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ABSTRACT 
Using Donnell-type shell theory a simple and exact procedure is presented for linear buckling 
analysis of functionally graded conical shells under axial compressive loads and external pressure. 
The solution is in the form of a power series in terms of a particularly convenient coordinate 
system. By analyzing the buckling of a series of conical shells, under various boundary conditions 
and different material coefficients, the validity of the presented procedure is confirmed. 
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1    INTRODUCTION 

UE to their extensive use, particularly in the aeronautical industry, the buckling of conical shells has been 
studied by many researchers. Much literature exists on the buckling of isotropic conical shells under 

compressive axial loads [1-8] and under external pressure [3, 9, 10], as well as combined loading [11]. A simple 
formula was developed for the buckling of isotropic conical shells by Siede and Calif [1] and later verified by 
Lackman and Renzien [2]. Siede’s formula is independent of boundary conditions and is best for long shells. Using 
complex series Singer [9] and Baruch and Singer [10] proposed a procedure for solving the three equilibrium 
equations and two out-of-plane boundary conditions are satisfied identically while the out-of-plane equilibrium 
equation and in-plane boundary condition are satisfied approximately. Subsequently, Baruch et al. [7] improved 
Singer’s solution by satisfying the in-plane boundary conditions exactly. To our knowledge there has not been a 
simple solution for buckling analysis of isotropic and functionally graded conical shells under axial loads and 
external pressure. In the following, we develop a simple and exact procedure for buckling analysis of isotropic and 
functionally graded conical shells under axial compression and external pressure. The procedure consists of 
following steps: 

I. The buckling equations are developed and expressed in terms of displacements; 
II. Using a new technique, exact solution are constructed in series form for the governing equations; 

III. By way of verification, several examples are analyzed and the effects of boundary conditions and elastic 
coefficients on the buckling loads are investigated. 

2    DONNELL-TYPE GOVERNING EQUATIONS 

Consider a conical shell as shown in Fig.1 that R1 and R2 indicate the radii of the cone at its small and large ends, 
respectively, α  denotes the semi-vertex angle of the cone and L is the cone length along its generator. We introduce 
the θ−x coordinate system; x  is measured along the cone’s generator starting at the middle length and θ  is the 
circumferential coordinate. The displacements of the shell’s middle surface are denoted by U and V along x  and θ - 
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Fig. 1 
Geometry and notations for a typical cone. 

 
direction respectively, and by W along the normal to the surface (inward positive). In terms of these variables the 
cone’s radius at any point along its length may be expressed as: 
 

αsin)( xRxR +=                                                                                                                                                 (1) 
 

Now let the cone be subjected to an axially compressive load P  and external normal pressure .q  Under this 
loading the membrane stress resultant, at the critical state, may be expressed as: 
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These equations based on the membrane theory of shallow shells degenerate to their more familiar forms for 

cylindrical shells when α is set equal to zero. For linear buckling analysis of composite conical shells, under P and 
q  loadings, we adopt the shallow shell theory of Donnell-type and write the governing equations derived in [12], as: 
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where C  and D are calculated from the following equations: 
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where )(zE is material elastic constants for functionally graded material (FGM) [13], in that )(mE and )(cE are 
material elastic constants for metal and ceramic and k is a constant ratio; h is the wall thickness. The force and 
moment stress resultant are expressed in terms of the displacements U, V, W by: 
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For simplicity, let us first consider the following two types of boundary conditions [14]: 
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Case 1: Simply-supported boundary condition at 2Lx ±= . 
Case 2: Clamped boundary conditions at 2Lx ±= . 

3    EXACT SOLUTIONS 

An inspection of the differential operators )3,2,1,(, =jiL ji  in Eq. (4) reveals the following properties: The 
coefficients of all these operators are functions of x  only, i.e. they are independent of θ . Now let us assume 
solutions for equation (12) in following form: 
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where n  is an integer representing the circumferential wave number of the buckled shell and ma , mb  and mc are 
constants to be determined later. On substituting from Eqs. (9) and (10) into Eq. (3) and using Eqs. (1) and (4), we 
develop three linear algebraic equations by matching the terms of same order in x . In addition we obtain the 
following recurrence relations: 
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The above recurrence relations allow one to express the unknown constants ,a ,1a ,b ,1b ,c ,1c 2c , and 3c . 

