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 ABSTRACT 

 This paper concentrates on the propagation of waves in a layer of binary mixture of elastic solids 
subjected to stress free boundaries. Secular equations for the layer corresponding to symmetric 
and antisymmetric wave modes are derived in completely separate terms. The amplitudes of 
displacement components and specific loss for both symmetric and antisymmetric modes are 
obtained. The effect of mixtures on phase velocity, attenuation coefficient, specific loss and 
amplitude ratios for symmetric and antisymmetric modes is depicted graphically. A particular case 
of interest is also deduced from the present investigation. 
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1    INTRODUCTION 

mixture is a material composed of several distinct constituents. In the continuum theories of mixtures, the great 
abstraction that a material can be modeled as a continuum was extended by assuming that the constituents of a 

mixture could be modeled as superposed continua, so that each point in the mixture was simultaneously occupied by 
a material point of each constituent. The first continuum theory of mixtures was proposed by Truesdell [1] in terms 
of kinematic and thermodynamic variables associated with each constituent of the mixture. A brief description is 
contained in the article Truesdell and Toupin [2].  

A survey of continuum theories that have been developed to model the thermomechanical behavior of mixtures 
consisting of various constituents is presented  in detail in review articles by Bowen [3], Atkin and Craine [4, 5], 
Bedford and Drumheller [6] and in the books of Samohyl [7] and Rajagopal and Tao [8]. In the theories for a 
mixture of elastic solids presented in Bowen [3], Green and Steel [9] and Steel [10], the independent constituent 
variables are the displacement gradient and the relative velocity and the spatial description is used. The first theory 
for a mixture of elastic solids based on the Lagrangian description has been presented in Bedford and Stern [11, 12]. 
In this theory, the independent constituent variables are displacement gradient and the relative displacement. In the 
recent years, an increasing interest has been developed in the study of the qualitative properties of this theory (Iesan 
and Quintanilla [13]). 

It is worth noting that a model of interpenetrating solid continua was applied in Tiersten and  Jahanmir [14] to 
derive a theory of composites where the relative displacements of the individual constituents is infinitesimal. Iesan 
[15] derived a theory for binary mixtures of elastic solids in which the independent constituent variables are the 
displacement gradients, displacement fields, volume fractions, and volume fraction gradients. He also presented the 
linear constitutive equations in case of an isotropic body with a centre of symmetry and established a uniqueness 
theorem in the linear dynamic theory with no definiteness assumption on the elasticity and no restriction on the 
initial stress. Also Iesan [16] presented the boundary value problems of the linear theory for binary mixtures of 
elastic bodies and derived fundamental solutions in the equilibrium theory of homogeneous and isotropic mixtures. 
Ciarletta [17] presented non-linear theory for binary mixtures and developed basic equations of the linear theory. 
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Later Ciarletta and Passarella [18] studied spatial behavior of dynamic processes in elastic mixtures and obtained a 
precise determination of the domain of influence and the spatial decay estimates with time dependent decay rate 
inside the domain of influence. Iesan [19] derived basic equations of a non-linear theory of heat conducting 
viscoelastic mixtures in Lagrangian description and established basic equations of linear theory. Quintanilla [20] 
considered theory of viscoelastic mixtures proposed by Iesan [19] and determined the dissipation effects by the 
viscosity of rate type of a constituent and relative velocity. Iesan [21] derived a continuum theory of viscoelastic 
composite which is modeled as a mixture of a micropolar elastic solid and a micropolar Kelvin-Voigt material. 

In the present paper we have studied the propagation of waves in a layer of mixture of two elastic solids and the 
numerical results are illustrated graphically to study the behavior of curves for phase velocity, attenuation 
coefficient, specific loss and amplitudes of displacement components for various modes of wave propagation. 

