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ABSTRACT 
In this paper, the classic coupled poro-thermoelasticity model of hollow and solid cylinders under 
radial symmetric loading condition is considered. A full analytical method is used and an exact 
unique solution of the classic coupled equations is presented. The thermal and pressure boundary 
conditions, the body force, the heat source and the injected volume rate per unit volume of a 
distribute water source are considered in the most general forms and no limiting assumption is 
used. This generality allows simulation of several of the applicable problems. 
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1    INTRODUCTION 

OUPLED thermal and poro-mechanical processes play an important role in a number of problems of interest in 
the geomechanics such as stability of boreholes and permeability enhancement in geothermal reservoirs or high 

temperature petroleum bearing formations. A thermoporoelastic approach combines the theory of heat conduction 
with poroelastic constitutive equations and coupling the temperature field with the stresses and pore pressure. There 
is a limited number of papers that present the closed-form or analytical solution for the coupled porothermoelasticity 
problems. Bai [1] investigated the response of saturated porous media subjected to local thermal loading on the 
surface of semi-infinite space. He used the numerical integral methods for calculating the unsteady temperature, 
pore pressure, and displacement fields. This author also studied the fluctuation responses of saturated porous media 
subjected to cyclic thermal loading [2]. In the mentioned paper, an analytical solution was deduced using the 
Laplace transform and the Gauss-Legendre method and Laplace transform inversion. Droujinine [3] investigated 
dispersion and attenuation of body waves in a wide range of materials representing realistic rock structures. He used 
the time-domain asymptotic ray theory to a new generalized coordinate-free wave equation with an arbitrary tensor 
relaxation function. Bai and Li [4] found a solution for cylindrical cavity in saturated thermoporoelastic medium 
using Laplace transform and numerical Laplace transform inversion.  

The numbers of papers that present the closed-form or analytical solutions for the coupled thermoelasticity 
problems are limited. Hetnarski [5] found the solution of the coupled thermo elasticity in the form of a series 
function. Hetnarski and Ignaczak presented a study of the one-dimensional thermo elastic waves produced by an 
instantaneous plane source of heat in homogeneous isotropic infinite and semi-infinite bodies of the Green-Lindsay 
type [6]. These authors also presented an analysis for laser-induced waves propagating in an absorbing thermo 
elastic semi-space of the Green-Lindsay type [7]. Georgiadis and Lykotrafitis obtained a three-dimensional transient 
thermo elastic solution for Rayleigh-type disturbances propagating on the surface of a half-space [8]. Wagner [9] 
presented the fundamental matrix of a system of partial differential operators that governs the diffusion of heat and 
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the strains in elastic media. This method can be used to predict the temperature distribution and the strains by an 
instantaneous point heat, point source of heat, or by a suddenly applied dilate force. 

Here, a full analytical method is used to obtain the response of the governing equations. An exact solution is 
presented. The method of solution is based on the Fourier’s expansion and eigenfunction methods which are 
traditional and routine methods in solving the partial differential equations. Since the coefficients of equations are 
not functions of the time variable (t), an exponential form is considered for the general solution matched with the 
physical wave properties of thermal and mechanical waves. For the particular solution, that is the response to 
mechanical and thermal shocks, the eigenfuncion method and Laplace transformation is used. This work is 
following the previous work which was presented for radially symmetric cylindrical coordinates [10]. 

2    GOVERNING EQUATIONS 

A short hollow cylinder with inner and outer radius ri and ro, respectively, and length l made of isotropic material 
subjected to radial-symmetric mechanical, thermal, and pressure shocks is considered. The classic theory of 
porothermoelasticity for wave propagation is taken to allow coupling between deformation, thermal energy and 
pressure fields and to describe the physical behavior of the elastic domain to mechanical, thermal and pressure shock 
loads. Navier equation in terms of the displacement components is obtained as [4] 
 

  
  

         
   



,2

2 2 2 2

1 1 1 1 2 1 1 (1 )
, , , ,

2 1 2 (1 ) (1 )

(1 )(1 2 ) (1 )(1 2 ) (1 )(1 2 ) (1 )(1 2 )
, , ( , , )

(1 ) (1 ) (1 ) (1 )

rr r zz rz r

r r

u u u u w T
r r

p T u F r z t
E E E E

æ ö- +÷ç+ - + + -÷ç ÷÷çè ø- - -
+ - + - + - + -

- - - =-
- - - -

 

