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 ABSTRACT 

 In the present work, the free vibration behavior of rectangular graphene sheet under shear 
in-plane load is studied. Nonlocal elasticity theory has been implemented to study the 
vibration analysis of orthotropic single-layered graphene sheets (SLGSs) subjected to 
shear in-plane load. The SLGSs is embedded on a viscoelastic medium which is simulated 
as a Visco-Pasternak foundation. Using the principle of virtual work, the governing 
equations are derived for the rectangular nanoplates. Differential quadrature method 
(DQM) is employed and numerical solutions for the vibration frequency are obtained. The 
influence of surrounding elastic medium, material property, aspect ratio, nonlocal 
parameter, length of nanoplate and effect of boundary conditions on the vibration analysis 
of orthotropic single-layered graphene sheets (SLGSs) is studied. Six boundary conditions 
are investigated. Numerical results show that the vibration frequencies of SLGSs are 
strongly dependent on the small scale coefficient and shear in-plane load. The present 
analysis results can be used for the design of the next generation of nanodevices that make 
use of the vibration properties of the graphene. 

© 2014 IAU, Arak Branch. All rights reserved.   

 Keywords: Vibration; Graphene sheet; Shear in-plane load; Visco-Pasternak foundation 

1    INTRODUCTION 

 ANOSTRUCTURES are widely used in micro and nano-scale devices and systems such as biosensors, 
atomic force microscopes, micro-electro-mechanical systems (MEMS) and nano-electro-mechanical systems 

(NEMS) due to their superior mechanical, chemical, and electronic properties [1]. Due to the rapid development of 
technology, especially in micro- and nano-scale fields, one must consider small scale effects and atomic forces to 
obtain solutions with acceptable accuracy. Neglecting these effects in some cases may result in completely incorrect 
solutions and hence wrong designs.In such applications, size effects have been experimentally observed [2-4]. As 
conduction of experiments in nano-level are difficult to control and theoretical atomistic models [5] are 
computationally intensive for relatively large scale nanostructures, the continuum and semi-continuum [6-8] models 
have been proven to be important tools in the study of the nanostructures.Classical continuum theories do no 
account for such size effects due to lack of material length scale parameters. Thus, size-dependent continuum 
theories such as classical couple stress theory [9,10], modified couple stress theory [11,12], nonlocal elasticity 
theory [13-17], and strain gradient theory [18-23] have been developed. Among these theories, the nonlocal 
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elasticity theory initiated by Eringen [22, 23] is the most commonly used theory. Unlike classical continuum 
theories which assume that the stress at a point is a function of strain at that point, the nonlocal elasticity theory 
assumes that the stress at a point is a function of strains at all points in the continuum. In this way, the size effects 
could be considered in the constitutive equations simply as a material parameter.  

Understanding the vibration behavior of nanostructures is the key step for many NEMS devices. A lot of work 
has already been done on the continuum models for vibration analysis of carbon nanotubes (CNTs) or similar micro 
or nanobeam like elements [24-28]. Behfar and Naghdabadi [6] investigated the vibration behavior of multi-layer 
graphene sheets embedded in an elastic medium. Sakhee-Pouri et al [7] investigated the behaviour of SLGS using 
molecular structural mechanics. Moosavi et al. [28] investigated vibration analysis of nanorings using nonlocal 
continuum mechanics and shear deformable ring theory. In their article, they show that the nonlocal effects play an 
important role in the vibration of nanorings and cannot be neglected. Murmu and Pradhan, [29] applied nonlocal 
Timoshenko theory and DQM for the stability analysis of embedded single-walled carbon nanotubes. Yi-Ze Wang et 
al. [30] studied the vibration of double-layered nanoplate. In their research, it is concluded thermal effect and 
nanoplate with isotropic mechanical properties. It has been reported that graphene sheets have orthotropic properties 
[31]. Malekzadeh et al. [32] used the DQM to study the thermal buckling of a quadrilateral nanoplates embedded in 
an elastic medium. Aksencer and Aydogdu [33] proposed levy type solution for vibration and buckling of nanoplate. 
In that paper, they considered rectangular nanoplate with isotropic property and without effect of elastic medium. 
Thermal vibration analysis of orthotropic nanoplates based on nonlocal continuum mechanics were studied by Satish 
et al. [34] who considerate two variable reinfined plate theory for thermal vibration of orthotropic nanoplate. In 
general, single layered graphene sheets are embedded in an elastic medium but they didn’t consider effect of elastic 
medium in that paper. On the other hand, they represented vibration frequency of rectangular nanoplate only for 
simply supported boundary conditions and they didn’t represent vibration frequency for other boundary conditions. 
Prasanna Kumar et al. [35] represent thermal vibration analysis of monolayer graphene sheet embedded in an elastic 
medium via nonlocal continuum theory. In their paper, they consider simply support boundary condition and they 
don’t study other boundary condition. They investigated graphene sheet with isotropic property. Farajpour et al. [36] 
studied axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model. In this 
paper, the buckling behavior of circular nanoplates under uniform radial compression is studied. Explicit 
expressions for the buckling loads are obtained for clamped and simply supported boundary conditions. It is shown 
that nonlocal effects play an important role in the buckling of circular nanoplates. Mohammadi et al. [37] studied the 
free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the 
nonlocal continuum plate model. They are obtained explicit relations for natural frequencies through direct 
separation of variables. They applied new version of DQM for vibration analysis of embedded single-layer circular 
nanoplate. Mohammadi et al. [38] investigated buckling of orthotropic rectangular nanoplate under shear in-plane 
load.  In their paper, the effect of polymer matrix is modeled with Pasternak elastic medium. It is shown that shear 
in-plane load play important role in buckling analysis of orthotropic rectangular nanoplate. 

