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 ABSTRACT 

 The present paper investigates the advantages of a new class of composite grid 

structures over conventional grids. Thus far, a known grid structure such as orthogrid or 

isogrid has been used as an orthotropic layer with at most in-plane anisotropy. The 

present laminated grid is composed of various numbers of thin composite grid layers. 

The stiffness of the structure can be adjusted by choosing proper stacking sequences. 

This concept yields to a large variety of laminated grid configurations with different 

coupling effects compare to conventional grids. To illustrate the advantages of the 

laminated grids, the stiffness matrices and the bending response of the laminated and 

conventional grids are compared. Furthermore, a progressive failure analysis is 

implemented to compare the failure resistance of laminated and conventional grids. The 

results indicate that, thoughtful selection of stacking sequences of the laminated grid 

enhances the stiffness and response of the laminated grids without significant effect on 

the failure index.                                       © 2017 IAU, Arak Branch.All rights reserved. 

 Keywords : Laminated grid; Composite; Stiffness; Orthogrid; Plate bending; 

Progressive failure. 

1    INTRODUCTION 

 HE grid structures can be designed to endure specific loads in particular directions. This benefit can reduce the 

weight of structures [1]. The grid structures are extensively used in aerospace, civil, and marine structures. Grid 

structures are usually made from metals, woods and composite materials. Due to exceptional properties of the 

reinforced composite materials, low weight, directional and tailor able properties, they are widely used in high 

performance structures such as grids. 

Nearly all studies in the field of grid structures have been focused on the developing the model, optimization of 

the patterns and buckling, bending and vibration response of a single layer composite grid structure. Chen and Tsai 

[2] presented an integrated equivalent stiffness model to represent a grid with or without skin. They illustrated a 

method of designing an optimum grid structure under multiple loads. Gurdal and Gendron [3] evaluated the 

structural efficiency of geodesically stiffened shells with various stiffener arrangements under compression, torsion 

and combined loads. Similarly, in an optimization process, Oliveira and Christopoulos [4] presented a practical 

method of finding a minimum weight of grid plates subjected to a lateral load. Kidane et al. [5] used the smeared 

method to analysis buckling of the grid stiffened shell, and validated the results with experimental results. Ambur 

and Jaunky [6] developed an optimal design strategy for grid structures with variable curvatures for global and local 

buckling analysis. Moreover, Chen et al. [7] presented spline compound stripe method to analysis the free vibration 

of a stiffened plate. Their results were in good agreement with the experimental and numerical results. Shi et al.[8] 

presented an equivalent stiffness model considering a non-uniform grid distribution. Their model has been used to 
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calculation the critical buckling loads of advanced grid-stiffened conical shells under uniform external pressure. 

They showed good agreement between the predictions of their model and experimental and numerical simulations. 

Lai et al. [9] studied the buckling behavior and structural efficiency of six typical composite grid cylindrical shells 

under axial compression, pure bending, transverse bending and torsion by parameterized finite element models. 

They also investigated the effects of the grid patterns and the helical angles on the buckling strength and buckling 

mode shapes of the structures. Huang et al. [10] present a new finite element modeling technique to calculate the 

buckling response of different types of grid stiffened structures. Their modeling strategy, reduce the number of 

unknowns compared to the conventional approaches. They also investigate the buckling load capacity of different 

type of grid stiffened structures. They indicated skin thickness, stiffener width and thickness have significant effects 

on the improvement of buckling resistance of these panels.  

Anyfantis et al. [11] used the progressive failure analysis to predict the post buckling progressive and final 

failure of T-stiffened plat. They used Hashin and Tsai-Wu failure criteria and showed their results are in good 

agreement with published results. In similar work, Pietropaoli [12] investigated the progressive failure on two types 

of composite structures, a specimen with a hole and an I-stiffened panel, under in-plane compression load. The 

results show good agreement with experimental results.  