(1) 
  
   
     
   



1 (1 ) 1 1 1 (1 )
, , 2 , , , 2 ,

(1 2 ) (1 2 ) (1 2 ) (1 2 )

(1 ) (1 ) (1 ) (1 )
2 , 2 , 2 2 ( , , )

(1 ) (1 ) (1 ) (1 )

rr r zz zr z z

z z

w w w u u T
r r

p T w R r z t
E E E E

- +
+ + + + -

- - - -
+ + + +

- - - =-
- - - -

 

(2) 
 

Heat conduction equation in radial-symmetric direction with the mechanical coupling term is 
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According to Darcy’s law and continuity condition of seepage, the equation of mass conservation can be written 

as 
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where (,) denotes partial derivative, u is the displacement component in the radial direction, p is the pore pressure,   

is bulk mass density,  1 /sC C= -  is the Biot’s coefficient, 3(1 2 )s s sC E= -  is the coefficient of volumetric 

compression of the solid grains, with sE  and  s  being the elastic modulus and Poisson’s ratio of solid grains and 

3(1 2 )C E= -  is the coefficient of volumetric compression of solid skeleton, with E and   being the elastic 

modulus and Poisson’s ratio of solid skeleton, T  is initial reference temperature,  3 /s C=  is the thermal 

expansion factor,  s  is the coefficient of linear thermal expansion of solid grains,   3( ( ) )w sY n n= + -  and 

 ( )p w s sn C C C= - +  are coupling parameters, w  and wC are the coefficients of linear thermal expansion and 

volumetric compression of pure water, n is the porosity, k  is the hydraulic conductivity, w  is the unit of pore 

water and   ((1 ) ) / 3s s w w sZ n c n c T= - + -  is coupling parameter, w  and s  are the densities of pore water 

and solid grains and wc  and sc  are the heat capacities of pore water and solid grains and K is the coefficient of heat 

conductivity. Here, F(r,z,t), R(r,z,t), Q(r,z,t) and W(r,z,t) are the body forces, heat generation source and the injected 
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volume rate per unit volume of a distribute water source, respectively. The mechanical, thermal and pressure 
boundary conditions for inner and outer surface of cylinder are 
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where Cij are the mechanical, thermal and pressure coefficients, and which by assigning different values for them, 
different types of mechanical, thermal, and pressure boundary conditions may be obtained. These boundary 
conditions include the displacement, strain, stress, specified temperature, convection, pressure, and heat flux 
condition. The boundary conditions at the ends of cylinder are considered in simply support as [11] 
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The initial boundary conditions are assumed in the following general form 
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3    SOLUTION 

Eqs. (1) to (4) constitute a system of non-homogeneous partial differential equations with non-constant coefficients 
(functions of the radius variable r only) has general and particular solutions. 

3.1 General solution with homogeneous boundary conditions 

A form of solution can be suitable for Eqs. (1) to (4) and the boundary conditions (6) may be assumed for the 
general solution as 
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(8) 
 
where  n  is  / .n l  Substituting Eq. (8) into homogeneous parts of Eqs. (1) to (4), yields 
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Eqs. (9) are system of ordinary equations with non-constant coefficients and are related to Bessel differential 
equations and the solution should be in Bessel functions. The first solutions of 1U , 1W , 1  and 1P  are considered as 
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Substituting Eqs. (10) into Eqs. (19) yields 
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Eqs. (11) show that 1 1 1,  ,  U W   and 1P  can be the solutions of Eqs. (9), if and only if 
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The non-trivial solution of Eq. (12) is obtained by equating the determinant of this equation to zero and brings 

the first characteristic equation. The second solutions of 2U , 2W , 2  and 2P  are considered as 
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The expressions for 2U , 2W , 2  and 2P  can be the solutions of Eqs. (9), if and only if 
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The non-trivial solution of Eqs. (14) is obtained by equating the determinant of coefficients matrix of this 

equation to zero as second characteristic equation and it is completely similar to the first characteristic equation. 
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make Eq. (13) to be the second solution of the system of Eqs. (9). The third solution of the system of the ordinary 
differential equations with non-constant coefficients (9) must be considered as 
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The expressions for 3 3 3,  ,  U W   and 3P  can be solutions of Eq. (9), if and only if 
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The non-trivial solution of Eqs. (20) is obtained by equating the determinant to zero of this equation and brings 
the third characteristic equation and it is as same as first and second characteristic equations. Eqs.(21) to (28) gives 
the relation between 4 5 4 5 6 4 5 6 4 5, , , , , , , , ,A A B B B C C C D D  and 6 .D They play as the balancing ratios that help Eq. (19) 

to be the third solution of the system of equations (9). The fourth solutions of 1U , 1W , 1  and 1P  are considered as 
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The expressions for 4U , 4W , 4  and 4P  can be solutions of Eq. (9), if and only if 
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ú
úú

