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 ABSTRACT 

 Steel plates are used in various structures, such as the structures of the deck and body of 

ships, bridges, and aerospace industry. In this study, we investigate the buckling and 

post-buckling behavior of rectangular steel plates having circular cutouts with two 

boundary conditions: first, clamped supports at upper and lower ends and free supports 

at other edges; second, clamped supports at upper and lower ends and simply supports 

at other edges, using finite element method (by ABAQUS software) and experimental 

tests(by an INSTRON servo hydraulic machine). In this research, in addition to the 

aspect ratio, the effect of changing the location of the cutout on the buckling analysis is 

investigated. The results of both numerical and experimental analyses are compared 

and showing a very good agreement between them.         

                                          © 2016 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 HE problem of the buckling of rectangular plates with simply supports in four edges, with length, width, and 

thickness, was first considered by Timishinko in 1961[1]. Khaled et al. used the FEM method to determine the 

buckling load of the plates [2]. They assumed simply boundary conditions for all four edges and investigated aspect 

ratios of 1 to 4 to determine the effect of this parameter on the buckling load. They studied two cutout geometries, 

including circular cutouts and rectangular cutouts with rounded corners, with cutout center situated in different 

points of the plate. Furthermore, Khaled used the FEM method for determination of the buckling load of plates with 

circular cutouts [3]. They assumed linear elastic and complete plastic characteristics for the material and ignored the 

stiffness issue. Narayanan studied the ultimate strength of plates with cutouts under axial compression loads [4]. He 

used an approximate method for determining the buckling load and confirmed his theoretical work with empirical 

results. In that study, he used square plates with circular and square-shaped cutouts and investigated the effect of 

cutout diameter and plate thickness on the buckling behavior. Shanmagam studied the buckling and post-buckling 

behavior of plates with cutout and various boundary conditions under uniaxial and biaxial compression loading [5]. 

He used the finite element analysis software ABAQUS for investigating the buckling behavior of square-shaped 

plates with circular and rectangular cutouts. He studied various parameters, including cutout shape and size, plate 

thickness, boundary conditions, and the type of loading. Roberts also used the FEM method for investigation of the 

elasto-plastic buckling of plates with cutouts [6]. Furthermore, Mingot proposed that for investigation of the 

buckling of plates with cutout. They proposed that this problem can be reduced to the buckling of plates without 

cutouts using a method called homogenization [7]. Brown studied the stability of square plates using the direct 
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matrix method [8]. Maan used the fixed grid finite element analysis (FGFEA) method to solve the buckling problem 

[9]. Anada studied the buckling eigenvalue for double joint plates [10]. He used square and rectangular plates with 

central cutouts. He calculated a buckling coefficient for above-mentioned plates and compared his results with the 

existing findings and the finite element analysis results. 

The elastic buckling behavior of rectangular perforated plates was studied using the finite element method by 

Komur et al. [11]. They chosen circular cutout at different locations along the principal x-axis of plates subjected to 

linearly varying loading in order to evaluate the effect of cutout location on the buckling behavior of plates. Their 

results show that the center of a circular hole should not be placed at the end half of the outer panel for all loading 

patterns. Furthermore, the presence of a circular hole always causes a decrease in the elastic buckling load of plates. 

A new approximate procedure for buckling analysis of simply supported rectangular stepped or perforated plates 

subjected to uniform edge stresses is formulated by Rahai et al. [12]. The procedure uses energy method based on 

modified buckling mode shapes. Eccher et al. [13] provided the application of the isoparametric spline finite strip 

method to the elastic buckling analysis of perforated folded plate structures. The general theory of the isoparametric 

spline finite strip method is introduced. The linear buckling analyses of square and rectangular plates with circular 

and rectangular holes in various positions subjected to axial compression and bending moment are developed has 

been studied by Maiorana et al. [14]. The aim of their paper is to give some practical indications on the best position 

of the circular hole and the best position and orientation of rectangular holes in steel plates, when axial compression 

and bending moment act together. Eccher G, et al. [15] introduced the general theory of the isoparametric spline 

finite strip method for buckling of perforated plates. The reliability of their method is demonstrated by applying the 

method to classical nonlinear complex plate and shell problems as well as the geometric nonlinear analysis of 

perforated flat and stiffened plates. Also, Jeom Kee Paik[16] has been studied ultimate strength of perforated steel 

plates under axial compressive loading along short edges using Finite Element Method. The plates are considered to 

be simply supported along all (four) edges, keeping them straight. The cutout is circular and located at the center of 

the plate.  

