. Hosseini et al. [12] obtained an analytical 

solution in transient thermoelasticity of functionally graded thick hollow cylinders. Jabbari et al. [13] developed the 

general solution of steady-state one dimensional asymmetric thermal stresses and electrical and mechanical 

displacements of a hollow cylinder made of functionally graded material and piezoelectric layers. Kassir [14] 

investigated thermal stress problems in a thick plate and a semi-infinite body in non-homogeneous solids. Kaur et al. 

[15] applied Seth’s transition theory to the problems of thickness variation parameter in a thin rotating disc by finite 

deformation. Kim et al. [16] adopted a Green's function approach based on the laminate theory for solving the two-

dimensional unsteady temperature field (r, z) and the associated thermal stresses in an infinite hollow circular 

cylinder. Morishita et al. [17] considered a nonhomogeneous semi-infinite body subject to an arbitrary shaped 

distributed load on its boundary surface as an analytical model, in which the fundamental equations system for the 

medium are given by three kinds of displacement functions. Noda et al.  [19] studied the theoretical treatment of a 

transient thermoelastic problem involving a functionally graded solid circular disk with piecewise power law due to 

uniform heat supply from an outer surface. Ootao et al. [20, 21] developed a theoretical analysis of a three-

dimensional transient thermal stress problem for a nonhomogeneous hollow sphere with respect to rotating heat 

source and a hollow circular cylinder due to a moving heat source by assuming nonhomogeneous thermal and 

mechanical material properties. 

Ootao [22, 23, and 24] used piecewise power law nonhomogenity to study transient thermoelastic analysis for a 

multilayered hollow cylinder and a functionally graded hollow circular disk. Rezaei et al. [25] presented thermal 

buckling analysis of rectangular functionally graded plates (FG plates) with an eccentrically located elliptic cutout. 

Sugano [26] analyzed a plane thermoelastic problem in a non-homogeneous doubly connected region under a 

transient temperature field by stress function method. Sugano [27] presented an expression for nonzero thermal 

stress in a nonhomogeneous flat plate with arbitrary variation in mechanical properties under a transient temperature 

distribution. Sugano [28] formulated a plane thermoelastic problem in a nonhomogeneous doubly connected region 

under a transient temperature field. Sugano et al. [29] studied transient plane thermal stress problem in a non-

homogeneous hollow circular plate by expressing Young’s modulus and thermal conductivity in different power 

laws of radial coordinate. Tanigawa et al. [30] studied elastic behavior for a medium with Kasser’s 

nonhomogeneous material property. They theoretically developed axisymmetric problem for a semi-infinite body 

subjected to an arbitrarily shaped distributed load and a concentrated load on its boundary surface using the 

fundamental equations for such a system. Tanigawa et al.  [31] established analytical method of development for the 

plane isothermal and thermoelastic problems by introducing two kinds of displacement functions. Vimal et al. [32] 

presented a simple formulation for studying the free vibration of shear-deformable functionally graded plates of 

different shapes with different cutouts using the finite element method. Wang [33] presented analytical method of 

solving the elastodynamic problem of a solid sphere by decomposing the problem into a quasi-static solution 

satisfying the inhomogeneous boundary conditions and a dynamic solution satisfying the homogeneous boundary 

conditions. Zamani et al. [34] used a semi-analytical iterative method for the elastic analysis of thick-walled 

spherical pressure vessels made of functionally graded materials subjected to internal pressure.  

In the present article, we have considered a two-dimensional transient thermoelastic problem of a thick circular 

disc occupying the space 1 2,a r b h z h    , subjected to sectional heating at the curved surface. The material 

properties except Poisson’s ratio and density are assumed to be nonhomogeneous given by a simple power law in 

axial direction. 
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2    STATEMENT OF THE PROBLEM 

2.1 Heat conduction equation    

We consider the transient heat conduction equation with initial and boundary conditions in a hollow cylinder given 

by [29] 
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where ( )z  and ( )c z  are the thermal conductivity and calorific capacity of the material respectively in the 

inhomogeneous region,   is the constant density, 
1 2 1 2, , ,e e k k  are constants. 

2.2 Thermoelastic equations    

The strain displacement relations, stress-strain relations and equilibrium condition are given by [11]  
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where , ,rr zze e e are the strain components ( )rr zze e e e   , ( )z  and ( )z  are Lame constants, ( )
T

z  is 

the coefficient of thermal expansion. 