 Although, the conventional composite grid structures have been extensively studied in the recent years, there has 

not been any attention to the laminated grid structures. Similar to laminated composites, variety of laminated grid 

structures can be created using different grid types with various stacking sequences (see Fig. 1). Tailored stiffness of 

the structure is achieved by using full anisotropic properties of the laminated grid compare to orthotropic properties 

with at most in-plane anisotropic of the conventional grid. 

 

 

 

 
 
 

Fig.1 

Assembly of three conventional orthogrid layers into (45/0/45) laminated grid. 
 

In the present study, the concept of the laminated grid structures is introduced, and its advantages over 

conventional grids are investigated. To show the advantages of the laminated grid structures over conventional grids, 

different symmetric angle ply laminated grids are considered. Using laminated plate theory, the stiffness matrices of 

the laminated grid plates are obtained. The extensional and bending stiffness matrices and the deflection of the 

laminated grid plates are calculated.  

To illustrate the effect of lamination on the stiffness of the structures, variations of the coupling and summation 

of the elements of the stiffness matrices are calculated. Moreover, two non-dimensional parameters, which express 

the closeness of a laminated structure to its equivalent orthotropic layer, are also used. The results are compared 

with corresponding results for conventional orthogrids. It is assumed that, a laminated grid is constructed by 

stacking a specific number of perfectly bonded thin elastic grid layers.  

As shown in Fig.1, due to angular position of the two adjacent grid layers, the contact areas between the layers in 

the laminated grids are less than conventional grids. So, to evaluate the failure behavior of the laminated grids, the 

USDFLD subroutine in ABAQUS software is applied to investigate the progressive failure of the plates. Three 

principal failure modes, namely, matrix failure, fiber-matrix shear failure and fiber failure are studied and compared 

in the plates. Eventually, the failure analysis results have been compared to ensure the reduction in the contact area, 

will not significantly affect the failure of the laminated grid structures.  

2    LAMINATED GRID STRUCTURES 

Similar to a laminated composite, several layers of different type of grids with various thickness and orientations can 

constitute a laminated grid. In this study, the laminated grids are consisting of orthogrid layers in which the principal 
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grid directions are not necessarily paralleled to the plate axes. As an example, Fig. 1 illustrates a three layers 

laminated grid with (45º/0º/45º) stacking sequence.  

To obtain the stiffness matrices of a laminated grid plate, the classical laminated plate theory is used. Similar to 

laminated plates, the extensional, coupling and bending stiffness matrices of the laminated grid are as follows [13]: 
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where, k is the layer number in the laminate, kZ is distance of k layer from the middle surface, and N is the number 

of the grid layers. For simplicity, it is assumed the present laminated grids are symmetric; consequently, the 

coupling stiffness matrix  B  is vanished. To calculate the stiffness matrices of a laminated grid, the transformed 

reduced stiffness matrices, Q   , of each grid layer are needed. The equivalent stiffness model (ESM) is applied to 

calculate the reduced stiffness matrices of the orthogrid layer [2]. Eq. (2) presents the reduced stiffness matrix,  Q , 

of a conventional orthogrid layer [2]. 
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(2) 

 

1 2 1 2, , ,d d t t and h are geometric parameters of the grid layer as illustrated in Fig. 2. 1E  and 12G  are the 

longitudinal elastic and shear modulus of unidirectional composite materials of each layer. The transformed reduced 

stiffness matrix Q    of the orthogrid layer is achieved by substituting  Q  from Eq. (2) into Eq. (3).  
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where,  T  is the transformation matrix [13] which is only depended on the grid orientation,  , of each grid layer. 

 

 
 

Fig.2 

Geometries of conventional orthogrid. 
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3    NUMERICAL RESULTS AND DISCUSSION 

Consider laminated grid plates that are composed of various numbers of similar conventional orthogrid layers. The 

total thickness of the plates is .H N h , where, N is the number of layers and h is the thickness of each grid layer. 

