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 ABSTRACT 

 In this study, the free vibration behavior of orthotropic rectangular graphene sheet 
embedded in an elastic medium under biaxial pre-load is studied. Using the nonlocal 
elasticity theory, the governing equation is derived for single-layered graphene sheets 
(SLGS). Differential quadrature method (DQM) has been used to solve the governing 
equations for various boundary conditions. To verify the accuracy of the present results, a 
Navier’s approach is also developed. DQM results are successfully verified with those of 
the Navier’s approach. The results are subsequently compared with valid result reported in 
the literature. The effects of the small scale, pre-load, Winkler and Pasternak foundations 
and material properties on natural frequencies are investigated. The results are shown that 
with the decrease of in-plane pre-loads the curves isotropic and orthotropic non-dimensional 
frequency in approaches close to each other.     
                                                                            2012 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 N the past decade, the attention of scientific community international has carried to the investigation of the 
behavior of matters at the atomic scale of material. The growth of scientists at this length scale has carried to the 

creating of the phrase nanotechnology. Nanotechnology is studied as one of the most encouraging technologies to be 
researched now. This technology could have enormous influence on information technology, aerospace, electronic 
devices, defense production and medical devices. Many endeavors have been made to construct nanodevices, 
expand and utilize matters on the nano scale. Some encouraging utilization have commenced to appear. One of the 
best examples of novel nanostructures are carbon nanotubes (CNT). Carbon nanotubes are allotropes of carbon. 
These are derived by bottom-up chemical synthesis processes. In carbon nanotubes, the chemical compound and 
atomic bonding configuration is simple. However, these materials represent various structure-property relations 
among the materials. Since the carbon nanotubes [1] are discovered, a large number of researcher have studied this 
material due to their mechanical properties (strength, stiffness), electrical and thermal properties. A single-walled 
nanotube (SWNT) can be formed by rolling a sheet of graphene into a cylinder along an {m, n) lattice vector in the 
graphene plane. In recent years, carbon nanotube have been used as actuators, charge detection devices, parametric 
amplifiers biosensors [2], nanorelays and nano electromechanical switches [3].  By using of continuum mechanics  
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model and molecular dynamic simulations, the mechanical behaviors of nanostructures have been widely studied [4, 
5]. Continuum mechanics in comparison to the molecular dynamic has been widely investigated for mechanical 
properties of two dimensional nanostructures, because the molecular dynamic is computationally expensive. It is 
admirable to expand continuum theories that may overcome the limitations of atomistic simulations regarding length 
scales. Newly, the continuum mechanics approximation has been widely and successfully utilized to investigate the 
mechanical behavior of CNTs, such as the stability analysis [6], free vibration [7, 8, 9], thermo-mechanical analysis 
of CNTs [10], because in many applications, the results from continuum mechanics approximation are exactly 
matched with the other results of the atomistic approaches [11]. The nonlocal elasticity theory has been used to 
investigate screw dislocation and surface waves in solids [12]. In the nonlocal elasticity theory, the size effects are 
captured by assuming the stress components at a given point dependent on the strain component at all points in the 
domain. 