2    BASIC EQUATIONS 

We consider the basic equations for the binary mixture in the framework of linearized theory and assume that the 
constituents 1s  and 2s  are each elastic bodies. Following Quintanilla [20], the equations of equilibrium in the 
absence of external body forces are 
 

iijji upt ��1, ρ=− ,   iijji wps ��2, ρ=+                                                                        (1) 
 

where ijt  and ijs  are the components of stress tensor, 1ρ  and 2ρ  are the mass densities, iu  and iw are the 
components of displacement associated with the constituents 1s  and 2s , respectively, ip  are the components of 
internal body force. The constitutive relations for a centrosymmetric homogenous and isotropic mixture are given by 
 

ijjijissjiijrrji gggeet )2()2()()(2)( ζγζβδναζμδμλ +++++++++=  
jiijjirrijjirrji gggees γβδαζδν 222 ++++=                 (2)

 

ii dp ξ=                                                                                                                                         
 
where 
 

),(
2
1

,, ijjiij uue +=    ,,, jiijij wug +=   iii wud −=                                                                              (3)                     

 
and ξζνμλγβα ,,,,,,,  are prescribed constants and ijδ  is Kronecker delta. Using (2) in (1) and with the help of 
(3), we obtain the field equations in terms of displacement fields as 
 

iiiriririri uwuwwuu ��1,21,21 )( ρξββαα =−−+Δ++Δ  
iiiriririri wwuwwuu ��2,21,21 )( ρξγγββ =−++Δ++Δ                                                                          (4) 

 
where Δ  is Laplacian operator and 
 

ζβμα 221 ++= , ζγναμλα 2222 +++++= , ζγβ += 21 , βζναβ 22 +++= , βγ 21 = , αγγ += 22  

3    PROBLEM FORMULATION AND SOLUTION 

We consider an infinite layer of mixture of two elastic solids having thickness .2H  For two dimensional problem 
taking origin of the coordinate system ),,( zyx  on the middle surface of the layer. The yx −  plane is chosen to 
coincide with the middle surface and the z -axis normal to it along the thickness of the layer. The surfaces Hz ±=  
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are subjected to stress free boundaries. We take zx −  plane as the plane of incidence so that 

),0,( 31 uuu =
G

, ),0,( 31 www =
G

, and assume that the solutions are explicitly independent of y  i.e. 0=
∂
∂
y

. Thus the 

field equations reduce to 
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For further considerations, it is convenient to introduce the dimensionless variables defined by 
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where  *ω  is a constant having dimensions of  circular frequency. Using the expressions relating displacement 
components ii wu ,  to the scalar potential functions ψφ ,  and ψφ , in dimensionless form after suppressing the 
dashes as 
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The field equations reduce to 
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The solution of (8)-(11) for the waves propagating along positive x −direction are 
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where k and c  are respectively, the wave number and phase velocity of wave and 4141 ,...,,,..., BBAA  are arbitrary 
constants, 
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3.1 Derivation of frequency equation 

At Hz ±=  the appropriate boundary conditions are: 
 

0,0,0,0 31333133 ==== sstt                                                                                                                            (16) 
 

Using dimensionless variables defined by (9), in the expressions of stresses and then using boundary conditions 
given by (16) with the help of (2), (3) and (10) for zx −  plane, we obtain eight homogeneous equations in eight 
unknowns 4141 ,...,,,..., BBAA . The condition for the existence of non-trivial solution of these equations gives the 
frequency equation 
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where ,4,...,1)( tan == iHmT ii  and 
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4    SPECIFIC LOSS 

The specific loss is the ratio of energy )( WΔ  dissipated in taking a specimen through a stress cycle, to the elastic 
energy )(W stored in the specimen when the strain is maximum. The specific loss is the most direct method of 
defining the internal friction for a material. Kolsky [22] shows that specific loss )/( WWΔ  is π4  times the absolute 
value of the ratio of the imaginary part of wave number to the real part of wave number i.e. 
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5    AMPLITUDES OF DISPLACEMENTS 

The amplitudes of displacement components of both the constituents of mixture for symmetric and skew-symmetric 
modes of plane waves can be obtained as: 
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6    PARTICULAR CASE 

In the limiting case if we neglect the presence of second constituent of the mixture and vanish the parameters 
corresponding to the coupling between the two constituents of mixture, then we will recover the results of classical 
theory of elasticity for isotropic elastic solid which are similar to those obtained in Graff [23] by changing 
dimensionless quantities into the physical quantities. 