In this study, we investigate the buckling and post-buckling behavior of steel rectangular plates having circular 

cutouts with two boundary conditions: first, clamped supports at upper and lower ends and free supports at other 

edges; second, clamped supports at upper and lower ends and simply supports at other edges, using numerical 

analysis and experimental methods. The locations of cutouts are interchanged vertically and horizontally on the 

plates. The results of both numerical and experimental analyses are compared and showing a very good agreement 

between them. 

2    MECHANICAL PROPERTIES OF THE PLATES 

In order to determine the mechanical characteristics of the specimens, a tensile test was performed according to the 

ASTM-E8 standard using a servo hydraulic INSTRON machine, and the Young modulus, yield stress, and plastic 

properties were determined. The stress-strain curve is plotted using the data derived from standard tensile test as 

shown in Fig. 1. The real stress-strain curve characteristics are also required for non-linear analysis with the finite 

element ABAQUS software. The real stress and strain are computed using the following relationship. 

 

real

Pl real
E


    

 

(1) 

  

.ln(1 )real Eng    (2) 
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Based on the linear section of the real stress-strain curve, the Young modulus was calculated as E=217 GPa and 

the yield stress was computed as σy=350 MPa . Furthermore, the value for the Poisson ratio was assumed to be ν= 

0.33. 
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Fig.1 

Experimental stress-strain curve for used steel. 

3    GEOMETRY OF THE SPECIMENS 

In this study, we used plates with width of 100 mm, lengths of 110, 150, 160 and 210 mm, and thickness of 2.07 

mm. The cutouts were circular cutout with a 10 mm radius. A schematic view of a specimen with a circular cutout is 

shown in Fig. 2, where a and b are length and width of plate respectively, c and d are distances of cutout center from 

centerlines of plate and e is radius of the cutout. 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Geometry of plate with circular cutout. 

4    BOUNDARY CONDITIONS 

In the numerical analysis, for the first boundary condition we modeled two solid planes attached to upper and lower 

ends of the plates for application of the boundary conditions on the edges of the rectangular plates. The load was 

applied in concentric form upon the center of the upper solid plane, and resulted in an extensive compression 

loading on both clamped edges of the plate. All degrees of freedom of the lower plane, as well as all degrees of 

freedom of the upper plane, except for movement in the direction of the axis (the longitudinal direction of the plate) 

were constrained. Accordingly, the boundary conditions were free for the side edges(vertical edges) and clamped 

for the upper and lower edges, which is represented as CFCF (Clamped-Free–Clamped-Free). For second boundary 

condition the free edges were constrained in the form of simply supported. 

5    MESH GENERATION OF THE SPECIMENS 

For meshing of the specimens, we have used the non-linear element S8R, a quadratic element consisting of 8 nodes 

with 6 degrees of freedom, which is suitable for relatively thin walled shells. This element has appropriate degrees 

of freedom for modeling the specimens and the boundary conditions. In the element S8R, the shear stress is also 

taken into account, and this increases the precision of the results. In this element, a reduced integral is used for 

calculation of the stiffness matrix. However, mass and load matrices are integrated using the exact method. Reduced 

integral usually produces more accurate results, provided that the elements are not damaged and are not subjected to 



                                                                                                                                                              M. Shariati et al.                119 

© 2016 IAU, Arak Branch 

in-plane bending loads. Additionally, this method reduces the computation time. Evaluation of the results and 

comparison with the experimental results show that the chosen element has been appropriate for this study. In 

specimens with cutouts, elements have been made smaller in proximity to the cutouts in order to enhance the 

precision of the computations. The mesh generation configuration around the cutout is shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

Fig.3 

Mesh generation around of circular cutout. 

