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 ABSTRACT 

 In this paper, the size dependent behavior of the gold micro-switches has been studied. This 
behavior becomes noticeable for a structure when the characteristic size such as thickness or 
diameter is close to its internal length-scale parameter. The size dependent effect is insignificant 
for the high ratio of the characteristic size to the length-scale parameter, which is the case of the 
silicon base micro-beams. On the other hand, in some types of micro-beams like gold base, the 
size dependent effect cannot be overlooked. In such cases, ignoring this behavior in modeling will 
lead to incorrect results. Some previous researchers have applied classic beam theory on their 
models and imposed a considerable hypothetical value of residual stress to match their theoretical 
results with the experimental ones. In this study, by obtaining the equilibrium positions or fixed 
points of the gold micro-beam, a considerable difference between the obtained fixed points using 
classic beam theory and modified couple stress theory has been shown. In addition, it has been 
shown that the calculated pull-in voltages using modified couple stress theory are much closer to 
the experimental results than those obtained by classic beam theory. Finally, it has been shown 
that considering a unique value of length scale parameter, especially for the smallest values of the 
beam thicknesses, may leads to inaccurate results and variable length scale parameter should be 
considered. 
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1    INTRODUCTION 

N recent years, gold thin films have been increasingly used in microelectronics and micro-electro-mechanical 
systems (MEMS) [1]. In most cases, gold has been used due to its exceptional combination of oxidation resistance 

and electrical conductivity, stimulating applications in multilayered thin films and MEMS micro-switches [2-4]. In 
such cases, the thicknesses of gold beams are typically of the order of microns and sub-microns [5-9]. In such 
applications, many researches show that the materials have strong size dependence in deformation behavior [10-14]. 
Size-dependent behavior is an inherent property of materials, which appears for a beam when the characteristic size 
such as thickness or diameter is close to the internal length-scale parameter of materials [14]. While the 
conventional theories of mechanics are incapable of describing size effects due to the lack of the material length-
scale parameter, the couple stress theory (CST) is able to handle the size dependence problem. 

On the other hand, the classical CST is a higher order continuum theory that contains two higher-order material 
length-scale parameters, which appear in addition to the two classical Lame’s constants [15]. Some previous 
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researchers have studied the static and dynamic problems based on the CST [16, 17]. To reduce the difficulties of 
determining length-scale parameters of materials by experiments, Yang et al. [18] introduced the modified couple 
stress theory (MCST), in which the couple stress tensor is symmetric and only one internal material length-scale 
parameter is involved. Utilizing the MCST, Park and Gao [19] studied the static response of an Euler–Bernoulli 
beam and interpreted the outcomes of an epoxy polymeric beam bending test. Recently, Shengli et al. [14] derived 
the governing equation, initial and boundary conditions of an Euler–Bernoulli beam using the MCST and Hamilton 
principle. As they reported, the stiffness of beams is size-dependent. In addition, the difference between the stiffness 
obtained by the classical beam theory (CBT) and those predicted by the MCST is significant when the beam 
characteristic size is comparable to the internal material length-scale parameter.  

For bulk gold, Zong et al. [20] have shown that the length scale parameter has a unique value, whereas Cao et al. 
[4] have shown that the material length scale parameter increases with increasing the Au film thickness. In 
electrostatically actuated micro-switches, the micro-structure is balanced between electrostatic attractive force and 
mechanical (elastic) restoring force, both of which are increased when the electrostatic voltage increases. When the 
voltage reaches the critical value, pull-in instability happens. Pull-in is the point at which the elastic restoring force 
can no longer balance the electrostatic force. Further, increasing the voltage will cause the structure to have dramatic 
displacement jump, which causes structure collapse. Pull-in instability is a snap-through like behavior and it is 
saddle-node bifurcation type of instability [21]. In some devices such as micro-mirrors and micro-resonators, the 
designer avoids this instability to achieve stable motions, while in switching applications the designer exploits this 
effect to optimize device’s performance. In practice, pull-in instability of micro-switches is suitable for changing the 
state of an electric circuit from open to close or vice versa [22]. 