The coefficients jiG ,  are given by following relation: 
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Therefore the general form of )(),( xvxu and )(xw may be written as: 
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In which )(),( xvxu ii and )(xwi )8,...,2,1( =i are the base functions of )(xu , )(xv  and )(xw respectively, and 

2111 ,,,,,, cccbbaa , and 3c are the unknowns to be determined by imposing the boundary conditions at both ends of 
the cone. The critical buckling loads and the corresponding buckling mode shapes can finally be obtained by 
equating the determinants of the coefficients matrix obtained after imposing the eight boundary conditions to zero. 

4    NUMERICAL RESULTS AND DISCUSSIONS 

4.1. Numerical results for isotropic conical shell 

In this section numerical results are presented for the buckling of isotropic conical shells under axial compression 
with different parameters and under different boundary conditions. For this case in Eq. (6), by 0=k , )(zE  convert  
to material elastic constant for isotropic conical shell [13] and we use it for our calculations. Before the results, let us 
introduce the following notation: 
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where crP  is the critical buckling loads obtained from the present method, and CLP is the classical value of the 
critical buckling load 
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The above equation is suggested by Siede and Calif [1]. The present values crP and their comparison with those 

in Ref. [7] are shown for isotropic cones with different values of 1RL , semi-vertex angles α  and different 
boundary conditions, i.e. SS1 and SS3 in Table 1, SS2 in Table 2, SS4 in Table 3 and CC1 and CC3 in Table 4. 
Good agreement for crρ  can be observed between the present results and those from Baruch et al. [7]. There is, 
however, a difference in the circumferential wave number. It can be seen that crρ  tends to 0.5 for SS1, SS2 and SS3 
and to 1.0 for SS4, CC1 and CC3. This means that there exists a lower critical value for SS1, SS2 and SS3. Siede’s 
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formula is only applicable to SS4, CC1 and CC3. For extremely short cones with 2.01 =RL , crρ becomes larger as 
α increases and crρ tends to a constant independent of α for cones with 1RL larger than 0.5. 
 
Table 1 
 Critical loads ratio crρ for SS1 and SS3 boundary conditions ( 0.1001 =hR , )3.0=υ  

L/R1=0.5 L/R1=0.5 L/R1=0.2 L/R1=0.2 α 
Baruch et al. [7] Present Baruch et al. [7] Present 

0.5131 0.5131 0.4991 0.5032 1° 
0.5139 0.5142 0.5021 0.5057 5° 
0.5147 0.5151 0.5075 0.5106 10° 
- 0.5163 - 0.5280 20° 
0.5139 0.5140 0.5567 0.5616 30° 
- 0.4947 - 0.6491 45° 
0.4486 0.4486 0.8701 0.8715 60° 
- 0.4304 - 1.2346 70° 
0.5407 0.5405 2.3830 2.3832 80° 

 
 
Table 2 
 Critical loads ratio crρ for SS2 boundary condition ( 0.1001 =hR , )3.0=υ  

L/R1=0.5 L/R1=0.5 L/R1=0.2 L/R1=0.2 α 
Baruch et al. [7] Present Baruch et al. [7] Present 

0.5191(2) 0.5147(1) 0.5106(2) 0.5081(1) 1° 
0.5191(2) 0.5153(1) 0.5133(2) 0.5098(1) 5° 
0.5203(2) 0.5163(1) 0.5184(2) 0.5102(1) 10° 
- 0.5179(1) - 0.5284(1) 20° 
0.5203(2) 0.5166(1) 0.5696(2) 0.5604(1) 30° 
- 0.4992(1) - 0.6534(1) 45° 
0.4652(2) 0.4596(1) 0.8924(2) 0.8759(1) 60° 
- 0.4423(1) - 1.2428(1) 70° 
0.5984(2) 0.5572(1) 2.4470(2) 2.3997(1) 80° 