However, to date, no report has been found in the literature on the influence of shear in-plane loads on the 
vibration of the SLGSs. Motivated by this idea, we aim to study the nonlocal vibration response of the SLGSs 
resting on a Visco-Pasternak foundation. The influence of the surrounding elastic medium on the vibration 
frequency of the SLGS is investigated. The Winkler-type, Pasternak-type, Visco-Winkler and Visco-Pasternak 
models are employed to simulate the interaction of the graphene sheets with a surrounding elastic medium. DQM is 
being used for the numerical solutions of the associated governing differential equations. The effects of (a) shear in-
plane load, (b) small scale parameter, (c) elastic and viscoelastic medium, (d) aspect ratio, (e) boundary conditions 
and (f) material properties on the vibration frequency of SLGS are examined. The present work would be helpful 
while designing NEMS/MEMS devices using graphene sheets. 

2    NONLOCAL PLATE MODELS  

Nonlocal continuum theory states that the stress at a reference point x in an elastic continuum depends not only on 
strain at x but also on the strains at all other points x in the body [22,23]. The basic equations for a linear 
homogenous elastic body using nonlocal elasticity theory are  
 

  ij i if u   (1) 
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 ( ) , ( ) ( ), ,     ij ijkl klx x x C x dV x x V     (2) 

 
where ij , f ,    and iu  are the nonlocal elasticity stress tensor, mass density, body forces, and the displacement 

vector at point x , respectively. ijklC  is the local stress tensor at any point x  in the body which is related to the strain 

tensor kl .  ,x x  , x x and  0 / ie l a are the nonlocal kernel function, Euclidean distance, and material 

constant that depends on the internal characteristic length il  (such as the C-C bond length, lattice parameter) and 

external characteristic length a  (like grapheme sheet length, wave length, crack length), respectively. The parameter 

0e  is Eringen's nonlocal elasticity constant suitable to each material. The aforementioned integro-partial differential 

equations Eq. (1) based on nonlocal elasticity with that kernel function can be simplified to [16] 
 

  2 2
01 :  nl

ie l C   (3) 

 
where “:” represents the double dot product. 

2  is the Laplacian operator and is given by 2 2 2 2 2( / / ).      x y  
The classical plate theory (CPT) is used in present formulation.  The CPT is based on assumptions similar to those 
used in thin beam or Euler-Bernoulli beam theory. The following assumptions are made in thin or classical plate 
theory [39] 

1. The thickness of the plate (h) is small compared to its lateral dimensions. 
2. The middle plane of plate does not undergo in-plane deformation. Thus, the mid-plane remains as the 

neutral plane after deformation or bending. 
3. The displacement components of the mid-surface of the plate are small compared to the thickness of the 

plate. 
4. The influence of transverse shear deformation is neglected. This implies that plane section normal to the 

mid-surface before deformation remains normal to the mid-surface even after deformation or bending.  This 
assumption implies that the transverse shear strain xz and yz are negligible, where z denotes the thickness 

direction. 
5. The transverse normal strain zz under transverse loading can be neglected. The transverse normal stress 

zz is small and hence can be neglected compared to the other components of stress. 

  On the basis of CPT, the two-dimensional forms the stress–strain relations are written as [15] 
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 (4) 

 
where 1E  and 2E  are Young’s modulus, 12G   is shear modulus, and 12 21,    are Poisson’s ratios, respectively. 

,nl
xx  nl

yy and nl
xy  represent the nonlocal stress tensors.  The strains in terms of displacement components in the 

middle surface can be written [39] 
 

2 2 2
0 0 0 0

2 2

1, , 2
2
       

                 
xx yy xy

u v u vw w w
z z

x y y x x yx y
    (5) 

 
where 0u   and 0v  are the displacement of the middle surface of the plate at the point ( , ,0)x y . In the foregoing, the 

first terms on the right-hand sides of the above equations represent the strain components in the middle surface due 
to its stretching, and terms with w represent the strain components due to bending. Stress resultants are defined as 
below [16] 
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Here h  denotes the thickness of the plate. By inserting Eq.(4), and Eq.(5) into Eq.(6) we can express stress 

resultants in terms of lateral deflection on the classical plate theory as follows [16] 
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ijD is known as the different flexural rigidity of the orthotropic rectangular nanoplte and are defined as [16] 
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Principle of virtual work is independent of constitutive relations. So this can be applied to derive the equilibrium 

equations of the nonlocal plates. Using the principle of virtual work, following equilibrium equation can be obtained 
[16] 
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 (9) 

 
A mono-layered rectangular graphene sheet embedded in a Visco-Pasternak foundation is shown in Fig.1, in 

which geometrical parameters of length a, width b and thickness h are also indicated. WK  indicate the Winkler 

modulus, GK  is the shear modulus of the surrounding elastic medium and dC  is damper modulus parameter. Here, 

  is density of nanoplate and q  is the transverse force per unit area. In the present study, it is assumed that the 

nanoplate is free from any transverse loadings ( 0)q . We consider the following relations for the vibration analysis 

under shear in-plane load. 
 

0,      xx yy xyN N N P  (10) 
 
 

 

 
 

Fig. 1  
Rectangular nanoplate embedded on a Visco-Pasternak foundation. 
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Substituting Eq. (7) and (10) into Eq. (9) one can obtain the following nonlocal governing differential equation 
for the vibration analysis of graphene sheets under shear in-plane loading 
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(11) 

 
Eq.(11) is the consistent fundamental equations for the nonlocal plate model for the shear buckling of orthotropic 

rectangular nanoplate. It should be noted that when the nonlocal scale coefficient  0 0ie l , the Eqs. (4), (7) and 

(11) reduces to those of classical mechanics. The normal vibrations are harmonic, therefore the deflection in normal 
vibrations of thin plate can be expressed as: 
 