 (30) 

2 2 2 2 2 2 2
5 1 7 5 1 8 5 1 92

2 2
5 1 10 2 7 4 7 3 73

2 8
( ) ( ) ( )

48
( ) 0

n n n

n n

d d A d d A d d A

d d A d B d C d D

      
 

     


- + + + + +

+ + - - - =
 

(31) 
2 2 2 2 2 2 2

5 1 8 5 1 9 5 1 102

2 8 4 8 3 8

4 24
( ) ( ) ( )

0

n n n

n

d d A d d A d d A

d B d C d D

      
 

   

- + - - + - +

+ + + =

 

(32) 

2 2 2 2 2
5 1 9 5 1 10 2 9

2 10 4 9 4 10 3 9 3 10

8 8
( ) 2

2 2 2 0

n n n

n

d d A d d A d B

d B d C d C d D d D

       
 

  

æ ö÷ç ÷- + - + - + - +ç ÷ç ÷çè ø

+ + + + + =

 

(33) 

{ }2 2 2 2
7 7 11 6 7 8 10 10 7 9 7( ) 2 0n n n nd A d d B B B r d C d D        + - + + + - + + =  (34) 

2 2 2 2 2
7 8 7 9 7 10 6 11 8 6 11 9

2 2
6 11 10 10 8 10 9 10 10 9 82 2 2

9 9 9 10 2

8 2 2
2 ( ) 2

8 8 2 8
4

2 8
0

n n n n n

n n n n n

n n

d A d A d A d d B d d B

d d B d C d C d C d D

d D d D

         
  

     
  

 
 

æ ö÷ç ÷+ + + - + + + + +ç ÷ç ÷çè ø
æ ö÷ç ÷+ç + + + + + +÷ç ÷÷çè ø

+ + =

 

(35) 

2 2 2 2 2
7 9 7 8 10 9 11 9 6 9 11 6 10

10 9 10 9 9 10

4 4
( 5 ) ( )

4 4
0

n n n n n

n n

d A d d A B d B d B d d B

d C C d D D

         
 

 
 

æ ö÷ç ÷- + - + + - - - + +ç ÷ç ÷çè ø
ì ü ì üï ï ï ïï ï ï ï- + - + =í ý í ýï ï ï ïï ï ï ïî þ î þ

 

(36) 

{ }2 2
7 8 7 12 7 13 7 14 7 14 72 0n nC C C d C d D d B d A        - + - + + - + =  (37) 
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14 8 14 9 14 10 8 14 9 14 10 142

2 2 2 2
12 8 12 9 12 102 2

13 8 13 9 13 102

8 2 8
2

2 2 8 8
( ) 4

2 8
0

n n n

n n n

d A d A d A B d B d B d

d C d C d C

d D d D d D

         
  

        
   

  
 

+ + - - -

æ öæ ö ÷ç÷ç ÷÷+ - - + + - + + +ç - +ç ÷÷ çç ÷ ÷ç ÷çè ø è ø

+ + + =

 

(38) 

2 2
14 9 14 10 14 9 14 10 12 9

2
12 10 13 9 13 10

4
4 ( )

4 4 4
2 0

n n n

n

d A d A d B d B d C

d C d D d D

        


    
  

- - + + + + -

æ ö÷ç ÷- + + - - =ç ÷ç ÷çè ø

 

(39) 

{ }2 2
17 7 17 7 16 7 15 7 8( ) 2 0n nd A d B d C d D D      - + + - - + + =  (40) 

17 8 17 9 17 10 17 8 17 9 17 10 16 82

2 2
16 9 16 10 15 82

2 2
15 9 15 102 2

8 2 8
2

2 8
( )

2 2 8 8
2 4 0

n n n

n

n n

d A d A d A d B d B d B d C

d C d C d D

d D d D

          
  

