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 ABSTRACT 

 Free vibration of a simply-supported magneto-electro-elastic doubly-

curved nano-shell is studied based on the first-order shear deformation 

theory in the presence of the rotary inertia effect. To model the electric and 

magnetic behaviors of the nano-shell, Gauss’s laws for electrostatics and 

magneto statics are used. By using Navier’s method, the partial differential 

equations of motion are reduced to a single ordinary differential equation. 

Then, an analytical relation is obtained for the natural frequency of 

magneto-electro-elastic doubly-curved nano-shell. Some examples are 

presented to validate the proposed model. Moreover, the effects of the 

electric and magnetic potentials, temperature rise, nonlocal parameter, 

parameters of Pasternak foundation, and the geometry of the nano-shell on 

the natural frequencies of magneto-electro-elastic doubly-curved nano-

shells are investigated. It is found that natural frequency of magneto-

electro-elastic doubly-curved nano-shell decreases with increasing the 

temperature, increasing the electric potential, or decreasing the magnetic 

potential.                              © 2018 IAU, Arak Branch. All rights reserved. 

 Keywords: Magneto-electro-elastic; Nano-shell; Doubly-curved; First-

order theory.  

1    INTRODUCTION 

 AGNETO-ELECTRO-ELASTIC (MME) materials are smart materials exhibiting magneto-electric 

(ME) coupling which enables them to convert mechanical, electrical and magnetic energies to each other. 

Understanding the vibration behavior of nano-structures is the key step in designing nano-sized devices like sensors. 

So, it is important to study the vibration response of MEE nano-structures before using them as sensors, actuators, 

energy harvesters, etc. 

Arash and Wang [1] introduced and reviewed several nonlocal continuum models to model carbon nano-tubes 

and graphene sheets. Pradhan and Kumar [2] and Babaei and Shahidi [3], respectively, used differential quadrature 

(DQ) and Galerkin methods to determine the vibration response of graphene sheets. Three-dimensional (3D) theory 

[4], Mindlin plate theory [5], higher-order shear deformation theory (HSDT) [6], and refined plate theory (RPT) [7] 

in conjunction with nonlocal continuum theory are used to study the vibration behavior of nano-plates. Analooei et 

al. [8] used finite strip method to study the vibration of isotropic and orthotropic nano-plates. Aksencer and 

Aydogdu [9] used Navier-type solution for vibration analysis of simply-supported nano-plate. They also used Levy-

type solution for vibration analysis of nano-plates with two opposite edges simply-supported and the others 

______ 
*Corresponding author. Tel.: +98 914 1051582. 

E-mail address: soheilrazavi@outlook.com (S.Razavi). 

M 



S. Razavi                        131 

 

© 2018 IAU, Arak Branch 

arbitrary. Tadi Beni et al. [10] and Rouhi et al. [11] presented shear deformable models for free vibration analysis of 

cylindrical nano-shells. Pouresmaeeli et al. [12] studied the vibration behavior of simply-supported viscoelastic 
nano-plate based on nonlocal Kirchhoff theory. They found that the frequency decreases with increasing the 

structural damping coefficient. Ghorbanpour Arani et al. [13] studied the free vibration of a magnetostrictive nano-

plate based on Reddy’s third-order shear deformation theory (TSDT) and Eringen’s nonlocal continuum model. 

Vibration of nano-tube reinforced fluid-conveying micro-tubes supported by visco-Pasternak foundation has also 

been investigated by Arani et al. [14]. Liu et al. [15] and Ke et al. [16] investigated vibration of piezoelectric nano-

plates based on nonlocal Kirchhoff and nonlocal Mindlin theories, respectively. Ke et al. [17] studied thermo-

electro-mechanical vibration of piezoelectric cylindrical nano-shells using nonlocal Love’s thin shell theory. Vaezi 

et al. [18] investigated the effects of electric and magnetic potentials on the free vibration of a MEE micro-beam 

based on Euler-Bernoulli beam theory. Amiri et al. [19] used a MEE beam model to study the vibration and 

instability of fluid conveying smart micro-tubes. Ebrahimi and Barati [20] examined vibrational behavior of a 

magneto-electro-viscoelastic nano-beam based on HSDT. Li et al. [21] studied the bending, buckling and free 

vibration of MEE nano-beams based on nonlocal Timoshenko theory. They determined the effects of electric and 

magnetic potentials on the vibration response of these nano-beams. Nonlocal TSDT [22] and nonlocal Timoshenko 

theory [23] have been used by Ansari et al. to study the nonlinear forced vibration of a MEE nano-beam. Ke and 