It is assumed; the relative dimensions of a grid layer (see Fig. 2) are 1 2 1 21, 1.5, 2a b t t d d   . The plates are 

made of various numbers of unidirectional carbon/epoxy orthogrid layers with the material properties which are 

presented in Table 1. 

 
Table 1 

Elastic properties of the Carbon/Epoxy composite material [14]. 

 

To investigate the effects of stacking sequences on the elements of the extensional and bending stiffness matrices 

(  A  and  D ), two different cases of laminated grid plates are considered. The first configuration is ( )ns , that is 

achieved  by repeating a specific sub-laminate ( )  and called sub-laminate grid structure. The second case, which 

is called ply-level laminated grid, ( )m m s   , and is achieved by repeating each layer. Actually, a ply-level 

laminate is a special form of a sub-laminate with 1n  . These two laminated grid configurations are compared with 

a conventional orthogrid of the same dimensions. Table 2. presents the specifications of these three cases. The plates 

have equal thickness. Therefore, the weight of the cases remains the same. 

 
Table 2 

Properties of three different grid cases. 

Case # Configuration Lay-up Number of layers (N) Each grid layer thickness (h) a b  

1 Sub-laminate   , 2,...,5
ns

n   4n  4H n  1 

2 Ply-level  
s

    4 4H  1 

3 Orthogrid    1 H  1 

 

Based on the laminated plate theory, the force and moment resultants for a laminate are expressed as follows: 

 