6    NUMERICAL PROCEDURE 

As it has been pointed out previously, linear analysis, especially for thin plates, overestimates the buckling load 

related to the actual value. Nevertheless, an (eigenvalue) linear analysis is initially performed for all specimens to 

obtain the shape of modes that have lower eigenvalues, since the buckling usually occurs in the first mode shape. 

The displacements for these modes are saved in a file and used in the next analysis (Static, Riks), so that the effect 

of mode shapes are taken into account in the buckling analysis. 

For non-linear analysis, the mode shape of the actual buckling of the plate (which has been the first mode shape 

for the present experimental analysis) and the initial imperfection should be supplied to the software. For this 

purpose, the value of the initial imperfection of the specimens was measured in laboratory for all specimens before 

the numerical analysis. After completion of this step, we observed that the average initial imperfection is about 25% 

of the plate thickness. However, for higher precision, we measured experimentally the initial imperfection of each 

specimen separately and used the obtained values as inputs for the numerical analysis software. 

7    RESULTS OF FINITE ELEMENT ANALYSIS FOR THE FIRST BOUNDARY CONDITION 

Figs. 4-7 show the load-displacement curves resulting from the numerical analysis performed with ABAQUS 

software for specimens with one circular cutout with aspect ratios of 1:1, 1:6, and 2:1. Load-displacement curve of 

specimens with one circular cutout with an aspect ratio of 1:5 is shown in Fig. 7. Fig. 8 shows the buckling mode of 

the specimen pl-150-100, 07-49, 97-0-20, 2-2, 05 after nonlinear analysis accompanied by Von Mises stress 

contour. For the sake of comparison, Table 1. shows the buckling loads and the initial imperfections of specimens 

with aspect ratios of 1:1, 1:6, and 2:1. Also, the buckling loads and the initial imperfections for specimens with 

aspect ratio of 1:5 are shown in Table 2. 
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Fig.4 

Load-displacement curve for specimens with aspect ratio 

1.1. 
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Fig.5 

Load-displacement curve for specimens with aspect ratio 

1.6. 
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Fig.6 

Load-displacement curve for specimens with aspect ratio 

2.1. 
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Fig.7 

Load-displacement curve for specimens with aspect ratio 

1.5. 

  

 

 

 

 

 

 

 

 

 

Fig.8 

Buckling mode shape of pl-150-100,07-49,97-0-20,2-2,05 

specimen. 
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Table1 

 Finite element results of specimens with a circular cutout with aspect ratios of 1.1, 1.6 and 2.1.  

Specimen name Aspect ratio Imperfection (m) Pcr (N) 

pl-110-100.4-0-0-0-2.2 1.1  0.00044     36286.6 

pl-110-100.35-0-0-20.1-2.1 1.1  0.00042     31599.6 

pl-110-100.4-0-26.05-20.1-2.1 1.1  0.00042     32064.4 

pl-110-100.4-24.8-0-20.1-2.06 1.1   0.000412    35784.5 

pl-110-100.4-26.25-26.25-20.1-2.1 1.1    0.00042        36864.1 

pl-160-100.2-0-0-0-2.2 1.6 0.00055    21829.8 

pl-160-100-0-0-20.05-2 1.6 0.0005      19167.5 

pl-160-100-38.25-26.35-20.1-2 1.6 0.000325  21425.5 

pl-160-100.1-0-25.7-20.2-2.1 1.6   0.000525    19079.9 

pl-160-100.2-28.8-0-20.2-2 1.6  0.0005        20550.3 

pl-210-100-0-26.1-20-2.1 2.1 0.000525   12692.6 

pl-210-100-49.6-26.3-20.2-2.1 2.1 0.000525   13532.7 

pl-210-100.1-0-0-20.1-2.1 2.1 0.000525   12576    
pl-210-100.1-48.95-0-20.5-2.1 2.1 0.000525   12480.4 

pl-210-100.6-0-0-0-2.2 2.1 0.00055     13546.3 

 
Table 2 

 Finite element results of specimens with a circular cutout with aspect ratios of 1.5. 

