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ABSTRACT
Using Donnell-type shell theory a simple and exact procedure is presented for linear buckling
analysis of functionally graded conical shells under axial compressive loads and external pressure.
The solution is in the form of a power series in terms of a particularly convenient coordinate
system. By analyzing the buckling of a series of conical shells, under various boundary conditions
and different material coefficients, the validity of the presented procedure is confirmed.
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1 INTRODUCTION

UE to their extensive use, particularly in the aeronautical industry, the buckling of conical shells has been
studied by many researchers. Much literature exists on the buckling of isotropic conical shells under
compressive axial loads [1-8] and under external pressure [3, 9, 10], as well as combined loading [11]. A simple
formula was developed for the buckling of isotropic conical shells by Siede and Calif [1] and later verified by
Lackman and Renzien [2]. Siede’s formula is independent of boundary conditions and is best for long shells. Using
complex series Singer [9] and Baruch and Singer [10] proposed a procedure for solving the three equilibrium
equations and two out-of-plane boundary conditions are satisfied identically while the out-of-plane equilibrium
equation and in-plane boundary condition are satisfied approximately. Subsequently, Baruch et al. [7] improved
Singer’s solution by satisfying the in-plane boundary conditions exactly. To our knowledge there has not been a
simple solution for buckling analysis of isotropic and functionally graded conical shells under axial loads and
external pressure. In the following, we develop a simple and exact procedure for buckling analysis of isotropic and
functionally graded conical shells under axial compression and external pressure. The procedure consists of
following steps:
I. The buckling equations are developed and expressed in terms of displacements;
II. Using a new technique, exact solution are constructed in series form for the governing equations;
III. By way of verification, several examples are analyzed and the effects of boundary conditions and elastic
coefficients on the buckling loads are investigated.

2 DONNELL-TYPE GOVERNING EQUATIONS
Consider a conical shell as shown in Fig.1 that R, and R, indicate the radii of the cone at its small and large ends,
respectively, o denotes the semi-vertex angle of the cone and L is the cone length along its generator. We introduce

the x — 6 coordinate system; x is measured along the cone’s generator starting at the middle length and & is the
circumferential coordinate. The displacements of the shell’s middle surface are denoted by U and V along x and 6 -
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Fig. 1
Geometry and notations for a typical cone.

direction respectively, and by W along the normal to the surface (inward positive). In terms of these variables the
cone’s radius at any point along its length may be expressed as:

R(x)=R, +xsin«x (1)

Now let the cone be subjected to an axially compressive load P and external normal pressure g. Under this
loading the membrane stress resultant, at the critical state, may be expressed as:

N = P+qgrn(2R, + xsina)xsina

Xxo

27R(x)cos & @)
_9R(x)

cosa

NHo

These equations based on the membrane theory of shallow shells degenerate to their more familiar forms for
cylindrical shells when « is set equal to zero. For linear buckling analysis of composite conical shells, under P and
q loadings, we adopt the shallow shell theory of Donnell-type and write the governing equations derived in [12], as:

LU+ L,V +LzW=o0
Ly U+LyV+LyW=o 3)
Ly U+ L3,V +(Lyy + Ly)W =o

where
2 . ) _ 2
L11:C6_2+Csmai_Cs;n a+(1 2V)C 62
ox R(x) ox R*(x) 2R°(x) 06
_(+w)C &  (3-v)Csina 8
27 2R(x) ax00  2R*(x) 00
_(1+v)C o LB-vC o
27 2R(x) %00  2R2(x) 06
1-v | 8> sina 6 sin’a c o
Lp=—7-C—5+ T2 t 2 2
2 ox° R(x)ox R°(x)| R°(x)o0
vCcosa 0 Csinacosa
L= —+ 5
R(x) ox R*(x)
Ccosa 0
Lyy=L,=—n "
BT Ry 06
—vCcosa 0 Csinacosa
Ly =

R(x) ox R?(x)
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Ccos’ a o 2D o D &' 2Dsina &°
B=— 5 tD_F+— T T Pyl
R”(x) ox"  R°(x) ox"00- R”(x) 00 R(x) ox
_ 2Dsina o* _Dsinzai 4Dsin’ o * +Dsin305i
R¥(x) ox06* R*(x) ox*  RYx) 06° R (x) Ox
0 1 0 0
) 4)

1 0
Ly= WE[R(X)NXO a] + 2 E(Ngo 20

where C and D are calculated from the following equations:

1 +h/2
C= d
1-v* I‘h/ , % 5)
_ 1 +h/2E 2d
T Ly, FEEE
where
E(z)=(E(c)- E(m))(% + %)k + E(m) (6)

where E(z)is material elastic constants for functionally graded material (FGM) [13], in that E(m)and E(c)are

material elastic constants for metal and ceramic and k is a constant ratio; % is the wall thickness. The force and
moment stress resultant are expressed in terms of the displacements U, V, W by:

N, hy by Iy
Ny Ly lyn Ixn U
Zxa _ lil 1302 533 v 7)
x 53| |y
My o o s
M o L° o g
where
_ .0 VCsina _vC 0 _ vCcosa
1n= a_x_—R(x) > 12 —m%: 13~ _—R(x)
0 Csina Cc 0 Ccosa
Iy = 6_+R—’ 2T 23 ="
X (%) R(x) ox R(x)
L =nc o 132:(1—v)c(i_sin_aJ
2R(x) 06’ 2 o R(x)

®)

o° sina 0 v 9?
ly3 = —D—Z—VD — >
Ox R(x) 0x R*(x) 00

6> Dsina 6 D &°

ox>  R(x) ox R*(x) 06

PO (5 PG S U
87 2R(x)  ox| R(x) 00

ls3 =—

For simplicity, let us first consider the following two types of boundary conditions [14]:
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Case 1: Simply-supported boundary condition at x =+L/2 .
Case 2: Clamped boundary conditions at x =+L/2 .

3 EXACT SOLUTIONS

An inspection of the differential operators L, ;(i,j=123) in Eq. (4) reveals the following properties: The

coefficients of all these operators are functions of x only, i.e. they are independent of . Now let us assume
solutions for equation (12) in following form:

U =u(x)cosnf
V = v(x)sinné ©)
W =w(x)cosné

where
u(x) = Zamx"'
v(x)= Y b, x" (10)

0
w(x) = Zcmxm
m=o

where n is an integer representing the circumferential wave number of the buckled shell and «,,,b,, andc,, are
constants to be determined later. On substituting from Egs. (9) and (10) into Eq. (3) and using Egs. (1) and (4), we
develop three linear algebraic equations by matching the terms of same order in x. In addition we obtain the

following recurrence relations:

Ay = Gy + G0, + Gisby i + G b, + G sCyly + GGy,

bz = G 1@yi + Gy oy + Gy 3byy iy + Gy uby, + Gy 5C, (an
Csa = G310y, + G354, + G330,y + G3 44,5 + Gy 5b,, + Gy 6b,,_1 + G3 7D, 5 + G35C, 3+ G39C,, 1
+G310Cp41 +G311C, + G5 15C,,1 + G313C,, 5 + G5 14Cy 3, (m=0,1,2,...)

The above recurrence relations allow one to express the unknown constants «,, a;, b,, b, c,, ¢, ¢c,, andc;.

0>

The coefficients G, ; are given by following relation:

(2m+1)sina
Gy=—"—""—"—
(m+2)R,
_ m?sin® +2sin205+(l—v)n2
(m+2)(m+1)R>  2R*(m+2)(m+1)
(1+v)n
Gy=—F5p 5
2R, (m+2)
_ [d+v)m=(@B-v)lnsina
b 2R (m+2)(m+1)
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P 4.5gR?
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2

)
Gy1a ! H—O.Sq(m—2)(m—3)sm a_4a Jsin3a} (12)

 DR*(m+4)(m+3)(m+2)(m +1) cosa  cosa

Therefore the general form of u(x),v(x) and w(x) may be written as:

u(x) = uy(x)a, +uy(x)a; +uz(x)b, +uy (X)by +us(x)c, +ug(x)c; +uq(x)cy +ug(x)cy
v(x) =v(x)a, + v, (x)a; +v3(x)b, +v4(x)by +vs(x)c, +ve(X)c; +v7(X)cy +vg(X)cy (13)

w(x) =wy(x)a, + wy(x)a; + wi(x)b, + w, (x)b; + ws(x)c, + wg(x)c; + w5 (x)c, +wg(x)c;

In which u;(x),v;(x)andw;(x) (i=12,....8)are the base functions of u(x),v(x) and w(x)respectively, and
a,,a;,b,,b,c,,c;,c,, and c; are the unknowns to be determined by imposing the boundary conditions at both ends of

the cone. The critical buckling loads and the corresponding buckling mode shapes can finally be obtained by
equating the determinants of the coefficients matrix obtained after imposing the eight boundary conditions to zero.