    00
~~~
 BAN   (4) 

 

   0 0M B D    (5) 

Since the response of the laminated structures subjected to an external cause depends on its stiffness, the 

variation of the elements of the stiffness can be used as a criterion. To show the effectiveness of the laminated grid 

over a conventional grid, the summations of the elements of the bending and extensional stiffness matrix of these 

two grids are used as a criterion. Moreover, two non-dimensional parameters, which illustrate the closeness of the 

laminate properties to the equivalent orthotropic layer, are used. To investigate the effects of the laminated grid 

stacking sequences on the extensional,  A , and bending,  D , stiffness matrices, the function “SUM” is 

1E      162×109   Pa 

2E        14.9×109  Pa     

12G              5.7×109  Pa           

12v   0.283         

TX     1744×106   Pa 

CX     1650×106   Pa 

TY     52.6×106   Pa 

CY     260×106   Pa 

S   107.8×106  Pa  
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considered, which illustrates the summation of all elements of a matrix. Therefore, the summation for  A and 

 D matrices are defined as follows: 

 

 11 22 66 12 16 26( ) 2ijSUM A A A A A A A A        (6) 
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Moreover, two non-dimensional parameters, 
Ar  and 

Dr , which are presented in Eqs.(8) and (9) define the 

variation of in-plane and out of plane property of a laminate from its equivalent orthotropic layer [15]. 
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To evaluate the effects of grid orientation on the laminated grid stiffness matrices, the orientation of each grid 

lamina,  , is varied from 0 to 90 degrees. Fig. 3 presents the variation of non-dimensional shear-extension coupling 

elements ( 16A  and 26A ) of the orthogrid and laminated grids. The overbar sign, ( )


, shows the non-dimensional 

value of the parameter. The non-dimensional stiffness is defined by dividing each element of the extensional 

stiffness matrix by 22A  of the specially orthogrid 22( 0)( 0 ), .ij ijA A A      

As it can be seen in Fig. 3, the shear-extension elements of ply-level and sub-laminate grids are zero in 

contradiction with the orthogrid plate. 16A  and 26A  elements in orthogrid layer are negative and have the minimum 

values at 60  and 30  , respectively.  

Figs. 4 and 5 illustrate the variation of SUM ( )A and Ar  for laminated grids and their corresponding orthogrid 

plate. The variation of SUM ( )A in the Fig. 4 can be explained according to Fig. 3. From Fig. 3, 16A  and 

26A elements are equal to zero for laminated grids and they have a negative value for the orthogrid. As shown in Fig. 

4, the variation of the SUM ( )A for the laminated grids is completely different compare to orthogrid. For the 

orthogrid the maximum value of this summation is occurred at 0  and 90  with a minimum value at 45  . 

However, for the laminated grids this summation is always larger than those of orthogrids and has a maximum at the 

grid orientation angle of 45 degree. 

According to Fig. 3, there are no shear-extension couplings in laminated grids, and consequently, the Ar  will be 

equal to zero as shown in Fig. 5. As depicted in Fig. 5 the laminated grid is closer to an equivalent orthogrid layer 

than corresponding conventional grid. 
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Fig.3 

Comparison of non-dimensional shear-extension couplings 

for different cases as function of  . 
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Fig.4 

Comparison of SUM ( )A for the conventional orthogrids and 

laminated grids. 
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Fig.5 

Non-dimensional parameter Ar  for the different cases 

 

Fig. 6 illustrates the variation of non-dimensional bending-twisting coupling ( 16D and 26D ) elements for the 

presented cases. Due to symmetric behavior of the 16D and 26D graphs with respect to 45  , only 16D graphs are 

shown in Fig. 6. For the orthogrid plate both 16D and 26D graphs are presented. Similar to the extension stiffness 

matrix, the non-dimensional elements are defined as 22ij ijD D D  which 22D  is evaluated at 0  . 

As shown in Fig. 6, the orthogrid plate presents the largest negative bending-twisting coupling for most of the 

grid orientations. However, in the sub-laminate grid this coupling reduces and converges to a minimum value as the 

number of layers increases. 

Fig. 7 illustrates the SUM ( )D for the presented grid configurations. For sub-laminate with 2n , the 

summation reaches its maximum value at 45  . The SUM ( )D value is reduced by decreasing the number of 

layers in the laminated grid. This behavior can be explained by reconsidering Fig. 6, which indicates the reduction of 

16D and 26D when the number of layers increases. 
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Fig.6 

Non-dimensional Bending-Twisting couplings ( 16D  and 

26D ) for the defined cases. 
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Fig.7 

Comparison of SUM ( )D for the presented grid configurations. 
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Fig.8 

Variations of the non-dimensional parameter Dr  for the 

different cases. 

 

Fig. 8 shows the variation of the Dr  parameter for different grid structures. As illustrated in Fig. 8, increasing the 

number of layers in the angle ply laminated grid reduces the Dr , which indicates the closeness of these laminated 

grids to behavior of a specially orthotropic layer. 