Specimen name Imperfection (m) Pcr (N) 

pl-150-99,8-0-0-0-2,07   0.00058 22112.8 
pl-150-99,95-34,61-17,81-20,18-2,07 0.0001 27679.8 
pl-150-100-4,275-34,425-20,25-2,07   0.00045 21044.3 
pl-150-100-5-25,09-20,1-2,07   0.00025 23234.2 
pl-150-100-22,82-30,81-20,3-2,08   0.00005 28171.3 
pl-150-100-40,6-0-20-2.04   0.00055 22340    
pl-150-100,1-30,24-25,64-20,22-2,07  0.0003 24799.6 
pl-150-100,05-30-0-20-2   0.00058 21981.3 
pl-150-100,07-49,97-0-20,2-2,05   0.00035 23778.5 

 

It is evident that as aspect ratio increases, the buckling load decreases considerably. For example, in specimens 

without any cutouts, increasing the aspect ratio from 1:1 to 2:1, leads to 62% decrease in the buckling load. The 

findings of this study showed that, as expected, with equal initial imperfections, the specimen without holes has the 

highest buckling load. 

In the specimen pl-110-100.4-0-0-0-2.2, due to greater initial imperfection, the buckling load is about 600 N 

lower than the specimen pl-110-100.4-26.25-26.25-20.1-2.1. But for two aspect ratios of 1:6 and 2:1, the specimen 

without cutouts has the highest buckling load. 

Another important result is that displacement of the cutout from the center of the plate in the transverse direction 

has little effect on decreasing the buckling load. Provided that no longitudinal displacement occurs, displacement of 

the cutout in the transverse direction causes about 2% change in the buckling load in specimens with cutouts with 

aspect ratios of 1:1, 1:6, and 2:1. Investigations showed that when longitudinal displacement of the cutout from the 

center of the plate exceeds a certain limit, it has little more effect on decreasing the buckling load. For example, in 

the specimen pl-160-100-38.25-26.35-20.1-2, where the distance from the center of the cutout to the center of the 

plate is 38.25 mm in the longitudinal direction, the difference in the buckling load with the specimen without cutouts 

is less than 2%. While the difference of the buckling load between the specimen pl-160-100.1-0-25.7-20.2-2.1 and 

the specimen without cutouts with the same aspect ratio is 12%, because the cutout lies in the effective longitudinal 

distance from the center of the plate. Additionally, the results show that the presence of this cutout with a diameter 

of 0.2 b does not decrease the buckling load more than 12% in specimens with aspect ratios of 1:1, 1:6, and 2:1. 

In specimens with aspect ratio of 1:5, the large effect of the initial imperfection is clearly seen, so that the 

specimens pl-150-100-22, 82-30, 81-20, 3-2, 08 and pl-150-99.95-34, 61-17, 81, 20, 18-2, 07, with smaller initial 

imperfections in comparison with the other specimens, have the highest buckling loads, and the buckling load of the 

specimen without cutouts is considerably lower than these specimens due to the large initial imperfection. With 

identical initial imperfections, the specimen without cutouts is comparable to the specimen pl-150-100, 05-30-0-20-

2, where the existence of the cutout has reduced the buckling load by only 0.6%. It can be easily deduced that this 

cutout is situated outside the longitudinal effective domain around the center of the plate. In the specimens pl-150-

100, 05-30-0-20-2 and pl-150-100-40, 6-0-20-2.04, where the initial imperfections are approximately similar, the 
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loads are seen to be almost identical, while the longitudinal distance of the center of the circular cutout has increased 

by about 10 mm. Accordingly, we can conclude that when the cutout is outside the effective longitudinal distance 

from the middle of the plate, displacement of the cutout has little effect on the buckling load. Furthermore, the 

smallest buckling load for this aspect ratio belongs to the specimen pl-150-100-4, 275-34, 425-20, 25-2, 07, because 

not only the cutout lies in the effective domain, but also there is a relatively large initial imperfection in this 

specimen. 