Wang [24] used nonlocal Timoshenko theory in conjunction with DQ method to obtain the free vibration response 

of a MEE nano-beam. Ke et al. [25] studied the free vibration of a MEE nano-plate based on the nonlocal Kirchhoff 

plate. They found that the natural frequency of the MEE nano-plate is sensitive to mechanical, electrical and 

magnetic loadings, while it is insensitive to the thermal loading. By considering surface and nonlocal effects, Wang 

et al. [26] introduced a two-dimensional theory to study the response of MEE nano-plates. Li et al. [27] investigated 

buckling and free vibration of a MEE nano-plate resting on Pasternak foundation based on nonlocal Mindlin theory. 

Pan and Waksmanski [28] presented exact closed-form solution for the 3D deformation of a layered MEE plate with 

nonlocal effect. Ansari and Gholami [29] studied the free vibration of MEE nano-plates in pre- and post-buckled 

states based on nonlocal Mindlin theory in conjunction with pseudo-arc length continuation approach. Farajpour et 

al. [30] used nonlocal Kirchhoff theory in conjunction with a perturbation method to obtain closed-form expression 

for nonlinear frequency of a MEE nano-plate with movable and immovable simply-supported boundary conditions. 

Ke et al. [31] presented a model based on nonlocal Love’s shell theory to investigate the vibration response of a 

MEE cylindrical nano-shell. Ghadiri and Safarpour [32] investigated the free vibration response of MEE cylindrical 

nano-shells based on first-order shear deformation theory (FSDT) and Navier-type method. Mohammadimehr et al. 

[33] studied the free vibration of MEE cylindrical panels reinforced by carbon nano-tubes. 

To the best of the author’s knowledge, the free vibration of MEE doubly-curved nano-shells has not been 

studied. So, free vibration of a simply-supported magneto-electro-elastic doubly-curved nano-shell is studied based 

on FSDT and Gauss’s laws for electrostatics and magneto statics. After obtaining a closed-form relation for the 

natural frequency, some examples are presented to validate the proposed method. Finally, the effects of several 

parameters on the natural frequencies of MEE doubly-curved nano-shells are investigated. 

2    PROBLEM MODELING  

Based on FSDT, the displacement field of a shallow doubly-curved shell is expressed by [34]: 

 

0 0 0, ,x yu u z v v z w w       (1) 

 
where u0, v0, and w0 are the displacements of the mid-surface along x, y, and z directions, respectively, and θx and θy 

are the rotations of a transverse normal about the y and x directions, respectively. Using this displacement field, one 

can obtain the strain–displacement relations [34]: 

 

0, 0 , 0, 0 ,,x x x x x y y y y yu w R z v w R z          (2) 

 

 0, 0, 0, 0, , ,, ,yz y y xz x x xy y x x y y xw w u v z               (3) 

 

For a transversely-isotropic MEE nano-material, the constitutive relations can be written as [27]: 
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(6) 

 

where {σ} and {ε} are stress and strain vectors, respectively; {D} and {B} are the electric displacement and 
magnetic flux density vectors, respectively; {E} = {0   0  –ϕ,z}

T
 and {H} = {0   0  –ψ,z}

T
 are electric field and 

magnetic field vectors, respectively, where ϕ and ψ denote electric and magnetic potentials; [Cij], [ηij] and [μij] are 

the elastic, dielectric and magnetic permeability coefficient matrices, respectively; [eij], [qij] and [dij] are the 
piezoelectric, piezo magnetic, and ME coefficient matrices, respectively; pz, mz and βii are pyroelectric, pyro 

magnetic and thermal moduli, respectively; ΔT denotes the temperature change, 2  is the Laplace operator, and η is 

the nonlocal parameter revealing the size effect on the response of the nano-shell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 
Schematic of the studied nano-shell. 

