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 ABSTRACT 

 In this paper, exact solution for two-plane transverse vibration analysis of axial-loaded 

multi-step Timoshenko rotor carrying concentrated masses is presented. Each attached 

element is considered to have both translational and rotational inertia. Forward and 

backward frequencies and corresponding modes are obtained using transfer matrix 

method (TMM). The effect of the angular velocity of spin, value of the translational 

and rotational inertia, position of the attached elements and applied axial force on the 

natural frequencies are investigated for various boundary conditions. 

                                                                © 2017 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 HE  rotor dynamics is concerned with study of dynamic and stability characteristics of the rotating machineries 

and plays an important role in the improving safety and performance of the entire systems that they are part of. 

As the rotational velocity of a rotor increases, its level of vibration often passes through critical speeds, commonly 

excited by unbalance of the rotating structure. If the amplitude of vibration at these critical speeds is excessive, 

catastrophic failure can occur. In order to achieve an optimum design and satisfy the limitations imposed by 

assembly considerations, stepped rotors are more used rather than uniform ones; On the other hand, existence of 

elements of power transmission on the rotor such as gears, pulleys and sprockets effects on the natural frequencies 

and critical speeds of the rotor. Each element can be modeled as a concentrated mass having translational and 

rotational inertias which lead to local discontinuity on the natural parameters of the rotor. 

Extensive researches have been carried out with regard to the vibration analysis of the stationary beams carrying 

concentrated masses. Chen [1] introduced the mass by the Dirac delta function and solved analytically the problem 

of a vibrating simply supported beam carrying a concentrated mass at its middle section. Laura et al. [2] studied the 

cantilever beam carrying a lumped mass at the top, introducing the mass in the boundary conditions. Rossit and 

Laura [3] presented a solution for vibration analysis of a cantilever beam with a spring-mass system attached on the 

free end. In all of this studies, authors used Bernoulli-Euler beam theory to model simple structures, which is 

reliable just for slender beams. In order to increase accuracy and reliability of the studies, especially for the short 

structures, some authors used Timoshenko beam theory; e.g., Rao et al. [4] used coupled displacement field method 

to study about natural frequencies of a Timoshenko beam with a central point mass and Rossit and Laura [5] 

extended their previous research for Timoshenko beam theory. Laura et al. [6] considered the rotary inertia of 
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concentrated masses attached to the slender beams and plates and obtained fundamental frequencies of the coupled 

systems by means of the Rayleigh–Ritz and Dunkerley methods. Rossi and Laura [7] focused on vibrations of a 

Timoshenko beam clamped at one end and carrying a finite mass at the other. They considered both the translational 

and rotational inertia of the attached mas. Maiz et al. [8] presented an exact solution for the transverse vibration of 

Bernoulli–Euler beam carrying point masses and taking into account their rotary inertia. Lin [9] used numerical 

assembly method to determine the exact natural frequencies and mode shapes of a multi-span Timoshenko beam 

carrying number of various concentrated elements including point masses, rotary inertias, linear springs, rotational 

springs and spring–mass systems. Guitirrez et al. [10] studied stepped Timoshenko beam, elastically restrained at 

one end and carrying a mass having rotary inertia at the other one. 

In comparison with the studies done about vibration of stationary beams, number of the studies regarding the 

vibration analysis of the rotors is so limit. Using finite element method, Nelson [11] studied the vibration analysis of 

the Timoshenko rotor with internal damping under axial load. Edney et al. [12] hired this method and proposed 

dynamic analysis of the tapered Timoshenko rotor. They considered viscous and hysteretic material damping, mass 

eccentricity and axial torque. In addition to numerical approaches, some authors focused on the analytic solutions; 

Zu and Han [13] proposed an exact solution for vibration analysis of the Timoshenko rotor with general boundary 

conditions. Jun and Kim [14] studied free bending vibration of a rotating shaft under a constant torsional torque. 

They modeled rotor as a Timoshenko beam and gyroscopic effect and applied torque at each part of the shaft were 

considered. Banerjee and Su [15] derived dynamic stiffness formulation of a composite spinning beams and studied 

the vibration analysis of composite rotors. The most advantage of their work was the inclusion of the bending-

torsion coupling effect that arises from the ply orientation and stacking sequence in laminated fibrous composites. 