8    MEASUREMENT OF THE INITIAL IMPERFECTION 

As stated previously, due to the importance of the amount of initial imperfection on the buckling load, the value of 

the initial imperfection for all specimens must be measured experimentally prior to testing for buckling. This 

parameter was measured using an INSTRON servo hydraulic machine test under load control with acceptable 

accuracy as shown in Fig.9. For this purpose, the amount of the initial curvature of plates is obtained by pressing the 

specimen along its thickness using actuator of machine test and drawing of its load-displacement diagram 

simultaneously. 

 

(a) (b) 

Fig.9 

The procedure that is used for measuring of the initial curvature of plates by an experimental test:  (a) Before pressing the plate 

by force F (δ is initial imperfection),  ( b) After pressing the plate by force F. 

 

 

The value of initial imperfection can be easily calculated by plotting the load- displacement curve. As an 

example, the load-displacement curve produced for the specimen pl-160-100-38.25-26.35-20.1-2 is shown in Fig. 

10. As can be easily observed, the amount of initial imperfection in this specimen is 0.325 mm, because the 

magnitude of force has increased with a steep slope without any increase in the displacement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.10 

Determination of initial imperfection due to curve obtained 

from experimental test for pl-160-100-38.25-26.35-20.1-2. 

9   THE EXPRIMENTAL BUCKLING TESTS FOR THE FIRST BOUNDARY CONDITION  
 

For experimental testing of the buckling of rectangular plates, were used from a INSTRON servo hydraulic machine 

under displacement control. The hydraulic grips of the machine hold the upper and lower edges of the specimens 

with clamped boundary condition. Also, the lateral edges were free. Therefore, a CFCF boundary condition is 

created for the plate (as shown in Fig. 11). 
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Fig.11 

Plates in hydraulic clamped grips. 

10   RESULTS OF THE EXPERIMENTAL TESTS 

Similar to the results of numerical analysis, the results of the experimental analysis are classified into multiple 

categories and are presented accordingly. For each group of the specimens, we present figures related to the 

buckling mode of the specimens, load-displacement curves, and a table summarizing the buckling load and the 

initial imperfection. 

Figs. 12-14 show the load-displacement curves resulting from experimental analysis for specimens with circular 

cutout and aspect ratios of 1:1, 1:6, and 2:1. Load-displacement curve of the experimental analysis of specimens 

with an aspect ratio of 1:5 is shown in Fig. 15. Fig. 16 shows the buckling mode of the specimens pl-210-100-49.6-

26.3-20.2-2.1 and pl-150-100.07-49.97-0-20.2-2.1. 

To facilitate comparison, Table 3. shows the buckling loads of experimental analysis and the initial 

imperfections for specimens with circular cutout and aspect ratios of 1:1, 1:6, and 2:1. The experimental buckling 

load and the initial imperfection for specimens with aspect ratio of 1:5 are shown in Table 3. 
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Fig.12 

Load-displacement curve of specimen with aspect ratio of 

1.1. 
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Fig.13 
Load-displacement curve of specimen with aspect ratio of 

1.6.  
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Fig.14 

Load-displacement curve of specimen with aspect ratio of 

2.1.  
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Fig.15 
Load-displacement curve of specimen with aspect ratio of 

1.5. 

 

 

 

 
(a) 

 

 
(b) 

Fig.16 
Specimens with circular cutouts under experimental buckling tests: (a) pl-150-100.07-49.97-0-20.2-2.1 specimen. (b) pl-210-

100-49.6-26.3-20.2-2.1 specimen. 
 

 



                                                                                                                                                              M. Shariati et al.                125 

© 2016 IAU, Arak Branch 

Table 3  

Experimental results for specimens with circular cutouts with aspect ratios 1.1, 1.6 and 2.1. 