It is cleared that the natural frequency is easily affected by the applied in-plane load. As a result, the effect of in-
plane load on the property of out of plane vibration of graphene sheet is of practical interest. Number of researches 
have been investigated on the nonlocal graphene sheets very limited compared with one-dimensional nonlocal 
nanostructures (nanobeams, nanowire, nanoring and nanorods). Pradhan and Murmu [13] investigated buckling of 
single layer graphene sheet by nonlocal elasticity theory. They have shown that the difference in behavior between 
uniaxial and biaxial compressions decreases as the size of the graphene sheets increases. using nonlocal elasticity 
theory, Pradhan [14] investigated buckling of single layer graphene sheet based on third order shear deformation 
theory. He reported that the variation of buckling load ratio is insignificant with the change in elastic modulus and 
thickness of the graphene sheet. Murmu and Pradhan [15] used nonlocal elasticity theory for vibration behavior of 
nano-single-layered graphene sheets embedded in elastic medium. Their numerical results are shown that the 
fundamental frequencies depend significantly on the moduli of the surrounding medium. Pradhan and Phadikar [16] 
investigated the vibration of embedded multilayered graphene sheets based on nonlocal continuum models. 
Aghababaei and Reedy [17] developed third-order shear deformation plate theory for bending and vibration of 
rectangular nanoplate based on nonlocal elasticity theory. Pradhan and Murmu [18] investigated buckling of 
nanoplate under biaxial compression load. They assumed rectangular nanoplate with isotropic properties and 
without elastic medium also they investigated stability of nanoplate under compression pre-load. Murmu and 
pradhan [19] studied biaxially compressed orthotropic plates based on nonlocal parameter. They proposed explicit 
expressions for the non-dimensional buckling load for the nanoplate with all edge simply supported but they didn’t 
investigate the effect of boundary conditions and the elastic medium on the non-dimensional buckling load. Murmu 
and Pradhan [20] represented vibration analysis of nanoplates under uniaxial prestressed conditions via nonlocal 
elasticity but they didn’t consider elastic medium whereas in nature, a single-layered rectangular graphene sheet 
embedded in a polymer matrix.  They assumed rectangular nanoplate with isotropic properties whereas it has been 
reported that the graphene sheets have orthotropic properties [4]. In addition, they didn’t investigate the effect of 
biaxial preload and tensile preload on the non-dimensional frequency. Some researches of the nanoplates have been 
reported on the mechanical properties. However, compared to the nanotubes, studies for the nanoplates are very 
limited, particularly for the vibration properties under pre-stressed. 

In the present study, we emphasize much on orthotropicity of plates because nanoplates such as graphene sheets 
(GS) is reported to be possessing orthotropic properties [4].  The effect of polymer matrix on the frequency vibration 
and the non-dimensional buckling load of rectangular nanoplate are considered. In other hand, the effect of tensile 
and compressive biaxial preloads on the vibration analysis is studied. The governing equations of motion are derived 
using the nonlocal elasticity theory. Differential quadrature method (DQM) is used to solve the governing equations 
for simply supported boundary conditions, clamped boundary conditions and various combinations of them. To 
verify the accuracy of the DQM solutions, the governing equation is also solved by the Navier’s approach. The 
predicted results by the DQ technique are successfully verified with which those of the Navier’s approach. From the 
results, some new and absorbing phenomena can be observed. To suitably design nano electro-mechanical system 
and micro electro-mechanical systems (NEMS/MEMS) devices using graphene sheets, the present results would be 
useful. 
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2    NONLOCAL PLATE MODEL 

By using nonlocal elasticity theory, stress components for a linear homogenous nonlocal elastic body without the 
body forces are [12]: 

 ( ) , ( ) ( ), ,     ij ijkl klx x x C x dV x x V     (1)

 
where ,ij ij  and ijklC

 
are the stress, strain and fourth order elasticity tensors, respectively. The integration extends 

over the entire body volume V . The function   is the nonlocal modulus, which contains the small scale effects. It 

is obvious that the nonlocal modulus has the dimension of   3length .  is a material constant 0( / ) e a l  
that 

depends on the internal a and external characteristics lengths l. Choice of the value of parameter
 0e

 
is vital for the 

validity of nonlocal models. Hence, the effects of small scale and atomic forces are considered as material 
parameters in the constitutive equation. This parameter was determined by matching the dispersion curves based on 

the atomic models. The term
 

x x  represents the distance between the two points ( x and x ).The differential form 

of Eq. (1) can be written as [17]: 

     2 2
01  nl

ie l C   (2)

 
where nl ,  , denote the nonlocal stress and the strain vector, respectively. C denote the elastic stiffness tensor. 2  
is the Laplacian operator in Cartesian coordinates and can be express as 2 2 2 2 2( / / ).      x y  In present 
research, we investigated nano monolayer orthotropic graphene sheets. In two-dimensional forms, Eq. (2) are 
expressed as [10]: 
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(3)
 

 
where 1 2,  E E  are the Young’s modulus, 12G  is shear modulus, 12 21,    , indicate Poisson’s ratio, respectively. The 
strains in terms of displacement components in the middle surface can be written [15]: 
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Fig.1 
Rectangular nanoplate embedded in an elastic medium. 
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where the terms with w represent the strain components due to bending. The quantities 2 2 w x  and 2 2 w y are 

the bending curvatures in x  and y  direction respectively, and 2  w x y  is the twist curvature. Thus, appropriate 

stress resultants for the plate theory are bending and twisting moment per unit length as defined as below for 
development of rectangular nanoplate [15]: 