*( , , ) ( , ) ni tw x y t W x y e   (12) 

 
where n  is the natural frequency and 2 1 i . Substitution of Eq. (12) into Eq. (11) yields a four order partial 

differential equation involving natural mode * ( , )W x y  
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3    SOLUTION BY DIFFERNTIAL QUADRATURE METHOD  

DQM has been found to be an efficient numerical technique for the solution of initial and boundary value problems 
[41-49]. Since DQ technique provides simple formulation and low computational cost, it has been widely used for 
the analysis of mechanical behaviors of the structural elements at large scale, such as dynamic and stability 
problems. In recent years, many researchers used DQ approach in solving the governing equations of nanostructures. 
Mohammadi et al. [37] applied new version of DQM for vibration analysis of embedded single-layer circular 
nanoplate. Farajpour et al. [41] used DQM for the buckling of orthotropic micro/nanoscale plate under linearly 
varing in-plane load. Danesh et al. [42] used DQM for the vibration analysis of tapered nanorod with different 
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boundary conditions. Consider a two dimensional field variable ( , ),u x y  the m-th order derivative of it with respect 

to ,x  and the ( ) m n th  order derivative of it with respect to x and y is approximated as [47] 

( ) ( )

1 1( , )

( , , ) ( )
 


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The method developed by Shu and Richard [46] is claimed to be computationally more accurate than other 

methods [45]. According to Shu and Richard rule [46], the weighting coefficients of the first-order derivatives in 
 direction (  or y) x are determined as [47] 
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In order to evaluate the weighting coefficients of higher-order derivatives, recurrence relations are derived as 

[47] 
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The natural and simplest choice of the grid points is equally spaced points in the direction of the coordinate axes 

of the computational domain. It was demonstrated that non-uniform grid points gives a better results with the same 
number of equally spaced grid points. In this paper, we choose these set of grid points in terms of natural coordinate 
directions  and  as [47] 
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A rectangular grapheme sheet is considered to be embedded in an elastic medium. The geometric properties of 

the grapheme sheet are denoted by length a, width b, thickness h. For convenience and generality, we introduce the 
following non-dimensional parameters 
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Using the above expressions, a non-dimensional nonlocal differential equation for vibration of rectangular 

grapheme sheet under shear in-plane load can be obtained 
 

(2) (4)(4) 2 (2) 4
, 2, 1 , 1 1, 2 2 ,

1 1 1 2 1 1

(2)(2) 2
, ,

1 1

(2) (4)2 (4) 2 (2) 4
, 2, , 1 1, 2 ,

1 1 1 2 1 1

2

K
2

   

 

   

   
 




 
    
 

   

 

   

N N M M

j k jkik k j i k k k i k
k k K k

N M

jkik k j i j
k k

G
N N M M

j k jkik k j i k k k i k
k k K k

C W C C W C W

C W C W

C W C C W C W

   



  

(2) (2)2 (2) 2 2 (2) 2
, , , , , ,

1 1 1 1

(1)(1)
, 2, 1 1, 2

1 1 2 1

(1)2 (3) 2
, 2, 1 1, 2 ,

2 1

2

   

 






 


 
  
               

     


 

   

 



N M N M

W jk d jki j ik k j i j i j ik k j i j
k k k k

N M

j ki k k k
k k

M

j ki k k k i k
k

K W C W C W C i W C W C W

C C W

P

C C W C

    



  
(3)(1)

, 21 1, 2
1 1 1 1 2 1

(2)2 2 (2) 2
, , ,

1 1
0

  

 

 
 
 
 

      
       

  

  

 

N N M

j k k k
k k k

N M

jki j ik k j i j
k k

C W

W C W C W 

 

(21) 

 
C  and C are the weighting coefficient matrix in the x, y directions respectively,  Eq.(21) is applied at the 

interior points, 2 1,  2 1     i N j M and only the Dirichlet condition  0W is implemented. So Eq. (21) 

can be obtained [47] 
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The idea of this approach is the same as that for the beam that it presented by Shu [47] to implement the simply 
supported and clamped conditions. The derivatives in the boundary condition are also discretized by the DQ method. 
The discrete form of any combination of the clamped and simply supported conditions can be written as [47] 

 

1, , ,1 ,0,  0,  0,  0   j N j i i MW W W W  (23) 
 
at all boundary points 
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where n0, n1, m0 and m1  are taken as either 1 or 2: 1 is used for the clamp edge condition and 2 is used for simply 

supported boundary condition. n0, n1, m0 and m1 correspond to the edge of 0,  1,  0 and 1        

respectively. It is noted that Eq.(23) corresponds to Dirichlet boundary condition at the four edges of the plate, and 
Eqs.(24-27) result from the derivative boundary conditions. Obviously, Eq.(23) can be easily substituted into Eq. 
(22).However, Eqs.(24-27) cannot be directly substituted into Eq.(21). This difficulty can be easily overcome. Using 
the same procedure as for the beam [47]. Eqs. (24-25) can be coupled to give two solutions 2, jW and 1,N jW [47]. 
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Similarly Eq.(26) and Eq.(27) can be coupled to give two solutions ,2iW and , 1i MW  [47]. 
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For the point near the four corners, the four Eqs. (24-27) have to be coupled to provide the flowing four 
solutions[47] 
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For the Eqs. (38-41), the index k in the AXK1 and AXKN expressions is replaced by k1, and the index k in the 

AYK1 and AYKM expressions is replaced by k2. With Eqs. (23, 28, 29, 33, 34, 38-41), the entire boundary 
conditions can be directly substituted into Eq. (21). As a result, the final eigenvalue equation system becomes [47] 
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(47) 

 
Since Eq.(42) has ( 4) ( 4)  N M unknowns, it should be applied at ( 4) ( 4)  N M interior points to close 

the system. This can be done by applying it at the interior points, 3 2,  3 2     i N j M . 