 

Using Hamilton’s principle and based on FSDT, the equations of motion of the nano-shell resting on a Pasternak 

foundation (Fig.1) can be expressed by [34]: 

 

, , 0x x xy yN N   (7) 

 

, , 0xy x y yN N   (8) 

 

    2
, , 0, 0, 0, 0, 0 0 0 0,, ,

yx
x x y y x x xy y xy x y y w s ttx y

x y

NN
Q Q N w N w N w N w k w k w I w

R R
            

 

(9) 
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, , 2 ,x x xy y x x ttM M Q I     (10) 

 

, , 2 ,xy x y y y y ttM M Q I     (11) 

 

where    
2

2

h

x y xy x y xy
h

N N N dz  

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2
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h

x y xz yz
h

Q Q K dz 


   

are the transverse force resultants,    
2

2

h

x y xy x y xy
h

M M M zdz  


   are the moments resultants, and 
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2

2
0 2 0

2
1

h

h
I I z dz


  are the mass moments of inertia, in which ρ0 is the material density and K is the shear 

correction factor. Moreover, kw and ks are spring and shear coefficients of the Pasternak foundation, respectively. To 
determine theses resultants, the stress components given in Eq. (4) must be used. However, potentials ϕ and ψ are 

unknown parameters. To determine them, Gauss’ laws for electrostatics and magneto statics are used: 

 

, , , , , ,0 0x x y y z z x x y y z zD D D B B B       (12) 

 

Then, using Eqs. (5), (6) and (12) gives: 

 

, 1 0z z     (13) 

 

, 1 0z z     (14) 

 
where ϕ0 and ψ0 are constants of integration, and ϕ1 and ψ1 are obtained by: 
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(15) 

 
To determine ϕ0 and ψ0, the ME boundary condition on top and bottom surfaces of the nano-shell is needed. If 

the nano-shell is poled along the z direction and subjected to electric potential V0 and magnetic potential Ω0 between 

the upper and lower surfaces, the ME boundary condition can be expressed as below: 
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(16) 

 

Eqs. (13) – (16) yield 0 0V h   and 0 0 h  . Then, the resultants are obtained: 
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Substituting Eqs. (17) – (24) into Eqs. (7) – (10), and then by using  
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The following ordinary differential equations are obtained: 
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1 2 3 0L U L V L W    (27) 

 

4 5 6 0L U L V L W    (28) 

 

7 8 9 10 11 12 13 0L W L W L U L V L X L Y L        (29) 

 

14 15 16 17 0L X L X L Y L W     (30) 

 

18 19 20 21 0L Y L Y L X L W     (31) 

 

where U, V, W, X and Y are unknown functions and (m,n) denotes the mode of vibration. In Eqs. (27) – (31) the 

subscript ‘mn’ has been dropped for brevity. 

Eqs. (27) and (28) give U and V in terms of W, while Eqs. (30) and (31) give X and Y: 

 

3 5 2 6 1 6 3 4

2 4 1 5 2 4 1 5

,
L L L L L L L L

U W V W
L L L L L L L L

 
 

 
 

 

(32) 

 
* *

16 21 2 17 17 20 1 21

* * * *
1 2 16 20 1 2 16 20

,
L L L L L L L L

X W Y W
L L L L L L L L

 
 

 
 

 

(33) 

 

where 
2

*
1 15 14 2

d
L L L

dt
   and 

2
*
2 19 18 2

d
L L L

dt
   are ordinary differential operators. 

Now, substituting Eqs. (32) and (33) into (29) gives: 

 

eq eq 0sM W K W F    (34) 

 

In which eqM  and eqK  are equivalent mass and stiffness of the system and Fs is a constant parameter. These 

parameters are given in Appendix A. Finally, natural frequency of the nano-shell is simply determined by 

using 0 eq eqK M  . 