 
 
Table 3  
Critical loads ratio crρ for SS4 boundary condition ( 0.1001 =hR , )3.0=υ  

L/R1=0.5 L/R1=0.5 L/R1=0.2 L/R1=0.2 α 
Baruch et al. [7] Present Baruch et al. [7] Present 

1.002(8) 1.0020(8) 1.005(7) 1.0051(7) 1° 
1.002(8) 1.0018(8) 1.006(7) 1.0057(7) 5° 
1.002(8) 1.0012(8) 1.007(7) 1.0071(7) 10° 
- 1.0000(8) - 1.0097(6) 20° 
1.001(7) 1.0006(7) 1.017(5) 1.0171(5) 30° 
- 1.0110(5) - 1.0415(2) 45° 
1.044(7) 1.0032(5) 1.144(0) 1.1443(0) 60° 
- 1.0150(5) - 1.4207(0) 70° 
1.015(5) 1.0111(3) 2.477(0) 2.4774(0) 80° 
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Table 4  
Critical loads ratio crρ by present method 

L/R1=0.5 L/R1=0.2 L/R1=0.5 L/R1=0.2 α 
CC3 CC3 CC1 CC1 

1.053(8) - 1.004(8) 1.664(0) 1° 
1.054(8) 1.678(0) 1.007(8) 1.678(0) 5° 
1.064(8) 1.709(0) 1.006(8) 1.708(0) 10° 
1.099(8) 1.947(0) 1.002(7) 1.945(0) 30° 
1.029(0) 2.375(0) 0.999(5) 2.372(0) 45° 
1.015(0) 3.328(0) 1.001(2) 3.320(0) 60° 

 
 

 
 
 
 
 
 
 
 
 
Fig. 2 
Influence of 1RL on ratio crρ  for SS3. 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
Fig. 3 
Influence of α  on ratio crρ  for SS3 ,00.1( 1 =hR , )3.0=υ . 
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Fig. 4 
Influence of 1RL  on ratio crρ  for SS3  
( ,30=α ,1001 =hR 3.0=υ ). 
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Fig. 5 
Influence of E(z) on ratio crρ for SS3 

( ,101 =RL ,1001 =hR 3.0=υ ). 

 
 
These properties are shown in Fig. 2 for SS3 and Fig. 3 for SS3 and SS4. Another important phenomenon worth 

noting is that the buckling wave number tends to decrease as α  increase. 

4.2. Numerical results for FGM cones 

For FGM cones, we compute for crρ from Eq. (15) with E  replaced by ).(zE  Numerical results for functionally 
graded cones with SS3 are shown in Fig. 4, from which the influence of 1RL on crρ  for cones with the 
combination of materials consists of aluminium and alumina with different values of k , may be noted. The Young’s 
modulus for aluminium is, 70)( =mE Gpa and alumina is 380)( =cE Gpa . It can be seen that crρ is independent of 

1RL when 1RL is larger than 1.0, and also crρ  first decreases and then increases as 1RL  increases from 0.2 to 
1.0. This curves the same variation as it has been shown in Fig. 2. Fig. 5 shows the effect of )(zE on crρ for FGM 
cones with parameters given in the figure. It can be observed that crρ increases as )(zE  becomes large and it 
approaches a constant when )(zE  is large enough. It is also noteworthy that semi-vertex angle α  has a slight effect 

on crρ , and there exists only a slight difference among crρ for 10=α , 30 and .45  

5    CONCLUSION 

The salient points in this study include: (1) Derivation of a systematic solution procedure for buckling analysis of 
isotropic conical shells under axial compression and external pressure, using the power series method; (2) The 
application of the solution to all types of boundary conditions and to various kinds of truncated conical shells; (3) 
The identification of effects of semi-vertex angle and material constants on the buckling loads. 
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