After implementation of the boundary conditions, Eq. (42) can be written in matrix form as [44] 
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d
K C M

d
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where the subscript b stands for the elements related to the boundary points while subscript d is associated with the 
remain-der elements. The    ,  K C and  M are the stiffness, damping and mass matrixes, respectively. For solving 
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the Eq.(39) and reducing it to the standard form of eigenvalue problem, it is convenient to rewrite Eq.(39) as the 
following first order variable as [44] 
 

    Z A Z  (49) 

 
In which, the state vector Z and state matrix  A are defined as [44] 
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where  0  and  I are the zero and unitary matrices, respectively. However, the frequencies obtained from the 

solution of Eq.(42) are complex due to the damping. Hence, the results are containing two real and imaginary parts. 
The imaginary part is corresponding to the system damping and the real part representing the system natural 
frequencies [44]. Fig. 2  shows the flowchart of steps of DQ method. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  
Flowchart of steps of applied DQ method. 
 

4    SOLUTION BY GALERKIN METHOD  

In this section, Galerkin method is used to solve the governing Eq. (13). The Galerkin approach is an efficient and 
powerful numerical method for the solution of the differential equations. Since this numerical solution technique 
provides simple formulation and low computational cost, it has been widely used for the analysis of mechanical 
behavior of the structural elements at large scale, such as static, dynamic and stability problems. The Galerkin 
method was used by Romeo and Frulla [50] to study the postbuckling behavior of stiffened composite panels under 
biaxial compressive load. Saadatpour and Azhari [51] used Galerkin technique for static analysis of simply 
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supported plates of arbitrary quadrilateral shape. Furthermore, recently, the Galerkin method was employed to 
investigate the size effects on the small-deflection stability of various quadrilateral nanoplates such as skew, 
rhombic and trapezoidal nanoplates [52].  

We assume simply supported boundary conditions along all the four edges of the single-layered graphene sheet. 
The boundary conditions are mathematically written as: 
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Using the general procedure of the Galerkin method yields the following 
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where  ,ijf x y  represents basic functions. The chosen basic functions for the lateral deflection must satisfy all 

boundary conditions but not necessarily satisfy the governing Eq. (13).  1,2,..., ;  1,2,..., nmc i N j M  are N M  

unknown coefficients to be determined. The integration extends over the entire domain of the nanoplate ( ) . The 

symbol   indicates a differential operator and is defined as follows 
 

           

       

4 4 4 4 4

1 2 3 4 54 2 2 4 3 3

2 2 2

6 7 8 92 2

    
           

       

  
       

   

       

   

 (53) 

 
Obviously, coefficients  ( 1, 2,..,9) i i  can be obtained in the following form 

 

     2 2 2 4 2 2
1 2 1 3 2 4

2 3 2 2 2 2
5 6 7

2 2 2 2 2 2 2 2 2
8 9

1 K ,  2 K ,  K ,  2 ,

2 2 ,  K C K ,  

K C K ,  K C

          

           

           

G G G

W Gd

W G Wd d

P

P P i

i i

        

      

        

 (54) 

 
In the Galerkin method, the lateral deflection is described by a linear combination of the basic functions for the 

numerical solutions of the plate problem under investigation. The basic functions must satisfy all the above-
mentioned boundary conditions. The chosen basic function for  ,W    are  

 

     , sin sinijf x y i j   (55) 

 
The above basic functions do not satisfy Eq. (13) but satisfy the prescribed boundary conditions given in Eq. (51) 

exactly. Note that the boundary conditions are incorporated in the analysis by direct substitution of Eq. (55) into Eq. 
(52).   

After employing the aforementioned solution procedure, one obtains the following system of linear algebraic 
equations 

 

       2 0   A B D c  (56) 

where

 

 A ,  B and  D  are the      N M N M  square matrix.

 

 c indicates the column matrix of unknown 

coefficients ijc . The Galerkin method transforms the stability problem into a standard eigenvalue problem. The 
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buckling parameters  2  are the eigenvalues of Eq. (56) that can be found by using standard eigenvalue extraction 

techniques.  

5    RESULTS AND DISCUSSION  

In the following section, some numerical examples will be presented. The validity of the suggested model is checked 
by comparing the obtained results with those given in the literature. Moreover, the effects of the main parameters 
including the properties material of the graphene sheet, the shear and Winkler modulus factor, the nonlocal 
parameter, the boundary conditions, the aspect ratio, length of graphene sheet and shear in-plane load on the 
structural vibration frequency of the graphene sheet are also studied. The orthotropic material properties are taken as 
that of nano single-layered graphene sheets. The Young’s moduli and Poisson’s ratios   
are 1 2 12 211765 Gpa, 1588 Gpa, 0.3,  0.27   E E     respectively [53]. Following six boundary conditions have 

been considered in the vibration analysis [34-37] of the orthotropic graphene sheets.   
SSSS: All edges Simply Supported. 
CCCC: All edges Clamped.  
CCCS: Simply Supported along Y=b and Clamped along X=a, Y=0 and X=0. 
CCSS: Simply Supported along Y=b and X=a and Clamped along X=0 and Y=0. 
CSCS: Simply Supported along Y=0 and Y=b and Clamped along X=0 and X=a.  
SSSC: Simply Supported along Y=0, Y=b and X=a and Clamped along X=0. 
The relative percentage errors are measured in comparison with the Galerkin solutions. 
 

Re  error= 100
 




DQM Galerkin

Galerkin

lative   

 
The variations of error of the present analysis versus different number of grid points are plotted in Fig.3. It is 

shown that by using eleven grid points, the error is less than 0.5%. Also, the stability of convergence behaviors of 
the solutions is confirmed. Here, also excellent agreement has been achieved for natural frequencies evaluated with 
only eleven grid points. 
 
 

 

 
 
 
 
 
 
 
 
 

Fig. 3  
The relative error of the fundamental frequency parameter 
of nanoplate with respect to increase in the number of grid 
points. 