Hosseini and Khadem [16] studied free vibrations of an in-extensional simply supported rotating shaft with 

nonlinear curvature and inertia. In their research rotary inertia and gyroscopic effects are included, but shear 

deformation is neglected. For large amplitude vibrations, which lead to nonlinearities in curvature and inertia, 

Hosseini et al. [17] used method of multiple scales and investigated free vibration and primary resonances of an 

inextensional spinning beam with six general boundary conditions. Using differential quadrature element method 

(DQEM), Afshari et al. [18] presented a numerical solution for whirling analysis of multi-step multi-span 

Timoshenko rotors. In their work no limitation was considered in number of steps and bearings. 

Transfer Matrix Method (TMM) is an exact approach for solving problems with discontinuity in domain of 

solution; this method is based on the changes of the vibration modes in the vicinity of the any discontinuity. Many 

authors used this method to solve the problems with local discontinuity. e.g. Wu and Chen [19] studied free 

vibration of a multi-step Timoshenko beam carrying eccentric lumped masses with rotary inertias. They also used 

this method and investigated free vibration analysis of a non-uniform beam with various boundary conditions and 

carrying multiple concentrated elements [20]. Wu and Chang [21] studied free vibration of axial-loaded multi-step 

Timoshenko beam carrying arbitrary concentrated elements. Khaji et al. [22] presented closed-form solutions for 

vibration analysis of cracked Timoshenko beams with various boundary conditions. Torabi et al. [23] studied free 

transverse vibration analysis of a multi-step beam carrying concentrated masses having rotary inertia for various 

boundary conditions. In their research both Bernoulli-Euler and Timoshenko were considered. 

As mentioned, some authors studied vibration of rotors without considering effect of attached elements and some 

investigated these effects for stationary rotor (beam); in other words an exact solution for vibration analysis of 

continuous models of rotors, carrying concentrated elements is not presented. The purpose of this study is to derive a 

general exact solution for the vibration analysis of multiple-stepped Timoshenko rotors carrying concentrated 

masses at arbitrary points. For all concentrated elements both translational and rotational inertia are considered. 

Effect of the angular velocity of spin, position and value of translational and rotational inertias of attached masses on 

the frequencies of vibration will be studied for various boundary conditions. 

2    GOVERNING EQUATIONS  

As depicted in Fig. 1, a multi-step rotor carrying concentrated masses, under uniform axial load is considered. The 

attached x-y-z coordinates is an inertial frame and does not rotate with the rotor. By using the Timoshenko beam 

theory, the set of governing equations of free vibration of a bare uniform one can be stated as [24] 
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where ( , ), ( , ), ( , )x y xu z t u z t z t  and ( , )y z t are components of displacement and rotation in x and y directions, 

respectively; , , ,E G and P are angular velocity of spin, mass density, modulus of elasticity, shear modulus and 

applied axial load, respectively; Also, , ,x yA I I and pI are used for geometrical parameters respectively as cross-

sectional area, moment of inertia about the x and y axis and polar moment of inertia; and k is called ''shear correction 

factor" introduced to make up the geometry-dependent distribution of shear stress. This factor depends on the shape 

of the section and Poisson's ratio of material [25]. 

It is worth mentioning that as the x-y-z coordinates is a non-rotating coordinates (inertial frame), the Coriolis 

acceleration is not appeared in the set of governing equations. It should be also noted that in Eqs. (1a) to (1d) the 

components of bending moment (M) and shear force (F) are used and are defined as [24]: 
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Using following relation for a circular section: 

 

2 2 2p x yI I I I    (3) 

 

Eqs. (1c) and (1d) can be written as: 
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(4b) 

 

For m-th segment of the rotor ( 1,2,3,... 1m n  ) (see Fig.1). 
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Fig.1 
Multi-step rotor carrying concentrated masses, under uniform 

axial load. 