    
 

    
   

+ + - - - +

+ + + - + -

æ öæ ö ÷ç÷ç ÷÷+ + - +ç + - =ç ÷÷ çç ÷ ÷ç ÷çè ø è ø

 

(41) 

17 10 17 9 17 9 17 10 16 9 16 10

2 2 2
15 10 15 9

4 4
4

4 4
( ) 0

n n

n n

d A d A d B d B d C d C

d D d D

        
 

      
 

- - + + - -

æ ö÷ç ÷+ - + - - + + - =ç ÷ç ÷çè ø

 

(42) 
 

The non-trivial solution of Eqs. (30) is obtained by equating the determinant of coefficients matrix of this 
equation to zero as fourth characteristic equation and it is completely similar to the first, second and third 
characteristic equations. This equality is interesting as it prevents mathematical dilemma and complexity and a 
single value for the eigenvalue   simultaneously satisfies three characteristic equations. Eqs. (31) to (42  ) gives the 

relation between 7 8 9 7 8 9 10 7 8 9 10 7 8 9, , , , , , , , , , , , ,A A A B B B B C C C C D D D  and 10D  and they play as the balancing ratios 

that help Eq. (29) to be the third solution of the system of Eqs. (9). Therefore, the complete general solutions for the 
solid cylinder are 
 

2
1 1 3 1 1 2 6 2 1 3 2 3

2 3
10 4 1 5 2 6 3 4

2
1 7 0 3 8 0 9 1 6 10 0 11 1 12 2

10 13 0

( ) ( ) [ ( ) ( )] [ ( ) ( ) ( )]

[ ( ) ( ) ( ) ( )]

( ) ( ) [ ( ) ( )] [ ( ) ( ) ( )]

[ (

g

g

U r A J r A J r rJ r A J r rJ r r J r

A J r rJ r r J r r J r

W r A J r A J r rJ r A J r rJ r r J r

A J r

        

      

           

 

= + + + + +

+ + + +

= + + + + +

+ 2 3
14 1 15 2 16 3

2
1 17 0 3 18 0 19 1 6 20 0 21 1 22 2

2 3
10 23 0 24 1 25 2 26 3

1 27 0 3 28 0 29

) ( ) ( ) ( )]

( ) ( ) [ ( ) ( )] [ ( ) ( ) ( )]

[ ( ) ( ) ( ) ( )]

( ) ( ) [ ( )

g

g

rJ r r J r r J r

r A J r A J r rJ r A J r rJ r r J r

A J r rJ r r J r r J r

P r A J r A J r

     

            

       

    

+ + +

= + + + + +

+ + + +

= + + 2
1 6 30 0 31 1 32 2

2 3
10 33 0 34 1 35 2 36 3

( )] [ ( ) ( ) ( )]

[ ( ) ( ) ( ) ( )]

rJ r A J r rJ r r J r

A J r rJ r r J r r J r

      

       

+ + +

+ + + +

 

(43) 
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where 1  to 36  are ratios obtained from Eqs (31) to (42), (21) to (28), (15) to (18) and(12). Substituting 

,  ,  g g gU W   and gP  in the homogeneous form of the boundary conditions (5), three linear algebraic equations are 
obtained. They are the coefficients depending on  and .  Setting the determinant of the coefficients equal to zero, 

the fifth characteristic equation is obtained. Simultaneous solution of this equation and Eq. (15) results into infinite 

number of two eigenvalues n  and .n Therefore, ,  ,  g g gU W   and gP  are rewritten as 

 
2

1 1 37 1 1 2 38 2 1 3 2 3

2 3
39 4 1 5 2 6 3 4

2
1 7 0 37 8 0 9 1 38 10 0 11 1 12 2

39

( ) [ ( ) [ ( ) ( )] [ ( ) ( ) ( )]

[ ( ) ( ) ( ) ( )]]

( ) [ ( ) [ ( ) ( )] [ ( ) ( ) ( )]

[

g

g

U r A J r J r rJ r J r rJ r r J r

J r rJ r r J r r J r

W r A J r J r rJ r J r rJ r r J r

          

       

             

 

= + + + + +

+ + + +

= + + + + +

+ 2 3
13 0 14 1 15 2 16 3

2
1 17 0 37 18 0 19 1 38 20 0 21 1 22 2

2 3
39 23 0 24 1 25 2 26 3

1 27 0 37

( ) ( ) ( ) ( )]]