/ 2 /2 /2

/ 2 /2 /2

, , ,
  

    
h h h

nl nl nl
xx xx yy yy xy xy

h h h

M z dz M z dz M z dz    
(5)

 
Also, shear resultant xQ  and yQ  per unit length corresponding to the transverse shear nonlocal stresses nl

xz   and 
nl
yz   respectively and expressed as: 
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Here, h  is indicated as the thickness of the plate. By inserting Eq. (3), and Eq. (4) into Eq. (5) we can express 

stress resultants in terms of lateral deflection on the classical plate theory for the rectangular nanoplate as follows 
[15]: 
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ijD  is known as the different flexural  rigidity of the orthotropic rectangular nanoplte and are defined as: 
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Note that the relations given in Eq. (7) are in the nonlocal plate model and those reduce to that of the classical 

equation when the nonlocal parameter 0( )e a  is set to zero. A mono-layered rectangular graphene sheet embedded in 
an elastic medium (polymer matrix) is shown in Fig. 1. For modelling polymer matrix, the Pasternak-type 
foundation model is studied which accounts for both normal pressure and the transverse shear deformation of the 
surrounding elastic medium. The equations of motion for the transverse vibration of an orthotropic rectangular 
nanoplate is expressed as [15]: 
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where WK  indicate the Winkler modulus, GxK  and GyK are the shear modulus of the surrounding elastic medium. If 

the shear layer foundation stiffness is neglected, Pasternak foundation takes to Winkler foundation. If polymer 

matrix is homogeneous and isotropic, we will take  Gx Gy GK K K . The term f  denote transverse loading, 0m  and 

2m are mass moments of inertia and are defined as follows: 

2 2
2

0 2
2 2

,     
 
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h h

h h

m dz m z dz   
(10)

 
where   denotes the density of the rectangular nanoplate. Using Eq. (9a) and Eq. (9b) to eliminate xQ   and yQ   

from Eq. (9c) one can obtain  
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The substitution of Eq. (7) into the vibration equation of a nanoplate Eq. (11) yields the governing differential 

equation of orthotropic plates 
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The influence of the nonlocal parameter ( 0e a ) in the governing equations take into account the changes that are 

caused by the decrease in the size of a body at small scale. The impression of size on the behavior of nanomaterials 
is named size effect. The local elasticity theory is independent from a scale factor so it cannot forecast the size 
effects. By nonlocal parameter, the governing equation is obtained from nonlocal continuum mechanics is changed 
in compression the classical equations from local continuum mechanics. This parameter (eoa) is taken into the 
constitutive equations clearly as a material constant. At small scale, size effects can be prominent in the mechanical 
features of nanostructures. The size effect has important role in the static and dynamic details of nanostructures. This 
effect has shown by the molecular dynamics simulation and experimental investigation. Chen et al. [21] reported 
that, the nonlocal elasticity theory is logical physically as compression couple stress theory, micromorphic theory, 
Cosserat theory, etc. 

3    PROBLEM SOLUTION  

It is assumed that the plate is free from transverse loading  0f  and the solution of the resulting equation is 

assumed to be harmonic with frequency ( ) [20]: 
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 ( , , ) ( , ) i tw x y t W x y e   (13)

 
We consider the plate subject to the in-plane compressive forces 1 0 2 0,   ,   0    xx yy xyN P N P N   where 1  

and 2  is constant. Using the Eq. (12), a non-dimensional nonlocal differential equation for vibration of orthotropic 
graphene sheet under biaxial preload and embedded in an elastic medium can be obtained 
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where non-dimensional frequency parameter and other terms are defined in the following form  
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3.1 Solution by DQM 