  

 

Eqs. (1a), (1b), (4a) and (4b) can be written as: 
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where mA  and mI  indicate the corresponding geometrical parameter in m-th segment of the rotor. By introducing 

following complex variables 2( 1)i   : 

 

   m m
m x yu u iu   

(6a) 

 

   m m
m x yi     

(6b) 

 

Eqs. (5a) to (5d) reduce to 
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Uncoupling mu  and m  in Eqs. (7a) and (7b) yield the following relations: 
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By using the method of separation of variables and introducing dimensionless spatial coordinate as: 
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where   is the circular natural frequency of whirling. Eqs. (8a) and (8b) can be written in the following 

dimensionless form: 
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where the prime indicates the derivative with respect to the dimensionless spatial variable ( ) and the following 

dimensionless parameters are defined: 
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In which kd is the diameter of the rotor at k-th segment. Also using Eqs. (2), (6), (9) and (11), resultant bending 

moment and shear force at each section of the rotor can be defined in the following form: 
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It is worth mentioning that in a rotating beam two kind of frequencies can be found. When whirling and spin of 

the rotor are in the same direction ( 0) , forward whirling occurs and when they are in opposite directions 

( 0) , backward one occurs. Solution of Eqs. (10a) and (10b) depends on the sign of 2md  which differs at low 

or high frequencies. In practice lower frequencies are more important than higher ones; thus, as 2md  is a negative 

parameter at these modes, following solution can be found: 
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In which 0v  is a complex coefficient and 
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3    COMPATIBILITY CONDITIONS 

In the vicinity of m-th discontinuity, Eqs. (13a) and (13b) can be rewritten as: 
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Two kind of discontinuities are considered here; stepped section and concentrated mass.  

3.1 Stepped section 

The compatibility conditions at a stepped section are continuity of vertical displacement, rotation, bending moment 

and transverse force at both x and y directions. These conditions can be modeled mathematically as: 
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Using Eqs. (6a) and (6b), compatibility conditions reduce to 

 

1m mv v   (17a) 

 

1m m    (17b) 

 
4

1m mm     (17c) 
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(17d) 

 

Substituting Eqs. (15a) to (15d)into Eqs. (17a) to (17d), the constant coefficients after m-th discontinuity can be 

related on those before it as: 
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(18) 

 

where 
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(19) 

 

In which 

 

1m m me e    (20) 

3.2 Concentrated mass 

The compatibility conditions at the position of an attached mass are continuity of vertical displacement and rotation 

and discontinuity in bending moment and transverse force at both x and y directions which can be modeled 

mathematically as: 
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(21) 

 

where mm and mj  are translational and rotational inertias of the m-th attached mass, respectively. Using Eqs. (6a) 

and (6b), compatibility conditions can be rewritten as: 

 

1m mv v   (22a) 

 

1m m    (22b) 
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Actually mc  is the ratio of the gyration radius of the m-th attached mass to the length of the rotor. It is obvious 

that when m-th discontinuity is a concentrated mass one can write 1 1( 1) 1 1( 1),m m m mm m     and 1m mk k  ; 

now, similar to the procedure done at the previous section, substituting Eqs. (15a) to (15d) into Eqs. (22a) to (22d), 

Eqs. (18) and (19) can be derived again, where 
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4    BOUNDARY CONDITIONS 

In what follows, four common boundary conditions are considered to derive frequency equation. Using Eqs. (6) and 

(12), mathematical model of these boundary conditions is presented in Table 1. 

Boundary conditions at the right side of the rotor ( 1)  can be written in a matrix form as: 

 

  1 1 1 1

0

0

T

n n n nA B C D   

 
   

 
 

 

(25) 

 
Table 1 

Mathematical model for external boundary conditions in Timoshenko beam theory. 