Specimen name Aspect ratio Imperfection (m) Pcr (N) 

pl-110-100.4-0-0-0-2.2 1.1 0.00044 35819.1  
pl-110-100.35-0-0-20.1-2.1 1.1 0.00042 35188     
pl-110-100.4-0-26.05-20.1-2.1 1.1 0.00042 32335.6  
pl-110-100.4-24.8-0-20.1-2.06 1.1   0.000412 36643    
pl-110-100.4-26.25-26.25-20.1-2.1 1.1 0.00042 37184.8 

pl-160-100.2-0-0-0-2.2 1.6 0.00055 21594.5 

pl-160-100-0-0-20.05-2 1.6 0.0005   18109.6 

pl-160-100-38.25-26.35-20.1-2 1.6   0.000325 20938.3 

pl-160-100.1-0-25.7-20.2-2.1 1.6   0.000525 18406.1 

pl-160-100.2-28.8-0-20.2-2 1.6 0.0005  20099.6 

pl-210-100-0-26.1-20-2.1 2.1   0.000525 12092.5 

pl-210-100-49.6-26.3-20.2-2.1 2.1   0.000525 12963.3 

pl-210-100.1-0-0-20.1-2.1 2.1   0.000525 12546.4 

pl-210-100.1-48.95-0-20.5-2.1 2.1   0.000525 13475.1 
pl-210-100.6-0-0-0-2.2 2.1 0.00055 12537.5 

 
Table 4 

 Experimental results for specimens with circular cutouts with aspect ratios 1.5. 

Specimen name Imperfection (m) Pcr (N) 

pl-150-99,8-0-0-0-2,07 0.00058   21882.24 
pl-150-99,95-34,61-17,81-20,18-2,07 0.0001   28044.2 
pl-150-100-4,275-34,425-20,25-2,07 0.00045 20408.9 
pl-150-100-5-25,09-20,1-2,07 0.00025 23734.8 
pl-150-100-22,82-30,81-20,3-2,08 0.00005 28964.8 
pl-150-100-40,6-0-20-2.04 0.00055 22063.6 
pl-150-100,1-30,24-25,64-20,22-2,07 0.0003     24051.24 
pl-150-100,05-30-0-20-2 0.00058 20869.6 
pl-150-100,07-49,97-0-20,2-2,05 0.00035  23503.74 

 
The experimental analysis, similar to the numerical analysis, evidently shows that with increasing the aspect 

ratio, the buckling load of the specimens considerably decreases. For example, in specimens without any cutouts, 

increasing the aspect ratio from 1:1 to 2:1, leads to 64% decrease in the buckling load. 

The results of this study showed that, as expected, with equal initial imperfections, the specimen without cutouts 

has the highest buckling load. For specimens with aspect ratios of 1:1 and 1:2, the maximum buckling load is not 

observed for the specimen without cutouts due to its higher amount of initial imperfection, but is observed in a 

specimen in which the hole has been moved in the longitudinal direction away from the middle of the pale. 

Also in experimental results, it can be observed that when the cutout is more than 20% away from the middle of 

the plate in the longitudinal direction, it has little effect on decreasing the buckling load. Displacement of the cutout 

in transverse direction by the amount specified in this study had little effect on the buckling load. 

As an example, in the specimen pl-160-100-38.25-26.35-20.1-2, where the distance between the center of the 

cutout and the middle of the plate is 38.25 mm in the longitudinal direction, the buckling load is less than 3% 

different from the specimen without cutouts. On the other hand, the buckling load of the specimen pl-160-100.1-0-

25.7-20.2-2.1 has a difference of 14% with the specimen without cutouts, because the cutout lies in the effective 

longitudinal distance from the center of the plate. 