3    RESULTS AND DISCUSSION  

In this section, first, some examples are presented to validate the proposed model. Then, the effects of several 

parameters on the natural frequencies of MEE doubly-curved nano-shells are investigated. The MEE nano-shell is 
doubly-curved and simply-supported. It is subjected to electric (V0) and magnetic (Ω0) potentials between its upper 

and bottom surfaces. For all the numerical examples the shear correction factor (K) is taken to be 5/6.  

First, an isotropic spherical shell is considered and its fundamental natural frequency is obtained. The result is 

shown in Table 1., along with the published results based on Sanders theory (ST) [35], Donnell theory (DT) [36], 

HSDT [37] and 3D approach [38]. The geometric and material properties of the shell are: a = b = 1.0118, h = 
0.0191, R = 1.91, E = 1, ρ0 = 1 and ν = 0.3. It is seen that the result obtained by present model is in good agreement 

with previously published ones, and the discrepancy between the results of 3D method and present method is very 

small. 
 

Table 1 

Fundamental natural frequency ω0 (rad/s) of an isotropic spherical shell. 
ST [35] DT [36] HSDT [37] 3D [38] Present 

0.52830 0.52864 0.50223 0.52543 0.53510 

 



136                          Magneto-Electro-Thermo-Mechanical Response of a Multiferroic … 

 
 

© 2018 IAU, Arak Branch 

As the second comparison, the frequency ratio of an isotropic nano-plate with a = b = 10 nm, h = 0.34 nm, E = 
1.06 TPa, ρ0 = 2250 kg/m

3
, and ν = 0.25 is obtained for different values of nonlocal parameter. The results are 

presented in Table 2., where frequency ratios are determined by using the following relation: 

frequencyratiocalculated using nonlocal theory
Frequencyratio=

frequencyratiocalculated using local theory
 

 

(35) 

 

Table 2 

Frequency ratios of a graphene sheet. 

η (nm2) 
Method 

Pradhan and Kumar [2] Pouresmaeeli et al. [39] Present study 

0 

1 

2 

3 

1 

0.9139 

0.8468 

0.7926 

1 

0.91386 

0.84673 

0.79251 

1 

0.91386 

0.84673 

0.79251 

 

Table 3., presents the dimensionless fundamental frequencies of an isotropic nano-plate for different nonlocal 

parameters, and a/h and b/a ratios. The results are compared with the ones obtained by methods based on nonlocal 

Kirchhoff theory (CPT), FSDT, TSDT and a RPT. Again, it is seen that the proposed model predicts the frequencies 

with good accuracy. 
 

Table 3 

Dimensionless fundamental frequency 0 0 /h G    of an isotropic Nano plate (ν = 0.3). 

b/a a/h η(nm2) 
Method 

CPTa FSDTa TSDTa RPT [7] Present 

1 10 0 

1 

2 

3 

0.0963 

0.0800 

0.0816 

0.0763 

0.0930 

0.0850 

0.0788 

0.0737 

0.0935 

0.0854 

0.0791 

0.0741 

0.09303 

0.08502 

0.07877 

0.07373 

0.09371 

0.08564 

0.07935 

0.07427 

 

20 0 

1 

2 

3 

0.0241 

0.0220 

0.0240 

0.0191 

0.0239 

0.0218 

0.0202 

0.0189 

0.0239 

0.0218 

0.0202 

0.0189 

0.02386 

0.02180 

0.02021 

0.01891 

0.02391 

0.02185 

0.02025 

0.01895 

2 10 0 

1 

2 

3 

0.0602 

0.0568 

0.0539 

0.0514 

0.0589 

0.0556 

0.0527 

0.0503 

0.0591 

0.0557 

0.0529 

0.0505 

0.05888 

0.05555 

0.05274 

0.05031 

0.05916 

0.05582 

0.05299 

0.05055 

 