 
 
A computer code is developed in MATLAB based on Eq. (42). As DQ results are sensitive to lower grid points, 

a convergence test is performed to determine the minimum number of grid points required to obtain stable and 
accurate results for Eq. (42). According to Fig. 4, present solution is convergent. From the figure it is clearly seen 
that twelve number of grid points ( 12 N M ) are sufficient to obtain the accurate solutions for the present 
analysis. 
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Fig. 4 
Convergence study and minimum number of grid points ( N M ) 
required to obtain accurate results for other boundary 
conditions ( 100, 10,  =0.1, 1)  W GK K   . 

 
 
Table 1 
Comparison of critical shear load obtained from the present model with some known results available in the literature for a 
different aspect ratio and boundary conditions. 

Boundary condition Reference  
a b  

1/1 1/2 1/3 

All edges clamped 
Budiansky and Connor [56] 

Lower bounds 144.5 101.8 94.4 
Upper bounds 146 102.3 95.4 

Bassily and Dickinson [54] 144.716 101.276 94.364 
Present 144.5109 101.1436 94.0999 

Edges length b clamped, 
edges length a simply 
supported 

Cook and Rockey [55] 124.36 99.09 94.85 
Bassily and Dickinson [54] 124.223 98.926 93.770 
Present 124.0154 98.7626 93.5795 

Edges length 
b simply supported, edges 
length a clamped 

Cook and Rockey [55] 124.36 66.32 60.50 
Bassily and Dickinson [54] 124.223 66.336 58.615 
Present 124.0154 66.2213 58.5 

 
 
Table 2 
Comparison of the DQM results with those of the Galerkin method for nonlocal orthotropic plates. 

 0  ie l nm  Number of basic functions  DQM 
4 6 8 10 12 

    0 19.2686 19.2686 19.2686 19.2686 19.2686 19.2686 
 0.5 18.7818 18.7818 18.7818 18.7818 18.7818 18.7818 
   1 17.4877 17.4876 17.4875 17.4875 17.4875 17.4875 
1.5  15.7293 15.7291 15.7289 15.7289 15.7289 15.7289 
   2 13.7679 13.7675 13.7673 13.7673 13.7673 13.7673 

 
 

In the absence of similar publications in the literature covering the same scope of the problem, one cannot 
directly validate the results found here. However, the present work could be partially validated based on a simplified 
analysis suggested by Bassily and Dickinson [54], Cook and Rockey [55] and Budiansky and Connor [49] on 
buckling of the local solution for which the nonlocal solution in this paper was ignored. In order to establish the 
accuracy and applicability of the proposed model, the numerical results are presented to compare with those 
available in the literature. The non-dimensional natural frequency becomes equal to zero when the shear in-plane 
loads achieve their critical value and the plate is likely to reach the flexural buckling state. The comparison of the 
critical shear load for isotropic plate and without considering the elastic medium is presented in Table 1. for 
different aspet ratios against results presented by Bassily and Dickinson [54], Cook and Rockey [55] and Budiansky 
and Connor [56]. It can be seen that the results herein exactly match with the other results reported.  

In addition, the capability of the DQM in capturing the vibration frequency of the orthotropic nanoplates is 
investigated. To this end, the predicted results by the DQ technique are compared with those of the Galerkin method 
for the SSSS (simply supported along all edges) boundary condition. The numerical results (DQM and Galerkin 
method results) are listed in Table 2. Different number of basic function and various nonlocal parameters are 
considered. The dimensions of the plate are a= 10 nm and h =0.34 nm (i.e., aspect ratio is taken as 1 ). The shear 

in-plane load P 10 is considered in the computation. From Table 2. , one could observe that the present results by 
the DQ method are in good agreement with those of the Galerkin method solution. It should be noted that during 
calculations, it has been found that the total CPU time for the DQ technique is negligible compared to the CPU time 
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of the Galerkin method. Thus, DQ method is computationally low-cost tool in the vibration analysis of rectangular 
graphene sheets. 

To study the effect of non-dimensional shear in-plane load on the non-dimensional frequency, in this paragraph, 
the non-dimensional frequency versus shear in-plane load of orthotropic rectangular nanoplate is shown in Fig. 5. 
The length of rectangular nanoplate is 10 nm and all edge of rectangular nanoplate is assumed clamped. The Fig. 5 
depicts the fundamental natural frequency of vibration. The figures obviously indicate that the nonlocal effect has an 
important influence on the frequency vibration of a rectangular nanoplate under shear in-plane load. The decreasing 
rates of the natural frequencies become faster by increasing in the shear in-plane load. The non-dimensional natural 
frequency becomes equal to zero when the shear in-plane load attains their critical value; and the plate is likely to 
reach the flexural buckling state  0  . The intersection points of curves with the horizontal axis are the shear 

buckling loads of orthotropic rectangular nanoplate. The shear buckling loads continue to decrease when the 
nonlocal parameter becames larger. Therefore, the magnitudes of the shear in-plane loads are important parameter 
for the design of micro or nanoplate structures. These results are the same for other boundary conditions. 
 
 

 

 
 
 
 
 
 

Fig. 5 
Change of non-dimensional natural frequency with non-
dimensional shear in-plane load for various nonlocal 
parameters and clamp boundary condition. 

 
 

 

 
 
 
 
 
 

Fig. 6 
Change of non-dimensional fundamental frequency of 
vibration with non-dimensional pre-load for various 
boundary condition with local and nonlocal models. 