( ) [ ( ) [ ( ) ( )] [ ( ) ( ) ( )]

[ ( ) ( ) ( ) ( )]]

( ) [ ( )

g

g

J r rJ r r J r r J r

r A J r J r rJ r J r rJ r r J r

J r rJ r r J r r J r

P r A J r

      

              

        

  

+ + +

= + + + + +

+ + + +

= + 2
28 0 29 1 38 30 0 31 1 32 2

2 3
39 33 0 34 1 35 2 36 3

[ ( ) ( )] [ ( ) ( ) ( )]

[ ( ) ( ) ( ) ( )]]

J r rJ r J r rJ r r J r

J r rJ r r J r r J r

          

        

+ + + +

+ + + +

 

(44) 
 
where 37  to 39  are constant parameters. Let us show the functions in the brackets of Eq. (44) by functions 

0 1 2, ,H H H  and 3H  as 

 
2

0 1 37 1 1 2 38 2 1 3 2 3

2 3
39 4 1 5 2 6 3 4

2
1 7 0 37 8 0 9 1 38 10 0 11 1 12 2

39 13 0

( ) [ ( ) [ ( ) ( )] [ ( ) ( ) ( )]

[ ( ) ( ) ( ) ( )]]

( ) [ ( ) [ ( ) ( )] [ ( ) ( ) ( )]

[

H r J r J r rJ r J r rJ r r J r

J r rJ r r J r r J r

H r J r J r rJ r J r rJ r r J r

J

          

       

             

 

= + + + + +

+ + + +

= + + + + +

+ 2 3
14 1 15 2 16 3

2
2 17 0 37 18 0 19 1 38 20 0 21 1 22 2

2 3
39 23 0 24 1 25 2 26 3

3 27 0 37 28 0

( ) ( ) ( ) ( )]]

( ) [ ( ) [ ( ) ( )] [ ( ) ( ) ( )]

[ ( ) ( ) ( ) ( )]]

( ) [ ( ) [ (

r rJ r r J r r J r

H r J r J r rJ r J r rJ r r J r

J r rJ r r J r r J r

H r J r J

      

             

        

    

+ + +

= + + + + +

+ + + +

= + 2
29 1 38 30 0 31 1 32 2

2 3
39 33 0 34 1 35 2 36 3

) ( )] [ ( ) ( ) ( )]

[ ( ) ( ) ( ) ( )]]

r rJ r J r rJ r r J r

J r rJ r r J r r J r

        

        

+ + + +

+ + + +

 

(45) 
 

According to the Sturm-Liouville theorem, these functions are orthogonal with respect to the weight function 
p(r)r such as 
 

                             
2

0  
( ) ( )  d

( )

o

i

r

n m
r n

n m
H r H r r r

H r n m
 



ì ü¹ï ïï ïï ï= í ýï ï=ï ïï ïî þ
ò  (46) 

 
where ( )nH r  is norm of the H function and equals 

 
0.5

2( ) ( ) d
o

i

r

n n
r

H r rH r r 
æ ö÷ç ÷= ç ÷ç ÷çè øò  (47) 

 
Due to the orthogonality of function H, every piece-wise continuous function, such as f(r), can be expanded in 

terms of the function H (either 0 1orH H or 2H  or 3H ) and is called the H-Fourier series as 
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1

( ) ( )n n
n

f r e H r
¥

=

=å  (48) 

 
where ne  equals 

 

  
2

1
( ) ( ) d

( )

o

i

r

n
r

n

e f r H r r r
H r

= ò  (49) 

 
Using Eqs. (8), (44), and (45) the displacement and temperature distributions due to the general solution become 

 
6

0
1 1 1

6

1
1 1 1

6

2
1 1 1

6

1 1 1

( , , ) { } ( )sin( )

( , , ) { } ( ) cos( )

( , , ) { } ( )sin( )

( , , ) {

nmk

nmk

nmk

tg
nmk mn n

n m K

tg
nmk nmk mn n

n m K

tg
nmk nmk mn n

n m K

g
nmk nm

n m K

u r t z a e H r z

w r t z B a e H r z

T r t z N a e H r z

p r t z M a







 
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 

¥ ¥

= = =
¥ ¥
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¥ ¥
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¥ ¥
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=

=

=

=

å å å

å å å

å å å

å å å 3} ( )sin( )nmkt
k mn ne H r z  

 

(50) 
 
where Bmn, Nmn and Mnm are ratios obtained by substituting Eqs. (1) to (4). Using the initial conditions (7) and with 
the help of Eqs. (47) to (49) and (45) and (50), six unknown constants are obtained. 