DQM has been found to be an efficient numerical technique for the solution of initial and boundary value problems 
[22, 23, 24]. Consider a two dimensional field variable ( , ),u x y  the m-th order derivative of it with respect to ,x  

and the ( ) m n th  order derivative of it with respect to x and y is approximated as [22]: 
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The method developed by Shu and Richard [25] is claimed to be computationally more accurate than other 

methods [26]. According to Shu and Richard rule [25], the weighting coefficients of the first-order derivatives in 
 direction (  or y) x are determined as [25]: 
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In order to evaluate the weighting coefficients of higher-order derivatives, recurrence relations are derived as 

[25]: 
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The natural and simplest choice of the grid points is equally spaced points in the direction of the coordinate axes 

of the computational domain. It was demonstrated that non-uniform grid points gives a better results with the same 
number of equally spaced grid points. In this paper, we choose these set of grid points in terms of natural coordinate 
directions  and  as [27]: 

 

 
 

 
 

11 1 co s
2 1

11 1 c o s
2 1

  
       

  
       

i

j

i
N

j
M







 For    
1, 2, ...,
1, 2, ...,




i N
j M

 

 
 

(20)
 

 
A rectangular GS is considered to be embedded in an elastic medium. The geometric properties of the GS are 

denoted by length l, width b, thickness h. Eq. (14) can be solved by DQM approach for various boundary conditions. 
The simply supported boundary conditions are mathematically represented as: 

 
2 *

*
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(21)

 
The clamped supported boundary conditions can be written as: 

   
*

*

*
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
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
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

 


 

 
(22)

 

 
The computational domain of the rectangular plate is 0 1,    0 1     . Making use of Eqs. (16a-16b) and 

incorporating the boundary conditions by modified weighting coefficient method [26] we write Eq. (14) in non-
dimensional form 
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C  and C are the weighting coefficient matrix in the x, y directions respectively. After implementation of the 

boundary conditions, Eq. (23) can be written in matrix form as: 
 

2 *[ ]{W } 0, totalK I  (24)

where I  and 2  are identity matrix and non-dimensional frequency described in Eq. (15). The Eq. (24) can be 
solved by a standard eigenvalue solver. Fig. 2  is shown flowchart of steps of DQ method. 

3.2 Navier’s approach 

Exact solution of Eq. (14) can be solved for simply supported plate on all edges by using the Navier’s approach. As 
in the case of free vibration of a rectangular nanoplate without any in-plane forces, the following solution can be 
seen to satisfy the simply supported boundary conditions of the plate [19]: 

1 1
( , ) sin( )sin( )

 

 

  mn
m n

m x n yW x y W
l b
 

 (25)

 
 where m and n are the half wave numbers and mnW  is constant. By inserting Eq. (25) into Eq. (14), yields the non-
dimensional natural frequency at small scale with various nanoplate properties, Winkler and shear elastic factors. 
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Fig.2 
Flowchart of steps of applied DQ method. 
 

It can be seen that mn  reduces to zero as the magnitude 0P  of increases. When 0, mn called the critical or 
buckling load, can be determined from Eq. (26) as: 
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(27)

 

 
From Eq. (27), it can be observed that if the Winkler and shear elastic factor are ignored, the buckling load will 

be reduced to Murmu and Pradhan [19]. Using Eq. (27), the frequency given by Eq. (26) can be expressed 
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where Eq. (28) is the frequency equation orthotropic rectangular nanoplate under biaxial in-plane forces. And this 
frequency equation is for simply supported boundary conditions. 
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4    RESULTS AND DISCUSSION 

In the present study, we investigated vibration of orthotropic rectangular nanoplate under in-plane load acting on 
edges and embedded in elastic medium. The scale coefficients are assumed smaller than 2.0 nm because these values 
for carbon nanotubes were taken by Wang and Wang [27] and Duan and Wang [28]. The materials properties of 
orthotropic rectangular graphene sheet are presented in Table 1.  

Table 1 
The materials properties of rectangular nanoplate. 

Source Material Properties of orthotropic of rectangular nanoplate 

1  (Gpa)E  2  (Gpa)E  12  21  3 ( )kg m  

Ref. 4, 19 1765 1588 0.3 0.27 2300 
 
 

Ref. 18 

Material Properties of isotropic of rectangular nanoplate 
 (Gpa)E   3 ( )kg m  

1060 0.25 2250 
 
The results of square isotropic nanoplates were compared with published data. Fig. 3 is shown Murmu and 

Pradhan’s results [20], and the results obtained from this work for the free vibration problem of square isotropic 
nanoplates for case of uniaxial pre-stressed and without consider elastic medium. Here, nonlocal parameter and 
length of square nanoplate is considered 1nm, 10 nm respectively. It can be seen that the results herein exactly 
match with the other results reported. 