 
 

In Fig. 6 non-dimensional fundamental frequency calculated by local and nonlocal model is plotted versus non-
dimensional shear in-plane loads for various boundary conditions. The first mode of vibration is considered and the 
length of orthotropic rectangular nanoplate is 10 nm. It is shown that the frequencies calculated by nonlocal model 
smaller than local model. Furthermore, the nonlocal effect also depends on the boundary conditions. The nonlocal 
effect kept on decreasing by became flexible the boundary conditions. The nonlocal effect for simply support 
boundary condition is much less than that for clamp boundary condition. The difference between any two boundary 
conditions decreases with increasing nonlocal parameter. The rectangular nanoplate with simply support boundary 
condition is earlier buckled because the rectangular nanoplate with clamp boundary conditions is more rigid than 
simply support boundary conditions. Consequently, the frequencies and the shear buckling loads for simply support 
boundary conditions are smaller than clamp boundary conditions. 

To see the effect of small scale in different mode number the result from the solution for non-dimensional 

frequency rectangular nanoplate with different shear in-plane load P 0,  10,  20  are shown in Fig. 7. The variation 

for rectangular nanoplate with clamped boundary condition is plotted in Fig. 7. The length of nanoplate and aspect 
ratio are considered 10 nm and 1, respectively. It is found that the non-dimensional frequency increases with 
increase of mode number for all nonlocal parameters. Similar vibration response as that of first mode is observed in 
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this figure. Nonlocal solutions are smaller than the corresponding classical (local) solutions. However, nonlocal 
effects are highly prominent in vibration of rectangular nanoplate of higher wave modes. In addition, highest effect 
in non-dimensional frequency values for different nonlocal parameters are found at larger shear in-plane load. It is 
seen that effect of small length scale is higher for higher wave modes. This can be clearly seen from Fig. 7. This 
phenomenon is due to the effect of small wavelength at higher wave numbers. At smaller wavelengths interactions 
between atoms increases which leads to an increase in the nonlocal effects. This means that at larger shear in-plane 
load and larger mode number, small scale parameter is important. Further, with the increase of nonlocal parameter 
the difference between the curves increases.  

In this section, to illustrate the effect of boundary condition on vibration response, we plot non-dimensional 
buckling load versus nonlocal parameter for two different lengths (5 nm, 20 nm) of isotropic and orthotropic square 
graphene sheet. The non-dimensional vibration frequency of first mode number is considered. According to Figs. 
8(a),(b), results in the same consequence by decreasing the nanoplate’s length, under other boundary conditions. 
This means that at smaller lengths and larger shear in-plane load, boundary condition of nanoplate is not important. 
This is shown that the difference between the vibration frequency calculated by isotropic and orthotropic for 
nanoplate with shear in-plane load is larger as compression nanoplate without shear in-plane load. This means that at 
larger shear in-plane load, material property of nanoplate is important. Also, it is observed that the non-dimensional 
vibration frequency increases with increasing length of nanoplates. Further, it is seen from this results that the 
difference between the vibration frequency calculated by isotropic and orthotropic for nanoplate with CCCC 
boundary condition is higher than that for SSSS case. Furthermore, the gap between vibration frequency curves of 
isotropic and orthotropic nanoplates follows the order CCCC>CCCS> SCSC > CCSS >SSSC>SSSS 
 
 

 

 
 
 
 
 
 
 

Fig. 7 
Variation of non-dimensional frequency with nonlocal 
parameter for various shear in-plane load of rectangular 
nanoplate for first and second mode number. 

 
 

 

 
(a) 

 
(b) 

Fig.8 
Effect of shear in-plane load on natural frequency of graphene sheet with isotropic and orthotropic property at various boundary 
conditions for (a) L= 5 nm and (b) L= 20nm. 
 
 

In case of isotropic or orthotropic property, the difference between any two boundary conditions decreases with 
increasing shear in-plane load. In the present analyses of the six boundary conditions, maximum and minimum 
vibration frequencies are observed for CCCC and SSSS boundary conditions, respectively.  
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To see the effects of the surrounding elastic medium on rectangular graphene sheets, variation of fundamental 
frequencies with foundation parameters are plotted. Fig. 9 shows the effect of Winkler modulus parameter on the 
non-dimensional  natural frequency of a rectangular graphene sheet with surrounding elastic medium modeled as 
Winkler foundation KG=0. The effects of nonlocal parameters are also illustrated in the figure. The Winkler modulus 
parameter KW, for the surrounding polymer matrix is taken in the range of 0–400. Similar values of modulus 
parameter were taken by Liew et al. [53] for the vibration analysis of double-layered graphene sheets DLGS 
embedded in polymer matrix. The vibration curves show that the fundamental frequencies are sensitive to the 
surrounding matrix. As the Winkler modulus parameter increases the fundamental frequencies also increase. This 
increasing trend of fundamental frequencies with surrounding matrix is noticed to be influenced significantly by 
small scale coefficients e0li. For lower values of e0li the vibration frequencies are higher while this is lower for large 
e0li values. This interprets that if the rectangular graphene sheets are embedded in a soft elastic medium, vibration 
frequencies under shear in-plane load will be quite low for very small size rectangular graphene sheets as depicted in 
the figure. 

Fig.10 shows the effect of shear modulus parameter on the fundamental frequencies of a rectangular graphene 
sheets with surrounding elastic matrix modeled as Pasternak foundation. A value of KW=100 is taken in this elastic 
medium model. The shear modulus parameter KG is varied from 0 to 10. These same values of modulus parameter 
were taken by Liew et al. [53] for the vibration analysis of double layer graphene sheets embedded in polymer 
matrix. As the value of shear modulus parameter increases, the vibration frequencies of rectangular graphene sheets 
increase. The vibration frequencies obtained from Pasternak foundation model are relatively larger than that 
obtained from the Winkler foundation model. Similar nonlocal effects are seen here. For higher e0li value, the 
vibration frequencies with Pasternak foundation model are lower. 

 

 

 
 
 
 
 
 
 

Fig. 9 
Variation of non-dimensional frequency with Winkler 
elastic factor for two boundary conditions and nonlocal 
parameter. 