In specimens with aspect ratio of 1:5, the importance of the initial imperfection is clearly seen, so that the 

specimens pl-150-100-22, 82-30, 81-20, 3-2, 08 and pl-150-99.95-34, 61-17, 81, 20, 18-2, 07, which have relatively 

smaller initial imperfections compared to the other specimens, have the highest buckling loads, and the buckling 

load of the specimen without cutouts is much lower than these specimens due to the high degree of initial 

imperfection. In specimens with identical initial imperfections, the specimen without cutouts is comparable to the 

specimen pl-150-100, 05-30-0-20-2, where the existence of the cutout has decreased the buckling load by about 4%. 

Furthermore, it is noticed that if the cutout is not situated in the effective distance from the center of the plate in the 

longitudinal direction, displacement of the cutout outside this domain, will have little effect on the buckling load. 

For this aspect ratio, the lowest buckling load pertains to the specimen pl-150-100-4, 275-34, 425-20, 25-2, 07, 

because the cutout is in the effective longitudinal distance from the center of the plate and there is a relatively large 

initial imperfection. 
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11   COMPARISON OF THE RESULTS 

Figs. 17-21 show the load-displacement curves produced by finite element analysis and the results of experimental 

tests on some of the specimens. In Fig. 21, the experimental buckling mode of some specimens is compared to the 

buckling mode calculated by numerical analysis performed with ABAQUS software. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.17 

Load-displacement curve of specimen pl-110-100.4-0-0-0-

2.2. 

  

 

 

 

 

 

 

 

 

 

 

Fig.18 
Load-displacement curve of specimen pl-160-100.2-28.8-

0-20.2-2. 

 

 

 

 

 

 

 

 

 

 

 

Fig.19 

Load-displacement curve of specimen pl-210-100-49.6-

26.3-20.2-2.1. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.20 
Load-displacement curve of specimen pl-150-99, 8-0-0-0-

2,07. 
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Fig.21 
Experimental and numerical buckling mode shapes of 

specimen pl-150-100,07-49,97-0-20,2-2,05. 

12    EFFECTS OF BOUNDARY CONDITION  

In order to investigate the effects of boundary condition on buckling and post-buckling behavior of steel plates, the 

second boundary condition was considered. For this aim, the steel plates were considered with clamped support at 

upper and lower ends and simply supported at other edges. Since providing this boundary condition is not possible 

with the current equipment of the INSTRON 8802 servo hydraulic machine and the accuracy of the numerical 

results were quite satisfactory for the first boundary condition, the second boundary condition were investigated 

numerically with ABAQUS software. It is worth mentioning that providing the appropriate condition to perform 

such tests could be possible with designing a special fixture which will be considered for our future works. The 

specimen names and their buckling loads are listed in Table 5.  
 

Table5 

FEM results for specimens with a circular cutout and second boundary condition. 

Specimen name Imperfection (m) Pcr (N) 

pl-110-99,8-0-0-0-2,07 0.00044 56231.2 
pl-160-99,8-0-0-0-2,07 0.00055 58297.3 
pl-210-99,8-0-0-0-2,07 0.00055 59788.5 

pl-150-99,8-0-0-0-2,07 0.00058 56889.9 
pl-150-99,95-34,61-17,81-20,18-2,07 0.0001   53521.9 
pl-150-100-4,275-34,425-20,25-2,07 0.00045 46084.6 
pl-150-100-5-25,09-20,1-2,07 0.00025 48583.5 
pl-150-100-22,82-30,81-20,3-2,08 0.00005 49891.5 
pl-150-100-40,6-0-20-2.04 0.00055 55589.1 
pl-150-100,1-30,24-25,64-20,22-2,07  0.0003    50853.1 
pl-150-100,05-30-0-20-2 0.00058 52210.4 
pl-150-100,07-49,97-0-20,2-2,05 0.00035 56904.7 

 

Fig. 22 shows the mode shape of specimen pl-150-100-4, 275-34, 425-20, 25-2, 07 which is simulated in 

ABAQUS software. As can be seen, all edges are considered constrained. 
Fig. 23 shows the buckling behavior of the steel plates with no cutout and different aspect ratios with clamped 

support at upper and lower ends and simply supported at other edges. It can be seen that the values of buckling loads 

were increased significantly in comparison to the first boundary condition. Moreover, as the aspect ratio increases, 

the buckling load increases. This behavior is different from that observed for the first boundary condition. Therefore, 

it can be concluded that the boundary condition could have a significant effect on buckling behavior of the steel 

plates. 