Considering gradual application of the DC voltage [5-8], the pull-in phenomena is predicted based upon static 
analysis in a number of previous studies. However, some other researches introduced a dynamic pull-in voltage [23, 
24] which is defined as a step DC voltage, and when is applied suddenly, leads to the instability of the system [23]. 
It should be mentioned that the scenario of instability in the case of step voltage application is different from its 
gradual application. When the applied DC voltage approaches static pull-in voltage, the system tends to an unstable 
equilibrium position by undergoing to a saddle node bifurcation, which is seen in the static application of voltage. It 
is a local stationary bifurcation which can be analyzed based upon locally defined eigen-values. On the other hand, 
periodic orbits type phenomena that cannot be analyzed via locally defined eigen-values are called global 
bifurcations in which the dynamic pull-in is one of them. 

In MEMS technology, the micro-beams can be made of various materials such as silicon [5-8], gold [25, 26], 
nickel [27, 28], etc. Silicon and Silicon (Si)-based materials are the most commonly used materials in MEMS 
devices such as actuators, sensors and so forth. The length-scale parameter of silicon is in order of Pico-meter, 
which makes no considerable difference between CBT and higher order theories in a micro-scale system [29]. On 
the other hand, some materials such as gold, especially used in RF MEMS, have a length-scale parameter of order of 
µm and the difference between CBT and higher order theories, especially in lower beam characteristic size, is 
expected to be significant [30]. In spite of this fact, most of previous studies used CBT to predict the pull-in voltage 
of micro-beams [25-27], which caused to introduce a considerable values of hypothetical residual stresses to match 
their model and experimental results.  

Here, it is shown that using CBT may leads to incorrect results in the modeling and designing of a number of 
MEMS devices and higher order mechanical theories should be applied. Some previous studies have applied the 
CBT in their models and introduced a considerable hypothetical value of residual stress to match their experimental 
and incorrect theoretical results where an effect of residual stresses is so lower than their hypothesis. Using CBT and 
MCST, mechanical behavior of electrostatically actuated micro-beams is modeled in this paper. Governing static 
and dynamic equations are solved using Galerkin based SSLM and reduced order model, respectively. The pull-in 
voltage of proposed silicon beam is calculated and compared to the previous theoretical and experimental results. 
The obtained pull-in voltages based on proposed theories are subsequently compared for the gold micro-beam and 
the difference between results are shown. Moreover, it is shown that the variability of the length scale parameter 
must be considered in investigating the mechanical behavior and pull-in instability of the gold microbeams with sub-
micron thickness.  

2    NONLINEAR ELECTROMECHANICAL COUPLED MODEL 

Fig. 1 shows a schematic view of an electrostatically actuated micro-switch. The device consists of a fixed-fixed 
micro-beam, suspended over a dielectric film deposited on top of the center conductor and fixed both ends to the  
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Fig. 1 
A schematic view of an electrostatically actuated micro-
switch. 

 
 
ground conductor. When a voltage is applied between the upper and lower electrodes, the upper deformable beam is 
pulled down due to the electrical force.  

According to the modified couple stress theory of Yang et al, the governing equation of motion for the micro-
beam and corresponding boundary conditions at 0x =  and x L=  are defined as [18]: 
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where E  is dependent on the beam width, b and film thickness, h. A beam is considered wide when 5 .b h³  Wide 

beams exhibit plane-strain conditions, and therefore, E  becomes the plate modulus 2/ (1 ),E -  where E and   are 

the Young’s modulus and Poisson’s ratio, respectively. A beam is considered narrow when 5 .b h<  In this case, E  

simply becomes the Young’s modulus E. I is the effective moment of inertia of the cross-section and is 3 / 12bh  
which is wide relative to thickness and width. G and l are shear modulus and length scale parameter of the beam 
material, respectively. Also,   and A are density and cross section area of the beam, respectively. It can clearly be 

seen in Eq. (1) the bending rigidity of the beam concerns with two parts, a part associated with EI  as bending 
rigidity of the classical theory, another part associated with 2GAl  relates to the modified couple stress theory.  