3.4 Particular solution with non-homogeneous boundary conditions 

The general solutions may be used as proper functions for guessing the particular solution adopted to the non-
homogeneous parts of the Eqs. (1) to (4) and the non-homogeneous boundary conditions (5) as 
 

2 3 2
1 1 2 2 3 3 4 4 5

1 1

2 3 2
6 0 7 1 8 2 9 3 10

1 1

( , ) { ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}sin( )
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n m
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z
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 (51) 
 
It is necessary and suitable to expand the body force F(r,t), R (z,t), heat source Q(r,t) and porosity function W(r,t) in 
H-Fourier expansion form as 
 

0
1 1

( , , ) ( ) ( ) sin( )nm nm n
n m

F r z t F t H r z 
¥ ¥

= =

=å å  
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1
1 1
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n m
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(52) 
 
where Fnm(t), Rnm(t), Qnm(t) and Pnm(t) are 
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(53) 
 

Substituting Eqs. (51) and (53) into non-homogeneous form of equations (1) into (4) yield 
 

2
2 2 3 3 3 13 4 1 13 4 2 16 4 1 16 4 2

6 2 15 8 1 15 8 2 10 1 14 12 1

14 12 2 25 10 1 25 10 2

1 1 1
( ) ( ) 4 ( ) ( ) 4 ( ) ( ) 4 ( )
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(54a) 
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(54b) 
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(54c) 
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(54e) 
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(54f) 
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(54g) 
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(54i) 
 
where 10d  to 27d  are the coefficients of the H-expansion and constant parameters. By taking Laplace transform of 

Eq. (54) and using four boundary conditions of Eq. (5) (for solid cylinder only second, fourth, sixth and eighth 
boundary conditions are applicable), a system of algebraic equations is obtained and solved by Cramer’s methods in 
the Laplace domain where by the inverse Laplace transform the functions are transformed into the real time domain 
and finally G1(t) to G20(t) are calculated. In this process, it is necessary to consider the following points: 
1. The initial conditions (7) are considered only for the general solutions and the, initial conditions of G1(t) to G20(t) 

for the particular solutions are considered equal to zero. 
2. Laplace transform of Eqs. (54) are in terms of  polynomial function form of the Laplace parameters (not the 

Bessel functions form of s). Therefore, the exact inverse Laplace transform is possible and somehow simple. 

4    RESULTS AND DISCUSSIONS 

As an example, a solid cylinder with ri0, ro1
 
m and Lπ m is considered. The material properties are listed in 

Table 1. The initial temperature T  is considered to be 293 K.  Now, an instantaneous hot spot 
3(1, , ) 10 ( ) sin( ),T z t T t z-=   where ( )t  is unit Dirac function, is considered and the outside radius of the cylinder 

is assumed to be fixed (u(1,z, t) 0). For drawing the graphs, a nondimensional time ˆ /t vt r=   is considered where 

(1 ) / (1 )(1 2 )v E    = - + -  is dilatational -wave velocity. 

 
Table1 
Material Parameters 

Unit Value Parameters Unit Value Parameters 
o1/ C  51.5 10-´  s  - 0.4 n 
o1/ C  42 10-´  w  Pa 56 10´  E 

oJ/g C  0.8 sc  - 0.3 υ 
oJ/g C  4.2 wc  K  293 T  

3g/m  62.6 10´  s  Pa 102 10´  sK  

3g/m  61 10´  w  Pa 95 10´  wK  

- 1   oW/m C  0.5 K  
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More than this number for eigenvalues, the increased round-off and truncation errors effect the quality of the 
graphs. The convergence of solution is better for displacement in comparison with the temperature and pressure. 