Following [11], we assume that the shear modulus ( )z and the coefficient of thermal expansion ( )
T

z  vary 

in the axial direction given by 0 0( ) , ( ) ,
T

z z z z       where 
0  and 0  are constants, provided that 

  is related to Poisson’s ratio    by the relation 1 2   , where   is constant.  

Using Eqs. (3) and (4) in (5), the displacement equations of equilibrium are obtained as:  
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The solution of Eq. (6) without body forces can be expressed by the Goodier's thermoelastic displacement 

potential  and the Boussinesq harmonic functions  and  as: [18] 
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In which the three functions must satisfy the conditions 
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In the above Eq. (8), Michell’s function M may be used instead of Boussinesq harmonic functions  and . 

Hence Eq. (8) reduces to 
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In which Michell’s function M must satisfy the condition 
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Now by using Eq. (11) in Eqs. (4) and (6), the results for thermoelastic fields are obtained as: 
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The corresponding stresses are given by 
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The boundary conditions on the traction free surface stress functions are 
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Eqs. (1) to (16) constitute the mathematical formulation of the problem. 

3    SOLUTION OF THE PROBLEM 

3.1 Heat conduction equation    

From Eq. (1) we have 
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For the sake of brevity, we consider 
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Using Eq. (19) in (17), we obtain 
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To remove   from the numerator of Eq. (20), we use the variable transformation ((1 )/2) ( , , )T z r z t  Hence 

Eq. (20) reduces to 
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To solve the differential Eq. (22) using integral transform technique, we introduce the extended integral 

transform [1] of order i over the variable z as given below (Refer Appendix A).  
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The inversion formula is 
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Hence Eq. (22) becomes 
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We use the transform given in [1] to solve Eq. (29) and use the boundary conditions given by Eq. (30), and 

obtain  
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Here ( )nM q r  is the kernel of the transformation given by 
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Here 
0J  and 

0Y  are Bessel’s function of first kind and second kind, respectively and 
nq  are the positive roots of 

the transcendental equation 1 1 2 2 1 1 2 2( , , ) ( , , ) ( , , ) ( , , ) 0n n n nB q a e k A q b e k A q a e k B q b e k      

Applying Laplace transform and its inverse on Eq. (31) by using the initial condition given in Eq. (32), we obtain 

 

1 1 2 3( , ) exp( ) exp( ) exp( )n t E A t E t E t                         (33) 
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Applying inverse transform on Eq. (33), we obtain [1] 
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Applying inverse transform defined in Eq. (27) on the above Eq. (34), we obtain 
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Using Eq. (35) in the equation  ((1 )/2) ( , , )T z r z t  , we obtain 
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3.2 Thermoelastic equations    

 

Referring to the heat conduction Eq. (17) and its solution given by Eq. (36), the solution for the Goodier’s 

thermoelastic displacement potential   governed by Eq. (9) is obtained as:  
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Similarly, the solution for Michell’s function M assumed so as to satisfy the governed condition of Eq.(12) is 

obtained as: 
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where 
mC  and 

mD  are constants.   

Now, in order to obtain the displacement components, we substitute the values of   and M in Eq. (11), and 

obtain 
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where 
((1 )/2)

2 ( ) [cos(log ) sin(log )]g z z z z   . Using the displacement components given by Eqs. (39) and (40) 

in Eq. (15), the components of stresses can be obtained. Also by using the traction free conditions given by Eq. (16) 

the constants 
mC and 

mD can be determined. Since the equations of stresses and constants  
mC  and 

mD  obtained so 

are very large, hence we have not mentioned them here. However numerical calculations are carried out by using 

Mathematica software. 

Based on composite material law, final product properties will be sum of primary materials properties multiplied 

by their volume fractions. In functionally graded materials where each material ratio is variable through thickness, 

as shown in Fig. 1, final properties are also varied through thickness. 

4    NUMERICAL RESULTS AND DISCUSSION 

The numerical computations have been carried out for a mixture of Copper and Tin metals [7] in the ratio 70:30 

respectively, with non-dimensional variables as given below.  
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with parameters 
1 21 , 3 , 2 , 4 ,a cm b cm h cm h cm    Reference Temperature 32o

RT C , Thermal expansion coefficient 

Co/1017 6
0

 , 
21.11 / seccm  . Here 1.3, 2.4, 4.1, 5.5, 7.2, 8.7, 10.3, 11.8, 13.4, 14.9, 16.5, 18.1, 21.2, 24.4, 25.9 

are the real and positive roots of the transcendental equation 
1 1 2 2 1 1 2 2( , , ) ( , , ) ( , , ) ( , , ) 0n n n nB q a e k A q b e k A q a e k B q b e k    . 