As the results of DQ procedure depend on the number of grid points [23, 26], a convergence test is carried out. 
The non-dimensional frequencies of rectangular nanoplate are tabulated in Table 2. for various numbers of grid 
points and some values of nonlocal parameter. The table is plotted to obtain the minimum number of grid points 
required to determine accurate results. The length of rectangular nanoplate 10 nm is considered. It is assumed that 
the nanoplate subjected to compressive biaxial pre-load 0 10P . It can be easily seen form Table 2. that sixteen 

number of grid points along the   and   axes is sufficient in order to gain converge solution. 
To study the effect of biaxial compressive pre-stressed on the non-dimensional frequency, in this section, the 

non-dimensional frequency versus compressive pre-load for isotropic and orthotropic properties of square nanoplate 
is shown in Fig. 4. The length of square nanoplate is 10 nm. It is found that non-dimensional frequency of the 
isotropic graphene sheet is always larger than that of orthotropic one. This is clear because plate with orthotropic 
properties is more flexible than that of isotropic one. From this figure, it is seen that nonlocal solution is smaller than 
classical (local) solution for all values of in-plane pre-load considered. Further, one could observe that effect initial 
compressive pre-load on non-dimensional natural frequency is important and nonlinear in nature. The natural 
frequencies decrease with increasing compressive in-plane pre-load and when the in-plane compressive kind pre-
loads reach their critical value; the mode of vibration is buckled and the non-dimensional natural frequency become 
equal zero. 

 
 
 
 
 
 
 
 
 
 
 

Fig.3 
Comparison of results of fundamental frequencies obtained 
by the present study and that obtained by DQ approach. 
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Table 2 
Validation and convergence study of differential quadrature method. 
Number 
of grid 
point 

0 (nm)e a  

All edges simply supported All edges clamped 
0 0.5 1 1.5 2 0 0.5 1 1.5 2 

10 13.4647 12.8879 10.9142 8.2097 4.0094 32.4663 31.0349 27.2614 22.1649 16.4095 
12 13.4652 12.8879 10.9142 8.2097 4.0094 32.4616 31.0307 27.2584 22.1629 16.4084 
14 13.4652 12.8879 10.9142 8.2097 4.0094 32.4608 31.0301 27.2578 22.1625 16.4081 
16 13.4652 12.8879 10.9142 8.2097 4.0094 32.4608 31.0300 27.2578 22.1624 16.4080 
18 13.4652 12.8879 10.9142 8.2097 4.0094 32.4608 31.0300 27.2578 22.1624 16.4080 

20 13.4652 12.8879 10.9142 8.2097 4.0094 32.4608 31.0300 27.2578 22.1624 16.4080 
Navier’s 
approach 

13.3304 12.6514 10.7640 7.8957 3.4937 - - - - - 

 
The intersection points of the curves with the horizontal axis are the buckling load of nanoplate. The buckling 

load for isotropic graphene sheet is always more than buckling load for orthotropic graphene sheet. The buckling 
load kept on decreasing when the nonlocal parameter became larger. Therefore, the magnitudes of the in-plane 
compressive loads are important parameter for the design of a micro or nanoplate structures. Furthermore, the 
difference between the natural frequencies calculated by isotropic and orthotropic properties increases with 
decreasing nonlocal parameter. With the decreasing of in-plane pre-loads the curves isotropic and orthotropic in Fig. 
4 approaches close to each other. 

In Fig. 5 and Fig.6, we consider a mono-layered graphene sheet with isotropic and orthotropic properties. To 
investigate the influence in-plane stresses on the natural frequency in two cases compressive and tensile stresses, we 
define frequency fraction in non-dimensional natural frequencies with the in-plane stress to those without the in-
plane stress as the following form 

nondimensional frequency with the inplane load fraction=
nondimensional frequency without the inplane load

frequency  

  
 
 
 
 
 
 
 
 
 
 
 

Fig.4 
Change of non-dimensional frequency with non-
dimensional pre-load for various nonlocal parameters. 