 
 

 

 
 

 
 
 
 
 
 
 
Fig. 10 
Variation of non-dimensional frequency with shear 
modulus elastic factor for two boundary conditions and 
nonlocal parameter. 

 
The relationships between frequency difference percent versus Winkler constant WK  and shear modulus GK  for 

different boundary condition and isotropic and orthotropic case are demonstrated in Figs. 11(a), (b). A scale 
coefficient eoli = 1.0 nm is used in the analysis. The frequency difference percent is defined as: 
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As can be seen, the Winkler constant or shear modulus decreases then the effect of shear in-plane load on the 

difference percent increases. The shear in-plane load effect also depends on the boundary conditions as shown in 
Figs. 11(a), (b). As the boundary conditions became more flexible, the shear in-plane load effect kept on increasing. 
The shear in-plane load effect for SSSS boundary condition is much more than that for other boundary conditions.  

 
 

 
(a) 

 
(b) 

Fig. 11 
Variation of difference percent for various boundary conditions and isotropic and orthoropic property of graphene sheet for (a) 
Winkler elastic parameter and (b) Shear elastic parameter. 

 
 

 

 
 
 
 
 
 
 
 

Fig. 12 
Effect of aspect ratio on natural frequency for various 
nonlocal parameter. 
 

 
 
Also, the difference percent for orthotropic case is larger than that for case of isotropic. From these plots obvious 

the important influence of boundary condition and shear in-plane load, in the cases isotropic and orthotropic case on 
the non-dimensional frequency of embedded graphene sheet.  

Influence of nonlocal effects on the frequencies of nanoplate under shear in-plane load with various aspect ratios  
a /b is studied. Fig. 12 shows the variation in frequency with   aspect ratio   under various nonlocal parameters (e0li 
/a). The nanoplate is assumed to be subjected to a normalized shear in-plane load of 10P . It can be observed that 
as the aspect ratio increases, the non-dimensional frequency increases for all values of the nonlocal parameter. The 
results of figure indicate that, by increasing the values of nonlocal parameter, the non-dimensional frequency 
decreases for all values of aspect ratio. Also, it is observed that as the aspect ratio of the graphene sheet increases the 
effect of nonlocal parameter increases. Furthermore, as can be seen from Fig. 12, the non-dimensional frequency is 
sensitive to the small scale coefficient for large values of aspect ratio. In the other words, it is seen that the non-
dimensional frequency for orthotropic small scale plates with higher aspect ratios (e.g., a/b = 4) are strongly affected 
by small scale than orthotropic small scale plates with lower aspect ratios (e.g., a/b = 2) and square ones. 

We introduce a term ‘frequency fraction’ for the present study. Frequency fraction is defined as: 
 

 fraction= 


Nonlocal

local

frequency   
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where Nonlocal  and Local are the natural frequency which calculated using the nonlocal theory of elasticity 0o ie l  

and classical theory of elasticity 0o ie l , respectively. The frequency fraction of the graphene sheet against the 

nonlocal parameter for various values of damper coefficient is plotted in Fig. 13. The damping modulus of damper 
Cd  for the surrounding polymer matrix is gotten 50, 100, 150 and 200 respectively. The value of damping modulus 

damper was applied by Ghorbanpour Arani et al. [16, 18, 40 and 44]. As the values of the damper coefficient 
increase, the frequency ratio decreases. It is also observed that the effect of damper coefficient is not significant at 
lower nonlocal parameter while this effect is considerable at higher nonlocal parameter. 

Frequency fraction of the sheet with respect to the nonlocal parameter for different medium of coupled system is 
demonstrated in Fig. 14. Four different cases of medium are considered. Case 1, Case2, Case 3 and Case 4 depict the 
(i) when the SLGS embedded by Winkler medium (ii) when the SLGS embedded by Pasternak medium (iii) when 
the SLGS embedded by Visco-Winkler medium (iv) when the SLGS embedded by Visco-Pasternak medium, 
respectively. Obviously, the effect of medium type on frequency ratio of the sheet becomes remarkable at higher 
nonlocal parameter. Also, the frequency ratio of Pasternak and Visco-Winkler mediums are maximum and 
minimum, respectively. Further, the medium effect on frequency ratio for coupled system follows the order 

Pasternak medium > Visco-Pasternak medium > Winkler medium > Visco-Winkler medium 

 

 

 
 
 
 
 
 
 
 

Fig. 13 
Variation of frequency fraction with the nonlocal 
parameter for various damping modulus of damper. 

 
 
 

 

 

 
 
 
 
 
 
 
 
Fig. 14 
Comparison frequency ratios of various medium of the 
graphene sheets. 

 
 
The first few modes of vibration corresponding to the natural frequency are shown in Figs. 15(a),(b) and (c). In 

these figures are assumed simply supported boundary condition for all edge of rectangular nanoplate. The mode 
shape of orthotropic rectangular nanoplate plays a significant role in the design of the nanomechanical resonators. It 
is observed that the single-layered graphene sheet has a sinusoidal and cosine configuration. 
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(a) 

 
(b) 

  

              
 (c)                                              

 
 
 
Fig. 15 
Few modes shape of rectangular nanoplate (a) first mode, (b) 
second and third mode and (c) fourth mode. 
 