Also 2.2, 3.5, 4.9, 6.5, 8.1, 10.2, 12.6, 14.8, 16.3, 18.8, 20.5, 22.3, 25.2, 28.1, 32.2 are the real and positive roots of 

the transcendental equation 
1 2 2 1sin( log )cos( log ) sin( log )cos( log ) 0h h h h     . 

The Young's modulus E is given by the following equation [7] 

 
2 3 4 7 2( ) (0.1174 0.2246 1.347 5.814 8.495 ) 9.8 10 /E z z z z z N cm                         

 

Here : weight of tin %  100 z  , 0 0.3z  , Let 0.3z  , then 
7 24.41 10 /E N cm  . 

For different values of parameter  , the Poisson’s ratio   and Shear modulus 0  are calculated by using the 

formula 01 2 ,
2(1 )

E
  


  


 

For Homogeneous Cylinder: 0  , Poisson’s ratio 0.5  . Shear modulus 
7 2

0 1.47 10 /N cm    

For Nonhomogeneous Cylinder:  1.5  , Poisson’s ratio 0.286  .  Shear modulus 
7 2

0 1.715 10 /N cm    

The Figs. (1 to 5) on the left are of homogeneous hollow cylinder and on the right are those of non-homogeneous 

hollow cylinder. 

Fig. 1 shows the variation of dimensionless temperature in radial line (  - direction) for different values of 

dimensionless thickness 0.25, 0.5, 0.75, 1, 1.5  . From the graph it is seen that the nature is sinusoidal. The 

temperature has a finite value at the curved surface due to surrounding temperature. Because of the sectional heating 

at the curved surface, thermal energy is accumulated at the central region causing deformation and hence thermal 

expansion. The temperature is slowly decreasing towards the middle of the cylinder and increasing towards the inner 

radius in the range1 1.8  . The absolute value of temperature is less at the lower and upper surfaces whereas 

high in the middle portion of the cylinder. Also the magnitude of temperature is low for homogeneous cylinder as 

compared to non-homogeneous cylinder.    

         



                                                                                                                                                  V.R. Manthena et al.                      151 

 

© 2018 IAU, Arak Branch 
 

  
Fig.1 

Variation of dimensionless temperature with   and . 

 

 

Fig. 2 shows the variation of dimensionless radial stress in radial direction for different values of dimensionless 

thickness . It is seen that tensile stress occurs in both homogeneous as well as non-homogeneous cylinders. The 

radial stress is peak at 2.1  . Its magnitude is decreasing from the upper surface towards the lower surface. Also 

the radial stress is zero at both the radial ends (for both homogeneous and non-homogeneous cylinders), which 

agrees with the prescribed traction free boundary conditions. 

 

 
 

Fig.2 

Variation of dimensionless radial stress with   and . 

 

 

Fig. 3 shows the variation of dimensionless tangential stress in radial direction for different values of 

dimensionless thickness . The tangential stress is tensile in the range 2.5 3   and1.3 1.5  , whereas 

compressive for the remaining range. Its magnitude is high at the curved surface and is slowly decreasing towards 

the inner radius. For homogeneous cylinder the magnitude of tangential stress is high at both the lower and upper 

surfaces, while low for in the middle portion. For non-homogeneous cylinder it is high at 0.25,0.5  and low for 

remaining values of .   

         

  
Fig.3 

Variation of dimensionless tangential stress with   and . 

 

 

Fig. 4 shows the variation of dimensionless axial stress in radial direction for different values of dimensionless 

thickness . The axial stress is tensile in the range 2.35 3   and1 1.5  , whereas compressive for the 
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remaining range. It is converging to zero at the central region for both homogeneous and non-homogeneous 

cylinders. The magnitude of crest and trough is high in the outer and inner radius due to the accumulation of thermal 

energy, whereas low in the middle region. Also the magnitude is decreasing from the upper towards the lower 

surface in the range1.5 2.35  , while increasing in the remaining regions. 

         

  

Fig.4 

Variation of dimensionless axial stress with   and . 