 
The scale coefficient is 1 nm and the first mode number is considered. The in-plane loads are considered P0=2, 4, 

6, 8 and 10. In Fig. 5 frequency fraction is plotted versus aspect ratio for various compressive in-plane stresses. It is 
shown that the frequency fraction with different in-plane compressive loads will increase with the aspect ratio 
increasing. However, it is seen the non-dimensional frequency with in-plane compressive loads are smaller than the 
non-dimensional frequency without in-plane loads for all aspect ratio. This phenomenon is because compressive in-
plane loads are caused to reduce of rigidity of nanoplate so the non-dimensional frequency of nanoplate with 
compressive in-plane loads is smaller than that for plate without in-plane preload. Then the frequency fraction for 
nanoplate with compressive in-plane preload is smaller than unit. It can also be observed that the frequency fraction 
will increas with the in-plane load decreasing. The plot of frequency fraction with respect to aspect ratio for the case 
of tensile in-plane stresses is demonstrated in Fig. 6. It is cleared; the behaviors of the frequency fractions for the 
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tensile in-plane loads are against compressive in-plane loads in Fig. 6. In the two case of in-plane loads 
(compressive and tensile loads), the effect of in-plane loads decreases with the increasing of aspect ratio. This means 
that at larger aspect ratio, the effect of in-plane load is less important.   
In order to illustrate the effect of boundary condition on vibration response of the orthotropic graphene sheets under 
biaxial compressive pre-load 0 10P , six different boundary conditions are considered. For brevity, a four-letter 
symbol is used to denote the boundary conditions for the four edges of the nanoplate as follows: 
SSSS: All edges simply supported. 
SSSC: Simply supported along x =0, x = l and y = 0 and clamped along y = b. 
SCCS: Simply supported along x = 0 and y = b and clamped along x = l and y =0. 
SCCC: Simply supported along x = 0 and clamped along x = l, y = 0 and y = b. 
CCCC: All edges clamped. 
 
 

 
 
 
 
 
 
 
 
 
 

Fig.5 
Change of frequency fraction with aspect ratio for various 
non-dimensional compressive pre-load. 

 
 
 

 
 
 
 
 
 
 
 
 
 
Fig.6 
Change of frequency fraction with aspect ratio for various 
non-dimensional tensile pre-load. 

 

 

Fig. 7 shows the variation of non-dimensional frequency with the length of nanoplate for the above-mentioned 
boundary conditions. As seen from the figure, the non-dimensional natural frequency also depends on the boundary 
conditions. The length of nanoplate is more noticeable for CCCC boundary condition when compared with SSSS 
boundary condition. This result can be explained as the rectangular nanoplate with clamped edges has more 
constraints than simply supported one. As the boundary conditions become more rigid, the non-dimensional natural 
frequency increases. Thus, the influence of length of nanoplate on the non-dimensional frequency of the orthotropic 
nanoplates for SSSS, SSSC, SCCS, SCCC and CCCC boundary conditions are in increasing order (CCCC > SCCC 
> SCCS > SSSC > SSSS). It is also found that the gap between any two curves approximately increases with 
increasing length of nanoplate. 
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Fig.7 
Change of natural frequency with length of nanoplate for 
various boundary conditions. 

 
 

The effect of biaxial in-plane compressive load on the frequency of orthotropic graphene sheet embedded in an 

elastic medium is studied. The Winkler modulus parameter WK , for the surrounding polymer matrix is gotten in the 

range of 0–400. We assumed that polymer matrix is homogeneous  Gx Gy GK K K . Then, shear modulus factor GK   

is gotten in the range 0-10. Similar values of modulus parameter were also applied by Liew et al. [29]. The 

relationships between difference percent frequency versus Winkler constant WK  and shear modulus GK  for 

different in-plane stress and isotropic and orthotropic properties of graphene sheet are demonstrated in Figs. 8, 9. A 
scale coefficient e0a = 2.0 nm is used in the analysis. The frequency difference percent is defined as 

0 0

0

Difference percent= 100  




P P P

P

frequency frequency
frequency

 

 
 
 
 
 
 
 
 
 

Fig.8 
Change of difference percent with Winkler elastic factor 
for various non-dimensional pre-load. 
 