4 NUMERICAL RESULTS AND DISCUSSIONS

4.1. Numerical results for isotropic conical shell

In this section numerical results are presented for the buckling of isotropic conical shells under axial compression
with different parameters and under different boundary conditions. For this case in Eq. (6), by k=0, E(z) convert

to material elastic constant for isotropic conical shell [13] and we use it for our calculations. Before the results, let us
introduce the following notation:

P
Por =" (14)
Per
where P, is the critical buckling loads obtained from the present method, and P, is the classical value of the

critical buckling load

27Eh? cos® a

p., === €05 @ (15)
“ J31-v?)

The above equation is suggested by Siede and Calif [1]. The present values P., and their comparison with those
in Ref. [7] are shown for isotropic cones with different values of L/R,, semi-vertex angles « and different

boundary conditions, i.e. SS1 and SS3 in Table 1, SS2 in Table 2, SS4 in Table 3 and CC1 and CC3 in Table 4.
Good agreement for p,, can be observed between the present results and those from Baruch et al. [7]. There is,

however, a difference in the circumferential wave number. It can be seen that p,, tends to 0.5 for SS1, SS2 and SS3
and to 1.0 for SS4, CC1 and CC3. This means that there exists a lower critical value for SS1, SS2 and SS3. Siede’s
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formula is only applicable to SS4, CC1 and CC3. For extremely short cones with L/R, =0.2, p,, becomes larger as

« increases and p,, tends to a constant independent of « for cones with L/R, larger than 0.5.

r[éarli)tlif:all loads ratio p,, for SS; and SS; boundary conditions (R, /2 =100.0, v =0.3)
o L/R,=0.2 L/R,=0.2 L/R,=0.5 L/IR=0.5
Present Baruch et al. [7] Present Baruch et al. [7]
1 0.5032 0.4991 0.5131 0.5131
5 0.5057 0.5021 0.5142 0.5139
10° 0.5106 0.5075 0.5151 0.5147
20° 0.5280 - 0.5163 -
30° 0.5616 0.5567 0.5140 0.5139
45° 0.6491 - 0.4947 -
60" 0.8715 0.8701 0.4486 0.4486
70° 1.2346 - 0.4304 -
80" 2.3832 2.3830 0.5405 0.5407
Table 2
Critical loads ratio p,, for SS; boundary condition (R, /h=100.0, v =0.3)
a L/R=0.2 L/R=0.2 L/R;=0.5 L/R;=0.5
Present Baruch et al. [7] Present Baruch et al. [7]
1 0.5081(1) 0.5106(2) 0.5147(1) 0.5191(2)
5 0.5098(1) 0.5133(2) 0.5153(1) 0.5191(2)
10° 0.5102(1) 0.5184(2) 0.5163(1) 0.5203(2)
20° 0.5284(1) - 0.5179(1) -
307 0.5604(1) 0.5696(2) 0.5166(1) 0.5203(2)
45 0.6534(1) - 0.4992(1) -
60" 0.8759(1) 0.8924(2) 0.4596(1) 0.4652(2)
70° 1.2428(1) - 0.4423(1) -
80 2.3997(1) 2.4470(2) 0.5572(1) 0.5984(2)
Table 3
Critical loads ratio p,, for SS4boundary condition (R, /4 =100.0, v =0.3)
a L/R=0.2 L/R=0.2 L/R=0.5 L/R;=0.5
Present Baruch et al. [7] Present Baruch et al. [7]
1 1.0051(7) 1.005(7) 1.0020(8) 1.002(8)
5 1.0057(7) 1.006(7) 1.0018(8) 1.002(8)
10° 1.0071(7) 1.007(7) 1.0012(8) 1.002(8)
20° 1.0097(6) - 1.0000(8) -
30° 1.0171(5) 1.017(5) 1.0006(7) 1.001(7)
45 1.0415(2) - 1.0110(5) -
60° 1.1443(0) 1.144(0) 1.0032(5) 1.044(7)
70° 1.4207(0) - 1.0150(5) -
80 2.4774(0) 2.477(0) 1.0111(3) 1.015(5)
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Table 4

Critical loads ratio p,, by present method

a L/R=0.2 L/R=0.5 L/R=0.2 L/R=0.5

CC, CC, CGCs CGCs

1 1.664(0) 1.004(8) - 1.053(8)
5 1.678(0) 1.007(8) 1.678(0) 1.054(8)
10° 1.708(0) 1.006(8) 1.709(0) 1.064(8)
30° 1.945(0) 1.002(7) 1.947(0) 1.099(8)
45 2.372(0) 0.999(5) 2.375(0) 1.029(0)
60° 3.320(0) 1.001(2) 3.328(0) 1.015(0)

248 4
2.25 4

1.78 4
1.5 4
1.26 4

0.74 4
0.5 4
0.25 4

7o an®

Per
0.80 ——k=0.0

—a—k=0.25
0.20
0.10

LR,
000 —+—FT T T T T T T T T T T T T T T T T T T T T T T T T T
0.2 0.4 0.6 0.8 1 1.2 14 1.6 18

Fig. 2

Influence of L/R, on ratio p,, for SS;.