5    CONCLUSIONS 

In this paper, analytical solution for the coupled porothermoelasticity of thick cylinders under radial temperature is 
presented. The method is based on the eigenfunctions Fourier expansion, which is a classical and traditional method 
of solution of the typical initial and boundary value problems. The non-competetive strength of this method is its 
ability to reveal the fundamental mathematical and physical properties and interpretations of the problem under 
study. In the coupled porothermoelastic problem of radial-symmetric cylinder, the governing equations are a system 
of partial differential equations with two independent variables, radius (r) and time (t). The traditional procedure to 
solve this class of problems is to eliminate the time variable by using the Laplace transform. The resulting system is 
a set of ordinary differential equations in terms of the radius variable, which falls in the Bessel functions family. 
This method of analysis brings the Laplace parameter (s) in the argument of the Bessel functions, causing hardship 
or impossibility in carrying out the exact inverse of the Laplace transformation. As a result, the numerical inverse of 
the Laplase transformation is used in the papers dealing with this type of problems in literature. To prevent this 
problem, in the present paper, when the Laplace transform is applied to the particular solution, it is postponed after 
eliminating the radius variable r by H-Fourier Expansion. Thus, the Laplace parameter (s) appears in polynomial 
function forms and hence the exact Laplace inversion transformation is possible. 
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APPENDIX 

1 2 3 42 2

5 6 7 8 92

10

1 1 2 1 1 (1 )(1 2 ) (1 ) (1 )(1 2 )
, , , ,

2 1 2 (1 ) (1 )(1 ) (1 )

(1 )(1 2 ) (1 ) 1 1 (1 )
, 2 , , , 2 ,

(1 2 ) (1 2 ) (1 2 ) (1 )(1 )

(1 ) (
2 2

(1 )

d d d d
E E

d d d d d
EE

d
E

       
   
    

   



æ ö- + - + + -÷ç=- =- =- - =-÷ç ÷÷çè ø- - -- -
+ - - +

=- =- = = =-
- - - --

+
=- -

- 11 12 13 14

15 16 17 18 192

1 ) (1 )
, 2 , , , ,

(1 2 ) (1 )

(1 )(1 2 ) (1 )
, , , , 2 ,

(1 )(1 )
w w w

p

T T T
d d Z d Y d

E K K K

d d Y d d d
k k k EE

   
 

      


+ +
=- =- = =-

- -
+ - +

=- = =- =- =-
--

  

 

20 21
1

, wd Q d
K k


=- =-  

(A.1) 

REFERENCES 

[1] Bai B., 2006, Response of saturated porous media subjected to local thermal loading on the surface of semi-infinite 
space, Acta Mechanica Sinica 22: 54-61. 

[2] Bai B., 2006, Fluctuation responses of saturated porous media subjected to cyclic thermal loading, Computers and 
Geotechnics 33: 396-403. 

[3] Droujinine A., 2006, Generalized an elastic asymptotic ray theory, Wave Motion 43: 357-367. 
[4] Bai B., Li T., 2009, Solution for cylinderical cavety in saturated thermoporoelastic medium, Acta Mechanica Sinica 

22(1): 85-92. 
[5] Hetnarski R.B., 1964, Solution of the coupled problem of thermoelasticity in the form of series of functions, Archives 

of Mechanics (Archiwum Mechaniki Stosowanej) 16: 919-941. 



An Exact Solution for Classic Coupled Thermoporoelasticity in Axisymmetric Cylinder                   143 

 

© 2010 IAU, Arak Branch  

[6] Hetnarski R.B., Ignaczak J., 1993, Generalized thermoelasticity: Closed-form solutions, Journal of Thermal Stresses 
16: 473-498. 

[7] Hetnarski R.B., Ignaczak J., 1994, Generalized thermoelasticity: Response of semi-space to a shortlaser pulse, Journal 
of Thermal Stresses 17: 377-396. 

[8] Georgiadis H.G., Lykotrafitis G., 2005, Rayleigh waves generated by a thermal source: A threedimensional transiant 
thermoelasticity solution, Journal of Applied Mechanics 72: 129-138. 

[9] Wagner P., 1994, Fundamental matrix of the system of dynamic linear thermoelasticity, Journal of Thermal Stresses 
17: 549-565. 

[10] Jabbari M., Dehbani H., 2009, An exact solution for classic coupled thermoporoelasticity in cylindrical coordinates, 
Journal of Solid Mechanics 1(4): 343-357. 

[11] Jabbari M., Mohazzab A.H., Bahtui A., Eslami M.R., 2007, Analytical solution for three-dimensional stresses in a short 
length FGM hollow cylinder, ZAMM Journal 87(6): 413-429. 