 
 

 

 
 
 
 
 
 
 
 
 
Fig.9 
Change of difference percent with shear elastic factor for 
various non-dimensional pre-load. 
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As can be observed, the effect of in-plane pre-load on the non-dimensional natural frequency is less important 
for graphene sheet embedded in an elastic medium in compression with graphene sheet without elastic medium 
because the Winkler constant or shear modulus decreases then the effect of in-plane load on the difference percent 
increase. It can be observed for the consequences that the difference percent increases with increasing the in-plane 
stress.  For larger in-plane stress, the decline of difference percent is quite important. It is cleared because the in-
plane pre loads are caused to change in rigidity of nanoplate when the in-plane preload is grown the rigidity of 
nanoplate is more change. In other hand, when elastic factor increases, the rigidity of nanoplate increases and the 
effect of elastic factor on the rigidity of nanoplate is more than the effect of in-plane preload on that, consequently 
the gap between curves decreases and the effect of in-plane preload are reduced. So the slope of curve for nanoplate 
with larger in-plane preload are bigger than that for nanoplate with smaller in-plane preload. Also, the difference 
percent for orthotropic graphene sheet is larger than that for graphene sheet with isotropic properties. From these 
plots it is obvious the important influence of in-plane stress and elastic medium, in the cases isotropic and 
orthotropic graphene sheet on the non-dimensional frequency. Furthermore, the difference between the natural 
frequencies calculated by isotropic and orthotropic properties increases with decreasing Winkler and shear elastic 
factor. 

To study the influence of Winkler and Pasternak foundation on the non-dimensional natural frequency and the 
non-dimensional buckling load of orthotropic rectangular nanoplates, the variation in non-dimensional natural 
frequency with the non-dimensional preload is shown in Fig. 10. The side of rectangular nanoplate, nonlocal 
parameter and aspect ratio is taken as 10 nm, 1 nm and 1 respectively. It is assumed that rectangular nanoplate is 
subjected to compressive in-plane preload. One could observe that the non-dimensional natural frequency increases 
with increase in Winkler and Pasternak parameter. In addition, it is clear that the nanoplate with larger Winkler and 
Pasternak parameter is need to more non-dimensional preload for that the nanoplate buckled. This phenomenon is 
because when the Winkler and Pasternak parameter increases the rigidity of nanoplate increases which leads to an 
increase in the non-dimensional buckling load and the non-dimensional natural frequency. Furthermore, it is clear 
that the effect of Pasternak parameter is more than the effect of Winkler parameter on the non-dimensional natural 
frequency and the non-dimensional preload.  
 

 
 
 
 
 
 
 
 
 
 
Fig.10 
Change of non-dimensional frequency with non-dimensional 
pre-load for various Winkler and Pasternak parameter. 

 

5    CONCLUSIONS 

This study illustrates the importance of small scale effect on the vibration analysis of an orthotropic rectangular 
nanoplate under biaxial pre-load based on the nonlocal elasticity theory. It is shown that the nonlocal vibration 
frequencies are always smaller than the local solutions. Further, the non-dimensional frequency of the isotropic 
graphene sheet is always larger than that of orthotropic one.  The frequency fraction decreases by increasing the 
compressive pre-load. In addition, the effect of in-plane loads decreases with the increasing of aspect ratio. The non-
dimensional natural frequency becomes equal zero when the in-plane compressive pre-loads reach their critical 
value. The difference between two natural frequencies (the natural frequency calculated by isotropic and orthotropic 
properties) increases with decreasing nonlocal parameter and non-dimensional preloads. The behaviors of the 
frequency fractions for the tensile in-plane loads are against compressive in-plane loads. The non-dimensional 
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natural frequency increases when the boundary conditions become more rigid. The non-dimensional buckling load 
increases when the Winkler and Pasternak foundation increases. The Winkler constant or shear modulus factor 
increases as results the, effects of in-plane load on the difference percent, decreases. The difference between 
isotropic and orthotropic frequency increases with decreases in elastic factors (shear elastic and Winkler elastic 
factors). 
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