In this section, the effects of different laminated grid configurations on the elements and the summation of the 

extension and bending stiffness matrices of symmetric laminated grid are presented. To illustrate these effects on a 

typical response of a laminated grid plate, in the next sections bending and failure behaviors of these three grid 

configurations are compared.  

4    BENDING OF THE LAMINATED GRID PLATES 

To examine the advantages of using laminated grid plates over conventional grid plates, the bending behavior of the 

defined cases are compared. Consider a square simply supported laminated grid plates subjected to a uniform 

transverse load. The Rayleigh-Ritz method is applied to achieve the maximum deflection of the plates. The total 

potential energy of the symmetric angle ply laminated grid plate subjected to lateral load can be expressed by the 

following equation [13]: 

 
U   (10) 

 

where, U is the strain energy of bending and can be obtained from Eq. (11), and   is the potential of external 

forces. 
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For a lateral load p (per unit area) the potential of external force is given by 

 

 
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(12) 

 

Similar to the isotropic plate, the following trigonometric function satisfies the geometric boundary conditions, 
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where, mnW  are arbitrary unknown coefficients. Substituting ( , )w x y from Eq. (13) in Eqs. (11, 12) and minimizing 

total energy from Eq. (10) with respect to the unknown mnW  coefficients, M N linear and simultaneous equations 

will be produced: 

 

 
0

mn

U

W

 
  

 

(14) 

 

mnW  are calculated by solving these simultaneous equations. In Fig. 9 the non-dimensional maximum 

deflections of the laminated grids for different grid layer orientations,  , compared with those of conventional 

orthogrids. The non-dimensional form of maximum deflection is defined as 0)θrid,max(orthogmaxmax /WWW  .  

To ensure the accuracy of the solution method, finite element model of the orthogrid and ply-level laminated grid 

plates are created in ABAQUS software and the non-dimensional maximum deflections of the plates are presented 

in Fig. 9. 
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Fig.9 

Non-dimensional maximum deflection for all cases under 

uniform lateral load. 

 

As illustrated in Fig. 9, the minimum values of maxW  for all cases are achieved at 45  . Moreover, the sub-

laminate with 5n   which has the maximum SUM ( )D and minimum Dr , has the minimum deflection under lateral 

load. The deflection of the other sub-laminate cases, 2,3,4n  , except for 1n  , are also very close to sub-laminate 

with 5n  . Obviously, there is significant difference between response of the orthogrid and presented laminated 

gird. Clearly, using a laminated grid  5( ) s yields to 25% reduction in maximum deflection in comparison to the 

orthogrid ( ) with identical geometry and weight. This point proves the effectiveness of laminated grids over the 

conventional grids. To clarify the correlation between maximum deflection, and stiffness parameters, SUM ( )D and 

Dr , the variation of these parameters for orthogrid, and laminated grids are presented in Fig. 10 at 45  . As 

demonstrated in the figure, when the number of layers increase in the laminated grid, the deflection and rD decrease 

while, SUM ( )D  increases compare to an orthogrid plate. 
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Fig.10 

Variation of the maxW  and stiffness parameters Dr  and 

SUM ( )D  for different cases at 45 .   

5    PROGRESSIVE FAILURE ANALYSIS 

The presented results show that the bending response of the laminated grids is enhanced in comparison to 

conventional grids. However, due to angular position of the grid layers, the contact areas between the layers in the 

laminated grids are less than the conventional grids, which could increase the probability of the failure in the 

laminated grids. 

To study the failure probability of the laminated grid plates, a progressive failure analysis has been conducted. 

This analysis considers the degradation of the material properties due to the failure of each element. Three principal 

failure modes have been considered in the present work; matrix failure, fiber-matrix shear failure and fiber failure. 

Table 3. presents these failure criteria [16,17]. 
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Applied failure criteria [16, 17]. 
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Fiber compression failure (σ1<0) 
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where 1 2,  and 12  are the in-plane stress in the material coordinate system and   is a coefficient that is 

determined experimentally. To apply the progressive failure analysis in ABAQUS, the user subroutine modulus 

(USDFLD) is employed.  

The subroutine is written in FORTRAN and is called by ABAQUS during analysis. In this method, three field 

variables are defined to indicate various failure modes and elastic properties are defined based on these variables. 

The first field variable (FV1) indicates the matrix failure mode. The second (FV2) presents fiber-matrix shearing 

failure, and the third (FV3) indicates fiber failure. The values of FV1-FV3 are equal to zero at the beginning of the 

analysis. When a failure index reaches to 1.0, the corresponding field variable sets equal to 1.0 and material 