20 0 

1 

2 

3 

0.0150 

0.0142 

0.0135 

0.0129 

0.0150 

0.0141 

0.0134 

0.0128 

0.0150 

0.0141 

0.0134 

0.0128 

0.01496 

0.01411 

0.01340 

0.01278 

0.01498 

0.01414 

0.01342 

0.01280 
  a reported by Malekzadeh and Shojaee [7] 

 

Next, dimensionless fundamental frequencies of a MEE nano-plate made of piezoelectric BaTiO3 and 

magnetostrictive CoFe2O4 are determined. The material properties of the MEE material are given in Table 4. The 

dimensionless fundamental frequencies are obtained by using  0 0 11a I C h  . Table 5., presents the 

frequencies for different values of nonlocal parameter. In addition, the effect of temperature rise on the 

dimensionless fundamental frequency has been investigated and the results are presented in Table 6. As in the case 

for isotropic shell and nano-plate, the proposed method approximates the frequencies of MEE nano-plate with good 

accuracy. 
 

 

 

 

 

 



S. Razavi                        137 

 

© 2018 IAU, Arak Branch 

Table 4  

Material properties of BiTiO3-CoFe2O4 composite material [29]. 

Properties BaTiO3-CoFe2O4 

Elastic [GPa] 

Piezoelectric [C/m2] 

Dielectric [×10−9 C/(Vm)] 

Piezo magnetic [N/(Am)] 

Magnetoelectric [×10−12 Ns/(CV)] 

Magnetic [×10−6 Ns2/C2] 

Thermal Moduli [×105 N/(Km2)] 

Pyroelectric [×10−6 C/N] 

Pyro magnetic [×10−6 N/(AmK)] 

Mass density [kg/m3] 

c11 = c22 = 226, c12 = 125, c33 = 216, c44 = c55 = 44.2, c66 = 50.5 

e31 = e32 = −2.2, e15 = e24 = 5.8  
η33 = 6.35 

q31 = q32 = 290.1, q15 = q24 = 275 

d33 = 2737.5 
μ33 = 83.5 

β11 = β22 = 4.74 

pz = 25 

mz = 5.19 

5550 

 

Table 5 

The effect of nonlocal parameter (η) on the dimensionless fundamental frequency of a MEE nano-plate (ΔT = V0 = Ω0 = 0). 

Method 
η (×10−16) 

0 0.36 1.44 3.24 5.76 9 

Ke et al. [24] 

Ansari and Gholami [28] 

Present study 

0.3698 

0.3684 

0.3717 

0.3379 

− 

0.3397 

0.2764 

0.2756 

0.2779 

0.2219 

− 

0.2231 

0.1813 

0.1808 

0.1823 

0.1518 

− 

0.1526 

 

Table 6 

The effect of the temperature rise on the dimensionless fundamental frequency of a MEE nano-plate (η = 1.44×10−16, V0 = Ω0 = 

0). 

Method 
ΔT 

0 30 60 90 120 150 

Ke et al. [24] 

Present study 

0.2764 

0.2779 

0.2749 

0.2766 

0.2734 

0.2753 

0.2719 

0.2741 

0.2704 

0.2729 

0.2689 

0.2716 

 
The effect of radius of curvature (Rx) on the dimensionless fundamental frequency of nanoscale spherical and 

cylindrical MEE shells is investigated and the result is shown in Fig. 2. In this example, a = b = 60 nm, h = 4 nm and 
η = 0.2 nm

2
. It is seen that for a specific Rx, the spherical shell has higher frequency which decreases with higher rate 

when Rx increases.  

 

 

 

 

 

 

 

 

 

 

Fig.2 
Dimensionless fundamental frequency of spherical and 
cylindrical MEE nano-shells (ΔT = V0 = Ω0 = 0). 

 

Fig. 3 shows the effect of temperature change on the dimensionless fundamental frequency of two MEE nano-

shells (with a = b = 60 nm, h = 4 nm, and R = 5a) and a MEE nano-plate (with a = b = 60 nm, h = 4 nm). For all of 

the structures, the dimensionless frequencies decrease with increasing the temperature. 