Fig. 3
Influence of & onratio p,,. for SS; (R/h=100, v=03).

Fig. 4

Influence of /R, onratio p,, for SS;

(a=30, R/h=100, v=03).
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Fig. 5
Influence of E(z) on ratio p,, for SS3

(L/R =10, R,/h =100, v=0.3).

E(z),Gpa

100 200 300 400 500

These properties are shown in Fig. 2 for SS3 and Fig. 3 for SS3 and SS4. Another important phenomenon worth
noting is that the buckling wave number tends to decrease as « increase.

4.2. Numerical results for FGM cones

For FGM cones, we compute for p,, from Eq. (15) with E replaced by E(z). Numerical results for functionally
graded cones with SS3 are shown in Fig. 4, from which the influence of L/R, on p, for cones with the
combination of materials consists of aluminium and alumina with different values of & , may be noted. The Young’s
modulus for aluminium is, E(m)=70Gpa and alumina is E(c) =380 Gpa . It can be seen that p,, is independent of
L/R, when L/R, is larger than 1.0, and also p,, first decreases and then increases as L/R, increases from 0.2 to
1.0. This curves the same variation as it has been shown in Fig. 2. Fig. 5 shows the effect of E(z)on p,, for FGM
cones with parameters given in the figure. It can be observed that p,, increases as E(z) becomes large and it

approaches a constant when E(z) is large enough. It is also noteworthy that semi-vertex angle « has a slight effect

on p,, ,and there exists only a slight difference among p,, for & =10°,30" and 45°.

5 CONCLUSION

The salient points in this study include: (1) Derivation of a systematic solution procedure for buckling analysis of
isotropic conical shells under axial compression and external pressure, using the power series method; (2) The
application of the solution to all types of boundary conditions and to various kinds of truncated conical shells; (3)
The identification of effects of semi-vertex angle and material constants on the buckling loads.

REFERENCES

[1] Siede, P., Calif, L.A., 1956, Axisymetric buckling of circular cones under axial compression, ASME Transactions, Journal
of Applied Mechanics 23: 625-628.

[2] Lackman L., Renzien J., 1960, Buckling of circular cones under axial comperession, ASME Transactions, Journal of
Applied Mechanics 27: 458-460.

[3] Singer J., 1961, Buckling of circular conical shells under axisymmetrical external pressure, Journal of Mechanical
Engineering Science 3: 330-339.

[4] SingerJ., 1965, Buckling of circular conical shells under uniform axial compression, AIAA Journal 3: 985-987.

[5] Weigarten V.1, Seide P., 1965, Elastic stability of thin walled cylindrical and conical shells under combined external
pressure and axial compression, AIAA Journal 3: 913-920.

[6] Weigarten V.1, Seide P., 1965, Elastic stability of thin walled cylindrical and conical shells under combined external
pressure and axial compression, AIAA Journal 3: 1118-1125.

© 2009 IAU, Arak Branch



117

[7]

[8]
[10]
[11]
[12]
[13]

[14]

A. Lavasani

Baruch M., Harari O., Singer J., 1970, Low buckling loads of axially compressed conical shells, ASME Transactions,
Journal of Applied Mechanics 37: 384-392.

Tani J., Yamaki Y., 1970, Buckling of truncated conical shells under axial compression, AIAA Journal 8: 568-570.

Singer J., 1966, Buckling of damped conical shells under external pressure, AIAA Journal 4, 328-337.

Baruch M., Singer J., 1965, General instability of stiffened conical shells under hydrostatic pressure, Aeronautics Quarterly
26: 187-204.

Weigarten V.1, Morgan E.J., Seide P., 1965, Elastic stability of thin walled cylindrical and conical shells under axial
compression, AIAA Journal 3: 500-505.

Tong Liyong, 1988, Buckling and vibration of conical shells composed of composite materials, Ph.D. Thesis, Beijing
University of Aeronautics and astronautics.

Reddy J. N., Praveen G. N., 1998, Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates,
International Journal of Solids and Structures 35: 4467-4476.

Tong L., Tabarrok B., Wang T.K., 1992, Simple solution for buckling of orthotropic conical shells, International Journal of
Solids and Structures 29: 933-946.

© 2009 TAU, Arak Branch