 

 

 

 

 

 

 

 

Fig.22 
Buckling mode shape of pl-150-100-4, 275-34, 425-20, 25-

2, 07 specimen. 
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Fig.23 
Load-displacement curve of specimens with different 

aspect ratio and without cutout. 
 

 

Fig. 24 shows the buckling behavior of the specimens with aspect ratios of 1.5 and a circular cutout. With the 

current boundary condition the effect of initial imperfection is not significant. The specimens pl-150-100-22, 82-30, 

81-20, 3-2, 08 and pl-150-99.95-34, 61-17, 81, 20, 18-2, 07, with smaller initial imperfections, in contrary to the 

first boundary condition, do not have the highest buckling loads, and are much lower than the specimen with no 

cutout. In the specimens pl-150-100, 05-30-0-20-2 and pl-150-100-40, 6-0-20-2.04, where the initial imperfections 

are approximately similar, the latest has the higher buckling load and almost near to the value of the buckling load of 

the specimen without cutout. Similar behavior could observe with specimen pl-100.07-49.97-0-20.2-2.05 which has 

the highest buckling load almost identical to the specimen without cutout. Hence, it can be concluded that as the 

distance of the cutout from the middle of the plate increases the buckling load increases. This behavior could be seen 

clearly in the current boundary condition which the effect of imperfection is not significant.  The smallest buckling 

load for this aspect ratio belongs to the specimen pl-150-100-4, 275-34, 425-20, 25-2, 07, because the cutout is 

located in the shortest distance from the middle of the plate. 
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Fig.24 
Load-displacement curve for specimens with aspect ratio 

1.5 and second boundary condition. 

13    CONCLUSIONS 

Buckling of rectangular plates with circular cutouts with a diameter of 0.2 b and a thickness ratio of b/t = 0.02 was 

investigated under two boundary conditions: first, clamped boundary conditions for two loaded edges and free 

boundary conditions on the other edges (CFCF); second, clamped boundary conditions for two loaded edges and 

simply supported boundary conditions on the other edges with four aspect ratios using the finite element analysis 

and experimental tests. In specimens with circular cutouts, in addition to the aspect ratio, the effect of changing the 

location or area of the cutout on the buckling analysis was investigated. The experimental results closely resemble to 

the numerical analysis results for analysis of the buckling of rectangular plates, Conclusions of this study can be 

summarized as follows: 

1. Comparison of the curves resulting from numerical and experimental analyses shows that these curves are 

closely compatible. 

2. In most cases, the difference in the buckling loads calculated with numerical and experimental methods is 

less than 2%. 

3. Furthermore, there is striking similarity between the deformations created by finite elements method and by 
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experimental tests in the buckling and post-buckling states. 

4. The buckling load in all specimens is lower than the yield load, and elastic buckling occurred in all 

specimens. 

5. The maximum effect of a cutout (d/b = 0.2) is a 12% reduction in the buckling load compared to the 

specimen without cutouts. 

6. With increasing aspect ratio, the buckling load decreases considerably. 

7. The effective longitudinal distance from the middle of the plate is about 20% of the length of the plate. 

When the cutout lies outside this region it will have little effect on the buckling load of the plate. 

8. Due to free boundary conditions along the lateral edges of the specimens, changing the location of the 

cutout in the transverse direction has very little effect on the buckling load. 

9. The amount of initial imperfection has no effect of the post-bucking behavior of the rectangular plate. 

10. For the second boundary condition as the aspect ratio increases, the buckling load increases which is 

different from that observed for the first boundary condition. Hence, it can be concluded that the boundary 

condition could have a great influence of buckling behavior of the steel plates. 

11. For second boundary condition the effect of initial imperfection is not significant and as the distance of the 

cutout from the middle of the plate increases the buckling load increases. 
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