The presence of l enables the incorporation of the material micro-structural features in the new model and 
renders it possible to explain the size effect. Clearly, when the micro-structural effect is suppressed by letting 0,l =  
the new model defined by Eq. (1) will reduce to the classical Euler–Bernoulli beam model: 
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In electrostatically actuated micro-beams, the external lateral distributed force per unit length ( , )q x t  is written 

as [8, 31]: 
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where ( )V t  is the applied voltage between the stationary and movable electrodes.   and d are the dielectric constant 
of the gap medium and initial gap, respectively. For convenience in analysis, Eq. (1) can be non-dimensionalized. In 
particular, both the transverse displacement, w and the spatial coordinate, x, are normalized by characteristic lengths 
of the system and the gap size and beam length, respectively, according to: ˆ /w w d=  and ˆ / .x x L=  Time is non-
dimensionalized by the classic characteristic period of the system according to:  *ˆ /t t t=  with * 4 1/2( / ) .t bhL EI=  

Substituting these parameters into Eq. (1), the following non-dimensional equation is obtained: 
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The parameters α, and β, appeared in Eq. (5) are: 
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The static equation can be derived by dropping the time dependent terms from the dynamic equation of motion: 
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3    NUMERICAL SOLUTION 

Due to the nonlinearity of the derived static equation, the solution is complicated and time consuming. Direct 
applying the Galerkin method or finite difference method creates a set of nonlinear algebraic equation. The method 
used here consists of two steps. In first step, step-by-step linearization method (SSLM) is applied [8, 31] and in the 
second one, Galerkin method for solving the linear obtained equation is used. For using the SSLM, it is supposed 
that the ˆ k

sw  is the displacement of beam due to the applied voltage .kV  Therefore, by increasing the applied voltage 

to a new value, the displacement can be written as: 
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when 
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So, the equation of static deflection of the fixed-fixed micro-beam Eq. (7) can be rewritten at step of 1k +  as 

following: 
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Considering small value of ,V  it is expected that the ˆ( )x  would be small enough, hence using the calculus of 

variation theory and Taylor’s series expansion about ˆ k
sw  in Eq. (10), and applying the truncation to its first order for 

suitable value of ,V  it is possible to obtain desired accuracy. The linearized equation to calculate ˆ( )x  can be 

expressed as: 
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The obtained linear differential equation which is solved by Galerkin method ˆ( )x  based on function spaces can 

be expressed as:  
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In this paper,  ˆ( )j x  is selected as jth undamped mode shape of the straight micro-beam. The unknown ˆ( )x  is 

approximated by truncating the summation series to a finite number, n: 
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Substituting the Eq. (13) into Eq. (11), and multiplying by ˆ( )j x  as a weight function in Galerkin method and 

then integrating the outcome from ˆ 0x =  to 1 a set of linear algebraic equation is generated as: 
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A Galerkin-based reduced order model can be used [31] to study the micro-beam response to a dynamic loading. 

Because of the non-linearity of electrostatic force and stretching terms, direct applying the reduced order model to 
the dynamic equation (Eq. (5)) leads to generation of n nonlinear coupled ordinary differential equation and 
consequently the solution is more complicated. To solve this difficulty, the forcing term in Eq. (5) are considered a 
constant term in each step of integration which takes the value of the previous step. Selecting time steps small 
enough, leads to accurate results. To achieve a reduced order model, ˆˆ ˆ( , )w x t  can be approximated as: 
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By substituting Eq. (16) into Eq. (15) and multiplying by ˆ( )j x  as a weight function in Galerkin method and 

integrating the outcome from ˆ 0x =  to 1, the Galerkin based reduced order model is generated as: 
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where M and Km are mass and mechanical stiffness matrices, respectively. Also F introduces the forcing vector. The 
mentioned matrices and vector are given by: 
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Now, Eq. (18) can be integrated over time by various integration methods such as Runge-Kuta method where 

ˆˆ ˆ( , )w x t  in each step of integration takes the value of previous step.  