 

 

Fig. 5 shows the variation of dimensionless shear stress in radial direction for different values of dimensionless 

thickness . It is observed that the graphs of both homogeneous and non-homogeneous cylinders are sinusoidal in 

nature. The shear stress is tensile in the range 2.4 2.9   and1.35 1.9  , whereas compressive for the 

remaining range. In the tensile region the magnitude is decreasing from the upper towards the lower surface of the 

cylinder, whereas in the compressive regions it is increasing from the upper towards the lower surface. The 

magnitude of homogeneous cylinder is high as compared to that of non-homogeneous cylinder. 

 

  
Fig.5 

Variation of dimensionless shear stress with   and . 

 

5    CONCLUSIONS 

In the present paper, we have investigated temperature and thermal stresses in a thick hollow cylinder subjected to 

sectional heating. The material properties except for Poisson’s ratio and density are considered to vary by simple 

power law along the axial direction. We obtained the solution for transient two-dimensional conductivity equation 

and its associated thermal stresses for a thick hollow cylinder with inhomogeneous material properties. The 

solutions are obtained in the form of Bessel’s and trigonometric functions. Numerical analysis are carried out for a 

mixture of copper and tin metals in the ratio 70:30 respectively and the transient state temperature field and thermal 

stresses are examined. Furthermore, the influence of inhomogeneity grading is investigated by changing 

parameter .      

During our investigation, the following results were obtained.  

(1)  The nature of the figures of temperature and all stresses are sinusoidal when plotted for radial direction. 

(2)  By increasing the parameter , it was observed that the absolute values of temperature and thermal stresses 

were decreased for non-homogeneous cylinder. 
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(3)  By decreasing the parameter , it was observed that the absolute values of temperature and thermal stresses 

were increased for non-homogeneous cylinder.  

(4)  Particular cases of special interest can be studied by assigning suitable values to the material parameters in 

the equations of temperature and thermal stresses as well as by taking some different material for numerical 

analysis.  

(5)  This type of theoretical analysis may be used under high temperature conditions in non-homogeneous and 

functionally graded materials.  

 

 

APPENDIX A  

 

Consider the differential equation 

 
2 2
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The general solution of (A.1) is given by 

 

1 2( ) cos( log ) sin( log ), 0z C z C z z                     (A.3) 

 

where 
1C  and 

2C  are arbitrary constants. 

To obtain the solution of (A.1) that satisfies conditions (A.2), we have 

 

1 1 2 1cos( log ) sin( log ) 0C h C h                   (A.4) 

 

 
1 2 2 2cos( log ) sin( log ) 0C h C h                  (A.5) 

 

From (4) and (5), we get 

 

  

1

1

2

1

2

2

tan( log )

tan( log )

C
h

C

C
h

C





 

 

            

  

 

(A.6) 

 

Then the function given by (A.3) is a solution of (A.1) subject to conditions (A.2), if   is a root of the 

transcendental equation 

 

1 2 2 1sin( log )cos( log ) sin( log )cos( log ) 0h h h h                    (A.7) 

 

Hence we take ( 1,2,3,........)i i   to be the real and positive roots of Eq. (A.7).  

From Eq. (A.4) and (A.5), we have 
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We define 
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Then   

 

( ) cos( log ) sin( log )i i i i iS z Z z W z                  (A.10) 

 

Is taken to be the solution of (A.1) - (A.2). By Sturm-Liouville theory [3], the functions of the system (A.10) are 

orthogonal on the interval [a, b] with weight function x, that is 
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where 
2

2
( ) ( )i iS z S z   is the weighted 2L  norm. If a function f(z) and its first derivative are piecewise 

continuous on the interval 
1 2[ , ]h h , then the relation 
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(A.12) 

 

Defines a linear integral transform. To derive the inversion formula for this transform, let 
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On multiplying Eq. (A.13) by and integrating both sides with respect to z, we obtain the coefficients as: 
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Hence the inversion formula becomes 
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(A.15) 

 

We derive the transform of the following operator 

 
2 2

1 22 2

1
( ) ( ) ( ) ( ); [ , ]

d d
D f z f z f z f z z h h

z d zd z z


                  

 

(A.16) 

 

Let I be the transform of first two terms of D, that is 
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On solving I, we get 
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(A.17) 

 

Since S satisfies Eq. (A.1), we have 
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Also from (A.2), we get 
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