Boundary conditions Mathematical model ( 1 )ne    

Simply supported(SS)    1 10 0 0v       1 1 0n nv       

Simple–Clamped(SC)    1 10 0 0v       1 1 0n nv       

Clamped-Clamped(CC)    1 10 0 0v       1 1 0n nv       

Cantilever(CF)    1 10 0 0v         1
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In which definition of the matrix    is presented in Table 2. for various boundary cases. 
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Definition of matrix     for various boundary conditions in Timoshenko beam theory. 
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By substitution of Eq. (18) into Eq. (25) for , 1,...,2,1m n n  , next relation appears as: 
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where 
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For the rotors which their left side ( 0)  is simply supported, implementation of boundary conditions at this 

side leads to 1 1 0A C  ; therefore one can simplify Eq. (26) as: 
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(28) 

 

and for ones which their left side is clamped following equation can be derived: 
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(29) 

5    DERIVATION OF MODE SHAPES 

Using obtained frequencies and coefficients from Eqs. (28) or (29), one can evaluate eigenvectors using Eqs. (15a) 

to (15d) and (18) and calculate mode shapes using Heaviside function (H) as follow: 
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(30) 

 

Finally it should be stated than each mode will be normalized as its maximum be fixed at the unity. 

6    NUMERICAL RESULTS AND DISCUSSION 

In this section, numerical results of the presented exact solution are presented and discussed for various cases. First, 

in order to validate the proposed method, consider a uniform simply supported bare Timoshenko rotor 
*( 0.03, 0.05, 0)r s P   . Table 3. shows the value of the first four forward and backward frequencies for 

various values of the angular velocity of spin. Results of this table are compared with the exact results which can be 

easily derived using sinusoidal modes as [24] 
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(31) 

 

where n is mode number. As this table confirms, results with high accuracies can be obtained. 

In order to validate the proposed solution for beams carrying concentrated masses, consider a cantilever 

stationary beam ( 0)  with a tip mass and properties which have been mentioned by Rossi and Laura, 1990. Table 

4. shows value of the first three frequencies for various amounts of mass and rotary inertia. Comparison of the 

results confirms the high accuracy of presented solution. 

After validation of the proposed solution, effect of the various parameters on the frequencies can be investigated 

for all the boundary conditions. In what follows, all results are derived for a Timoshenko rotor with dimensionless 

parameters as 0.03r   and 0.05s  . 
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Table 3 

Value of the first four forward and backward frequencies of a uniform simply supported bare rotor *( 0.03, 0.05, 0)r s P   for 

various values of the angular velocity of spin. 

  

Present Genta [24] 

Forward whirling 

1  2  3  4  1  2  3  4  

0 9.7085 37.1165 78.2528 128.9417 9.7091 37.1197 78.2611 128.9580 

0.5 9.7122 37.1305 78.2788 128.9855 9.7133 37.13354 78.2870 128.9938 

1 9.7170 37.1476 78.3093 129.0215 9.7175 37.1484 78.3130 129.0296 

3 9.7341 37.2050 78.4149 129.1653 9.7343 37.2060 78.4168 129.1727 

5 9.7500 37.2593 78.5110 129.3143 9.7511 37.2636 78.5207 129.3159 

  
Backward whirling 

1  2  3  4  1  2  3  4  

0 9.7085 37.1165 78.2528 128.9417 9.7091 37.1197 78.2611 128.9580 

0.5 9.7048 37.1012 78.2299 128.9074 9.7049 37.1053 78.2351 128.9221 

1 9.6700 37.0890 78.2018 128.8848 9.7007 37.0909 78.2091 128.8863 

3 9.6829 37.0292 78.1024 128.7356 9.6839 37.0335 78.1053 128.7431 

5 9.6670 36.9761 77.9934 128.5917 9.6672 36.9761 78.0016 128.5997 

 

 
Table 4 

Values of the first three frequencies of a cantilever beam with a tip mass. 

 c 0.2M   0.4M   

present 
0 

  2.5666   16.1755   41.6629  2.1343   15.3349  40.6289 

Rossi & Laura [7] 2.567 16.177 41.673 2.135 15.335 40.632 

Present 
0.1 

  2.5556   15.4376   37.7985   2.1208   14.1701   34.0834 

Rossi & Laura [7] 2.556 15.438 37.804 2.121 14.172 34.094 

 

As depicted in Fig. 2 a simple-clamped stepped rotor under tension *( 0.01)P  with two same concentrated 

masses 2( 0.1, 0.05)M c  is considered. For first four modes, Campbell diagram is depicted in Figs. 3(a) to 3(d). 