4    RESULTS AND DISCUSSION 

In order to validate our numerical solution of the static analysis, a fixed-fixed silicon micro-beam is considered with 
the geometrical and material properties listed in Table 1. In Table 2 the calculated pull-in voltage is compared with 
previous works for the fixed-fixed micro-beam with properties of Table 1. 

It is shown that the calculated pull-in voltages are in good agreement with those reported in the previous works. 
For validating of dynamic results with the previous works, a fixed-fixed micro-beam is considered with the 
specifications of the pressure sensor used by Hung and Senturia [32]: (E149 Gpa, ρ2330 kg/m3, L610 μm, b40  
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Table 1 
The values of design variables [8] 
Design Variable Value Value 
b 50 μm 
h 3 μm 
d 1 μm 
E 169 GPa 
ρ 2330 Kg/m3 
  8.85 PF/m 
  0.06 
 
 
Table 2 
Comparison of the pull-in voltage for the fixed-fixed micro-beam 
 Residual stress (MPa) Our results MEMCAD [7] Energy model [7] 
L=350 
 

0  
100  
-25 

20.1 V 
35.3 V 
13.8 V 

20.3 V 
35.8 V 
13.7 V 

20.2 V 
35.4 V 
13.8 V 

L=250 0  
100  
-25 

35.9 V 
57.3 V 
33.4 V 

40.1 V 
57.6 V 
33.6 V 

39.5 V 
56.9 V 
33.7 V 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 2 
Comparison of the pull-in time for no damping case. 

 
μm, h2.2 μm and d2). Because h is given as a nominal value, it is modified to match the experimental pull-in 
voltage. Accordingly, thickness is obtained h2.135 μm. 

In Fig. 2 the calculated pull-in time obtained using proposed method is compared to the theoretical and 
experimental results of Hung and Senturia for various values of step DC voltage. The pull-in time is found by 
monitoring the beam response over time for a sudden rise in the displacement; at that point, the time is reported as 
the pull-in time [5]. As Fig. 2 illustrates, calculated results are in excellent agreement with the theoretical and 
experimental results. It is shown that in the no damping case for applied voltage smaller than V=8.18 V the pull in 
instability does not occur, so this step DC voltage can be introduced as the “dynamic pull-in voltage” for the micro-
beam. 

In static and dynamic validation, the micro-beams material was silicon and due to the very small value of the 
length-scale parameter of the silicon in comparison with its characteristic size [29], both of classic beam and couple 
stress theories lead to obtain the same pull-in voltages. However, what happens when the length-scale parameter 
have a considerable value in comparison with the material characteristic size? It is expected that the difference 
between the calculated pull-in voltage using the classic beam theory and the experimental pull-in voltage be so 
considerable. In this case, some researchers have introduced a hypothetical residual stress to their model to match 
their experimental and theoretical results [25-27]. For example, A. Ballestra et al. [25] for a given gold micro-beam 
have considered a pre-stress of 30 MPa to match their experimental and theoretical pull-in voltage. In addition, they 
have reported that by increasing thickness of the micro-beam, effects of the residual stresses decreases and 
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theoretical and experimental reports are in good agreement. To show more details, a micro-beam is considered with 
the geometrical parameters given by A. Ballestra et al. This gold micro-beam is introduced by properties of Table 3. 

Fig. 3 illustrates the equilibrium positions or fixed points of the fixed-fixed micro-beam versus applied voltage 
as a control parameter. For a given applied voltage, as shown in these figure, the micro-beam has three fixed points 
or equilibrium positions. In addition, as shown in Fig. 3, in the state-control space, the stable and unstable branches 
of the fixed points, with increasing applied voltage, meet together at a saddle-node bifurcation point. The voltage 
corresponding to the saddle-node bifurcation point is a critical value, which is known as static pull-in voltage in the 
MEMS Literature. In other words, when the applied voltage equal to the static pull-in voltage there is no any basin 
of stable attractors on the upper side of the substrate and the micro-beam is unstable for every initial condition.  