properties degrade according to Table 4. The degradation model presented in [18] is applied in the current study. 

 

 

 



                                                                                                                                   A. Ehsani and J. Rezaeepazhand                  135                

© 2017 IAU, Arak Branch 

Table 4  

Correlation between material properties and field variables [18]. 

No failure Matrix failure Fiber-Matrix shear Fiber failure 

11E  11E  11E  11 0E   

22E  22 0E   22E  22 0E   

12v  12 0v   12 0v   12 0v   

                12G  12G  12 0G   12 0G   

              1 0FV   1 1FV   1 0FV   1 1FV   

 2 0FV   2 0FV   2 1FV   2 1FV   

3 0FV   3 0FV   3 0FV   3 1FV   

 

To analyze and compare the failure behavior of laminated and conventional grid, three grid plates are considered. 

The first plate is a conventional orthogrid (special orthogrid) layer at 0  . The second is a conventional orthogrid 

(general orthogrid) layer at 45  and the third is a ply-level laminated grid at ( 45 )S   . The grid dimensions 

are similar to cases investigated in previous section. The finite element models of these cases are shown in Fig. 11. 

The plates are simply supported along four edges and subjected to a uniform lateral load. The models are discretized 

by linear quadrilateral four-node elements [19]. The uniform lateral pressure is increased gradually on the plates, 

and failure behavior is studied during loading. 

 

 

 

Fig.11 

Finite element models for orthogrid plate at 0   (left), orthogrid plate at 45   (middle) and ply-level plate at ( 45 )S    

(right). 

 

Using USDFLD subroutine, the variation of different failure indices and their corresponding load are obtained. 

For each failure mode, the variations of the failure index of the plates are plotted for different applied load. Fig. 12 

shows the maximum fiber failure index of three plates at different loads. 

 

 

 

 

 

 

 

 

 

 

Fig.12 

Max. Fiber failure index ( )fe  for different lateral load. 

 

As can be seen, all the samples are reached to critical index, 1.0, at the same load. On the other hand, the fe  for 

laminated grid is lower than two other conventional grids. Therefore, using laminated grid instead of conventional 

grid does not have adverse effects on the fiber failure of the plates. The Fig. 13 also illustrates the maximum fiber-

matrix shear failure index of the plates for different loads. 
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Fig.13 

Max. Fiber-matrix shear failure index ( )fse  for different 

lateral load. 

 

As the Fig. 13 shows, in different loads, the laminated grid has the minimum fiber-matrix shear failure. The 

plates have different shear failure indices for load less than 1.5 (N/mm
2
). However, when the load increases, the 

plates failed ( 1)fse  at a similar load. In Fig. 14 the maximum matrix failure index for different lateral load is 

presented. 
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Fig.14 

Max. Matrix failure index ( )me  for different lateral load. 

 

According to Fig. 14, although all plates show a similar behavior, the orthogrid at 0  , failed at higher load.  

As it was expected, the laminated grid has slightly higher em compare to conventional grids. The general orthogrid 

( 0)  also has higher me  compare to special orthogrid ( 0).   Results indicate that utilizing laminated grids 

instead of conventional grid, has no adverse effect on failure behavior of composite grid plates under lateral load. 

6    CONCLUSIONS 

In this study, the simple concept of laminated grid structures is introduced and the advantages of these structures 

over conventional grids are investigated. So far, a known grid structure such as orthogrid or isogrid is employed as 

an orthotropic layer. The present laminated grid is composed of various numbers of thin composite grid layers which 

its stiffness can be adjusted by choosing proper stacking sequences. Therefore, tailored stiffness of the structure can 

be achieved by using full anisotropic properties of the laminated grid. This concept yields to a large variety of 

laminated grid configurations with different coupling effects compare to conventional grids. 

To investigate the advantages of the laminated grids, the stiffness of the laminated and conventional grids are 

compared and the response of the structures under lateral load is studied. The results show, choosing proper stacking 

sequences for the laminated grid changes the stiffness of the plates due to reduction of the twisting-bending and 

shear-extension couplings. As a result, the maximum deflection of the laminated grid considerably reduced in 

comparison with conventional grid. 

Due to angular position of the grid layers, the contact area between the layers in the laminated grids is less than 

the conventional grids, which could increase the probability of the failure in the laminated grids. A failure analysis is 

performed using USDFLD subroutine in ABAQUS to compare the fiber, matrix and fiber-matrix shear failure 

modes of conventional and laminated grids. Results indicate the laminated and conventional grid plates have similar 

behavior in three principal failure modes. Therefore, using laminated grid as an alternative to conventional grid does 

not have adverse effects on the failure of the plates subject to a uniform lateral load. 
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