Effects of electric and magnetic potentials on the natural frequency of MEE nano-shells are also investigated and 

the results are shown in Figs. 4 and 5, respectively. The geometric properties of the nano-structures are the same as 

previous example. It is observed that increasing the electric potential, decreases the natural frequency of MEE nano-

shells. Moreover, for negative electric potentials, higher natural frequencies are resulted. The converse happens 

when magnetic potential changes. That is, as the magnetic potential increases, the natural frequency of the MEE 

nano-shell increases. 
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Fig.3 
Effect of temperature change on the dimensionless fundamental 
frequency of MEE nano-structures (η = 0.2 nm2, V0 = Ω0 = 0). 
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Fig.4 
Effect of electric potential on the dimensionless fundamental 
frequency of MEE nano-structures (η = 0.2 nm2, ΔT = Ω0 = 0). 
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Fig.5 
Effect of magnetic potential on the dimensionless fundamental 
frequency of MEE nano-structures (η = 0.2 nm2, ΔT = V0 = 0). 

 

Effects of nonlocal parameter and foundation parameters on the natural frequencies of MEE doubly-curved 

nano-shells are investigated, too. Fig. 6 shows the effect of nonlocal parameter on the dimensionless fundamental 

frequencies of spherical and cylindrical MEE nano-shells with a = b = 60 nm, h = 4 nm, R = 5a.  It is seen that 

nonlocal parameter has small effect on the frequency and tends to decrease it. In Fig. 7, effects of foundation 

parameters on the dimensionless fundamental frequency of spherical MEE nano-shell with a = b = 60 nm, h = 4 nm, 

R = 5a are shown. The dimensionless foundation parameters are obtained by Kw = kwa
4
/(Cijmaxh

3
) and Ks = 

ksa
2
/(Cijmaxh

3
) where Cijmax is the maximum value of the stiffness coefficients of the MEE nano-shell. It is observed 

that both dimensionless spring and shear coefficients increase the stiffness (and subsequently the natural frequency) 

of the system. However, dimensionless shear coefficient (Ks) has more effect on the natural frequency of MEE nano-

shells. 
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Fig.6 
Variation of dimensionless fundamental frequency of MEE 
nano-shell in terms of nonlocal parameter (ΔT = V0 = Ω0 = 0). 
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Fig.7 

Variation of dimensionless fundamental frequency of 

spherical MEE nano-shell in terms of foundation parameters 
(η = 0.2 nm2, ΔT = V0 = Ω0 = 0). 

 

4    CONCLUSIONS 

Free vibration of simply-supported MEE doubly-curved nano-shells is studied analytically based on FSDT. Some 

examples are presented and it is found that: (a) spherical nano-shell has higher natural frequencies which decrease 

with higher rate when the curvature of the nano-shell increases, (b) natural frequency decreases with increasing the 

temperature, (c) increasing the electric potential decreases the natural frequency of MEE nano-shells, (d) when the 

magnetic potential increases, the natural frequency of the MEE nano-shell increases, (e) nonlocal parameter 

decreases the natural frequency of MEE nano-shell, and (f) foundation parameters increase the natural frequencies 

of MEE nano-shells. However, dimensionless shear coefficient has more effect on the natural frequencies. 

APPENDIX A 

The coefficients of Eq. (34) are: 

 eq 5 7 6 8 6 1 2 2 11 4 12M L L k k L L           (A.1) 

 

     eq 5 8 5 1 2 11 16 21 1 12 17 20 3K L k k L L L L L L           (A.2) 

 

15 13sF L  (A.3) 

Where 

1 17 19 2 17 18 3 15 21 1 14 21 5 15 19 16 20 6 14 19 16 20, , , , ,L L L L L L L L L L L L L L L L              (A.4) 

 

   9 3 5 2 6 10 1 6 3 4
1 2

2 4 1 5 2 4 1 5

,
L L L L L L L L L L

k k
L L L L L L L L

 
 

 
 

 

(A.5) 
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