Moreover, Fig. 3 shows the saddle-node bifurcation point or pull-in voltage of the gold micro-beam. This figure 
represents a comparison between modified couple stress with the constant length scale parameter of l=1.12 μm, as 
reported by Zong et al. [20], and classic beam theories.  As shown, applying modified couple stress theory shifts 
right the saddle-node bifurcation node and hence the calculated pull-in voltage increases. It can be shown that the 
difference between the two theories depends on the value of h/l. It is illustrated in Fig. 4 that by increasing the h/l 
ratio, the ratio of the pull-in voltage calculated by the MCST  ( )V ¢  to the pull-in voltage calculated by the CBT ( )V  
approaches one, but in lower value of h/l the difference between the two theories is so considerable. In addition, in 
Fig. 5 the variation of the ratio of the deflection of the beam calculated by the MCST  ( )w¢  to the defection 
calculated by the CBT  ( )w  is shown. As illustrated in Figs. 4 and 5, considering a variable length scale parameter 
for the gold micro-beam, as reported by Cao et al [4] (l= 0.47,0.73 and 1.05 μm for gold film thickness of 500,1000 
and 2000 nm, respectively) leads to different results from when a unique value of length scale parameter is 
considered. Fig. 6 shows the variation of the non-dimensional fundamental frequency of the gold micro-beam versus 
applied DC voltage from zero up to the pull-in voltage. As shown, applying the classic beam theory in these cases, 
leads to incorrect results and the modified couple stress theory must be applied. 

 
 
 

Table 3 
Geometries and material properties of the gold micro-beam [25] 

Design Variable Value Gold 
L 541.8 μm 
B 32.2 μm 
H 2.68 μm 
D 2.83 μm 
E 98.5 GPa 
G 27 GPa 
  19300 Kg/m3 
  0.44 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 
Variation of the center gap of the gold micro-beam with 
applied DC voltage. 
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Fig. 4 
Variation of the pull-in voltage ratio versus h/L. 

   
   

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 
Variation of the deflection ratio versus h/L. 

   

   

 
 
 
 
 
 
 
 
 
 
Fig. 6 
Variation of the non-dimensional fundamental frequency 
of the gold micro-beam versus applied DC voltage 
(V=26.33V). 

 
 
The dynamic pull-in phenomenon in the gold micro-switch is shown in Fig. 7. It is illustrated that by applying 

the classic beam theory the pull-in phenomenon occurs at  26.33 ,V V=  whereas using the modified couple stress 
theory at this voltage, there is not a contact between the electrodes and the micro-beam is vibrating without 
occurring the dynamic pull-in. As the results indicate, in the gold micro-beam which has a considerable length-scale 
parameter in comparison with its thickness applying the classic beam theory leads to incorrect results and couple 
stress theory must be applied. Moreover, considering a unique length scale parameter for all beam thicknesses may 
not give correct results. 
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Fig.7 
The response of the gold micro-beam to a step DC. 

5    CONCLUSIONS 

In the present study, size dependent behavior of electrostatically actuated gold micro-switches was studied. Equation 
of static deflection was solved using step-by-step linearization method (SSLM) and the equation of dynamic motion 
was solved using the Galerkin-based reduced order model. The results highlighted that in the gold micro-beam as 
well as other materials, having considerable length-scale parameter in comparison with their thickness, applying the 
classic beam theory leads to incorrect results and couple stress theory must be applied. In addition, it was illustrated 
that the effect of the size dependent behavior considerably grows by decreasing the ratio of the thickness to the 
length-scale parameter of the micro-beam. Also, it was shown that considering a unique value of length scale 
parameter, especially for the smallest values of the beam thicknesses, may leads to inaccurate results and variable 
length scale parameter should be considered. Finally, it can be concluded that the actual role of the residual stress 
reported in some reviewed works, is so lower than they have assumed. These obtained results can be useful for the 
MEMS community in the optimum design of MEMS structures. 
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