As shown in this figures, for a non-rotating rotor, value of the forward and backward frequencies are equal; but 

because of gyroscopic effect, as value of the velocity of spin increases, forward frequencies increase and backward 

ones decrease. This figures also shows the line of synchronous whirling ( )   ; Intersection of this line with the 

Campbell diagram determines the critical speeds of the rotor which should be avoided. This diagrams also shows 

that as value of the velocity of spin increases, for all frequencies, backward mode is excited before corresponding 

forward one. 

In order to investigate the influence of the gyroscopic effect on mode shapes, for the previous example, 

corresponding mode shapes are depicted in Figs. 4(a) to 4(d) for 0   and 20  . As these figures shows, for a 

stationary rotor forward and backward modes are same but for a rotating one there is difference between forward 

and backward modes especially for higher modes. 

Now consider two uniform rotors *( 15, 0.05)P   ; a simply supported (SS) rotor with a concentrated mass 

located at 0.3  and a simple-clamped (SC) one with a concentrated mass located at the middle section. By 

neglecting the rotatory inertia of the attached mass, the effect of the its translational inertia on the first five forward 

and backward frequencies are depicted in Figs. 5(a) to 5(d). It should be noted that in this figures, in order to be able 

to show all frequencies simultaneously, each frequency is divided to the corresponding value of a uniform one 

without any attachment 0( ) , in other words 0 .i i i    As shown in these figures, when value of translational 

inertia increases, all frequencies decrease. In other words as the value of the mass of an attached element is more 

considerable in comparison with total mass of the rotor, there is more decrease in both forward and backward 

frequencies. It can be explained by increasing the inertia of the system. It is worth mentioning that amount of the 

decrease on each frequency is strongly dependent on the position of the attached mass which will be discussed 

separately later. 

In addition to mass of a concentrated element, distribution of its mass around the rotation axis of rotor ( axis in 

Fig. 1) has a significant effect on the dynamic characteristics of the rotor. As concentration of the mass locates a 

greater radius, value of the rotational inertia of the attached element increases. Effect of the translational inertia was 
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investigated in Figs. 5(a) to 5(d); As shown, it causes to decrease in all frequencies; According to Eq. (22d), this 

decrease is independent from angular velocity of spin; but Eq. (22c) shows that the effect of rotational inertia is 

dependent on the angular velocity of spin. To study this topic, consider a uniform clamped-clamped rotor under 

tension *( 0.05)P  with a concentrated mass ( 0.1)M  located at 0.4  ; Figs. 6(a) to 6(h) show the effect of the 

rotational inertia on the first four forward and backward frequencies for various values of the velocity of spin. As 

shown in these figures, rotational inertia may decrease or increase a frequency; Like the translational inertia, 

rotational inertia increases the inertia of the system which leads to decrease in both forward and backward 

frequencies; but by growing rotational inertia, gyroscopic effect increases and as shown in Campbell diagram (Figs. 

3(a) to 3(d)), it leads to increase in forward frequencies and decrease in backward ones. Therefore, as value of the 

rotational inertia increases (e.g. increasing in radius or thickness of a mounted gear on rotor), all backward 

frequencies decrease but forward ones may decrease or increase; according to Eq. (22c) it depends on the sign of 

2  ; In other words for low values of velocity of spin especially at high modes, rotational inertia decreases the 

forward frequencies and for higher values of velocity of spin especially at low modes, rotational inertia increases 

forward frequencies. 

 

 

 

 

 

 

 

 

 

 

Fig.2 

A simple-clamped stepped rotor under tension *( 0.01)P  with 

two same concentrated masses 2( 0.1, 0.05)M c  . 
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Fig.3 
Campbell diagram for first four modes of the rotor depicted in Fig. 2. 
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Fig.4 
First four forward and backward mode shapes of the rotor depicted in Fig.2 for 0  and 20  . 
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Fig.5 
Effect of the translational inertia of the attached mass on the first five forward and backward frequencies of uniform rotors 

*( 15, 0.05)P   ; a simply supported (SS) rotor with a concentrated mass located at 0.3  and a simple-clamped (SC) one 

with a concentrated mass located at the middle section. 
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Fig.6 

Variation of the first four forward and backward frequencies of a uniform clamped-clamped rotor under tension ( * 0.05P  ) with 

a concentrated mass ( 0.1)M  located at 0.4  versus variation of the rotational inertia of the attached mass for various values 

of velocity of spin. 
 