   

 
 
The existence of the nonlocal parameter (e0li) in the governing equation Eq. (13) takes into account the changes 

that are caused by the decrease in the size of a body at small scale. The influence of size on the behavior of 
nanomaterials is called size effect. Traditional elasticity theory cannot predict the size effects because it is 
independent of a scale factor (nonlocal parameter).The nonlocal parameter transforms the classical equations of 
local continuum mechanics into the corresponding governing equations of nonlocal continuum mechanics. This 
parameter (e0li) is taken into the constitutive equations simply as a material constant. At small scale, size effects can 
be noticeable in the mechanical properties of nanostructures. Both molecular dynamics simulation and experimental 
studies have shown that the size effect plays a prominent role in the static and dynamic characteristics of 
nanostructures. As the dimensions of these structures are reduced, the effects of inter-molecular and inter-atomic 
interactions must be considered to predict mechanical behavior properly. The classical elasticity theory does not 
involve these effects. Thus, it is necessary to modify the classical theory to include small scale effects. In the 
nonlocal elasticity theory initiated by Eringen [22, 23], the small-scale effects are captured by assuming the stress at 
a point as a function not only of the strain at that point but also a function of the strains at all other points in the 
domain. The classical elasticity theory is a typical case of the nonlocal theory in which stress state at an arbitrary 
point depends only on the strain state at that point. The importance of the consideration of nonlocal scale coefficient 
is also explained in detail in the literature [22, 23, 26-30]. The nonlocal continuum theory based models contains 
information about the long-range forces between atoms and yields solution as a function of the size of structure. 
Chen et al. [57] investigated micro-continuum field theories such as couple stress theory, micromorphic theory, 
nonlocal theory, Cosserat theory, etc., from the atomistic viewpoint of lattice dynamics and molecular dynamics 
(MD) simulations. It is reported in their work that the nonlocal elasticity theory is physically reasonable. It should be 
noted that the classical local plate equation for the vibration of plate under shear in-plane load is obtained from Eq. 
(13) by making the nonlocal parameter equal to zero.  

The internal characteristic length may be the lattice parameter or granular distance, but in the carbon 
nanostructures, it is often assumed to be the length of C–C bond (i.e., li= 0.142 nm) [29]. The choice of the value of 

parameter
 0e

 
is vital for the validity of nonlocal models. This parameter is determined such that the nonlocal model 

calibrated with the experimental observations or the results of MD simulations. Eringen [22] equating the dispersive 
relation given by Born–Karman model of lattice dynamics to that of nonlocal theory for plane waves obtained a 

value of 0.39 for 0e . Wang and Hu [58] proposed an estimate of the value ( 0e ) around 0.288 using strain gradient 

method. Duan et al. [59] calibrated the value of nonlocal scaling parameter 0( )e  for free vibration of single-walled 

carbon nanotubes using molecular dynamics simulations. They reported that the values of small scaling parameter 
vary between 0 to 19 depending on the length-to-diameter ratio, mode shape and boundary conditions of carbon 
nanotubes. Wang and Wang [60] presented the constitutive relations of nonlocal elasticity theory for application in 
the analysis of CNTs when modeled as Euler–Bernoulli beams, Timoshenko beams or as cylindrical shells. They 

also reported that the nonlocal parameter ( 0e a ) of CNTs must be smaller than 2.0 nm. Recently, these values for the 
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nonlocal parameter have been used by many researchers in stability and vibration problems at small scale [24-30]. 
Further, Shen et al. [61] estimated the nonlocal parameter (e0li) for the nonlinear vibration analysis of SLGSs by 
matching the natural frequencies of graphene sheets observed from the MD simulation results with the numerical 
results obtained from the nonlocal plate model. In their paper, it is stated that the calibrated values of nonlocal 
parameter for the vibration analysis of rectangular armchair and zigzag monolayer graphene sheet (with length and 
width between 5-10 nm) at the room temperature (300 K) is in the range 0.27-0.67 nm and 0.22-0.47 nm, 
respectively.  

6    CONCLUSIONS 

Based on the nonlocal plate theory, the nonlocal effect on the vibration frequency of rectangular graphene sheets 
under shear in-plane load is investigated. Nonlocal elasticity theory has been applied to capture the structural 
discreteness of small-size plates (nanoplates). Equation of motion based on nonlocal theory has been derived. 
Numerical solutions are obtained for the non-dimensional frequency of nanoplates by employing the DQM. The 
validity of the present DQ technique is verified using the Galerkin method. Also, the presented approach is validated 
by performing the mechanical buckling analysis of isotropic rectangular plates and comparing the obtained solutions 
against existing results in other literatures. The effects of the nonlocal parameter on the vibration frequency of 
orthotropic and isotropic rectangular nanoplate embedded in an elastic medium was investigated for six cases 
boundary conditions. The elastic medium based on the Visco-Pasternak foundation was considered. It is found that 
the influence of the nonlocal parameter is quite significant in the vibration analysis of rectangular nanoplate and 
cannot be neglected. From the results of the present work, the following conclusions are noticeable: 

 when the shear in-plane pre-loads attain their critical value the non-dimensional natural frequency becomes 
equal zero; and the plate is likely to reach the flexural buckling state. 

 The decreasing rates of the natural frequencies become faster as the shear in-plane load increases. 
 The small scale effects are more noticeable for the single-layered graphene sheets (SLGSs) with shear in-

plane load compared to SLGSs without shear in-plane load. 
 The effect of nonlocal parameter for higher mode number is important. 
 The nonlocal effect depends on the boundary conditions. The nonlocal effect kept on decreasing by became 

flexible the boundary conditions. 
 The difference between the vibration frequency calculated by isotropic and orthotropic for nanoplate with 

shear in-plane load is larger in compression with nanoplate without shear in-plane load. 
 The difference between the vibration frequencies calculated by isotropic and orthotropic nanoplate for 

SSSS, SSSC, CCSS, SCSC, CCCS and CCCC boundary condition are in increasing order.  
 The difference between any two boundary conditions decreases with increasing shear in-plane load. 
 In the vibration analysis it is necessary to include the nonlocal elasticity theory for smaller orthotropic 

graphene sheets, smaller shear in-plane load and stiffer boundary conditions. 
 The frequency values increases with an increase of Winkler and shear modulus factor. 
 As the aspect ratio of the graphene sheet increases the effect of nonlocal parameter increases. 
 The medium effect on frequency ratio for coupled system follows the order Pasternak medium > Visco-

Pasternak medium > Winkler medium > Visco-Winkler medium 
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