Two uniform rotors *( 5, 0.05)P    carrying a concentrated mass ( 0.05)M  with various values of rotational 

inertia with two boundary conditions is considered; a cantilever (CF) rotor and a simply supported (SS) one. Figs. 

7(a) to 7(l) show the variation of the first three forward and backward frequencies versus the position of the 

concentrated mass for various values of rotational inertia. These figures show that in each mode, there are some 
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positions that when mass is located on them, there is no change in the frequencies for 0c  ; In other words, when 

mass located at these points, all change in corresponding frequency is affected by rotary inertia whereas translational 

inertia has no effect on corresponding frequency. These points are the nodes in corresponding mode, e.g. center 

point for even frequencies of a symmetric beam. On the other hand, there are some points that when the mass is 

located on them, value of change in frequency is independent from rotary inertia. In other words, when the mass 

located at these points, all decreases in corresponding frequency is affected by translational inertia whereas rotary 

inertia has no effect on the corresponding frequency. These points are antinodes of corresponding mode shape, e.g. 

center point for odd frequencies of a symmetric beam. As shown, number of node and antinode points increases at 

higher modes. 

Finally the effect of the axial force on the frequencies should be investigated. Axial forces can be generated by 

several types of gears or thermal effects. As depicted in Fig. 8, a stepped rotor ( 20)   with a concentrated mass 

2( 0.1, 0.05)M c  is considered with two boundary conditions; a simply supported (SS) and a simple-clamped 

(SC). Figs. 9(a) to 9(d) show the effect of the axial force on the first four forward and backward frequencies. As 

shown in these figures, tension load increases all forward and backward frequencies whereas compressive one 

decreases all forward and backward frequencies to the extent of buckling of the rotor. Also, for * 0.1P  , 

corresponding mode shapes are depicted in Figs. 10(a) to 10(d). 
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Fig.7 

First three frequencies versus position of mass for variable values of rotary inertia, for two uniform rotors *( 5, 0.05)P    

carrying a concentrated mass ( 0.05)M  ; a cantilever (CF) rotor and a simply supported (SS) one. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 
A stepped rotor with a concentrated mass. 
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Fig.9 
Effect of the axial force on the forward and backward frequencies of a stepped rotor ( 20)  with a concentrated mass 

2( 0.1, 0.05)M c  with two boundary conditions; a simply supported (SS) and a simple-clamped (SC). 
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Fig.10 

First four forward and backward mode shapes of the rotor depicted in Figure 8 for * 0.1P  . 
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7    CONCLUSIONS 

Using transfer matrix method, whirling analysis of multi-step Timoshenko rotor carrying concentrated masses, under 

axial load was presented analytically. Effect of the angular velocity of spin, translational and rotational inertias and 

position of the attached elements and applied axial force on the forward and backward frequencies of multi-step 

rotors were investigated for various boundary conditions. Summary of the results obtained from numerical examples 

can be listed as follows: 

 For a non-rotating rotor, value of the forward and backward frequencies are equal; but because of 

gyroscopic effect, as value of the velocity of spin increases, forward frequencies increase and backward 

ones decrease. 

 As value of translational inertia of the attached masses increases, all frequencies decrease; but it cannot be 

concluded for rotational inertia; it was shown that as value of the rotational inertia of the attached masses 
increases, all backward frequencies decrease but, dependent on the sign of λ-2γ, forward ones may decrease 

or increase. 

 For each mode, there are some positions that when a mass is located on them, all change in the 

corresponding frequency is affected by rotary inertia; these points are the nodes in the corresponding mode. 

On the other hand, there are some positions that when a mass is located on them, all decreases in 

corresponding frequency is affected by translational inertia; these points are antinodes of the corresponding 

mode shape. 

 Tension load increases all forward and backward frequencies whereas compressive one decreases them to 

the extent of buckling of the rotor.  
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