7    NUMERICAL RESULTS AND DISCUSSION 

In order to illustrate theoretical results obtained in the preceding sections, we now present some numerical results 
taking 
 

,Nm1045.0,Nm105.0,Nm10278.2,Nm1079.0,Nm1057.2 210210210210210 −−−−− ×=×=×=×=×= βαμνλ
33

2
33

1
212210 Kgm1084.0,Kgm1074.1,Nm1017.2,Nm105.0 −−−− ×=×=×=×= ρρξζ  

 
All numerical computations are carried out by taking .34.1=H  Fig. 1 depicts the variations of phase velocity 

with respect to R  i.e. real part of wave number for symmetric and antisymmetric modes of wave propagation for 
mixture of two elastic solids whereas Fig. 2 represents the same situation for isotropic elastic solid. Fig. 3 depicts the 
variations of attenuation coefficient with respect to R  for symmetric and antisymmetric modes of propagation for 
mixture of two elastic solids whereas Fig. 4 represents the same situation for isotropic elastic solid. Similarly, Figs. 
5 and 6 represent the variations of specific loss w.r.t wave number for both symmetric and antisymmetric modes in 
case of mixture and elastic solid respectively.  
 

 
 

 
 
 
 
 
 
 
 
 
Fig. 1 
Variation of phase velocity w.r.t wave number in 
mixture for symmetric and antisymmetric modes of 
propagation. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 
Variation of phase velocity w.r.t wave number in 
elastic solid for symmetric and antisymmetric modes of 
propagation. 
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Fig. 3 
Variation of attenuation coefficient w.r.t wave number 
in mixture for symmetric and antisymmetric modes of 
propagation. 

 
 

 
 
 
 
 
 
 
 
 
 
Fig. 4 
Variation of attenuation coefficient w.r.t wave number 
in elastic solid for symmetric and antisymmetric modes 
of propagation. 

 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 5 
Variation of specific loss w.r.t wave number in mixture 
for symmetric and antisymmetric modes of 
propagation. 

 
 

In Figs. 1-6, the solid lines represent variations for first symmetric mode, small dashed lines represent variations 
for second symmetric mode and long dashed lines represent variations for third symmetric mode and the 
corresponding lines with central symbol represent variations for the respective antisymmetric modes. In Fig. 7 and 8, 
solid lines and dashed lines respectively represent variations for displacement component 1u  and 3u  whereas the 
corresponding lines with central symbols represent variations for 1w  and 3w , respectively. In Fig. 9, solid line and 
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dashed line respectively represent variations for displacement component 1u  and 3u  for symmetric mode whereas 
the corresponding lines with central symbols represent variations for antisymmetric mode. 

 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 6 
Variation of specific loss w.r.t wave number in elastic 
solid for symmetric and antisymmetric modes of 
propagation.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 
Variation of amplitudes of displacement components 
in mixture for symmetric mode. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8 
Variation of amplitudes of displacement components 
in mixture for antisymmetric mode. 
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Fig. 9 
Variation of amplitudes of displacement components 
in elastic solid for symmetric and antisymmetric 
modes of wave propagation. 

 
 

The phase velocity, attenuation coefficient, and specific loss of various modes of propagation have been 
computed from secular equations for various values of wave number and for different boundary conditions. It is 
observed from Figs. 1 and 2 that the phase velocity of different modes of wave propagation starts from large values 
at vanishing wave number and then exhibits a strong dispersion until the velocity flattens out to the value of 
Rayleigh wave velocity of material at higher wave number. The reason for the asymptotic approach is that for short 
wavelengths (or high frequencies), the material plate behaves increasingly like a thick slab and hence the coupling 
between the upper and lower boundary surfaces is reduced and as a result the properties of symmetric and skew 
symmetric modes of wave propagation become more and more similar. In the limit for an infinite thick slab, the 
motion at the upper surface is not confined to the lower surface and the displacements become localized near the 
free boundaries, thus the Lamb wave dispersion curves asymptotically approach those for Rayleigh waves. 

It is observed from Figs. 3 and 4 that for symmetric mode the values of attenuation coefficient first increase and 
then decrease for mixture of elastic solids, but the values of attenuation coefficient are higher for the second mode as 
compared to those for first mode. Also for antisymmetric mode, the values of attenuation coefficient increase with 
the increasing number of mode of propagation. For isotropic elastic solid the values of attenuation coefficient for the 
first mode of wave propagation exhibit a strong dispersion from higher values for both symmetric and antisymmetric 
modes. The values of attenuation coefficient of second mode of propagation are higher for antisymmetric mode of 
propagation within the range 20 << R  whereas the behavior is reverse beyond this range. For the third mode of 
wave propagation the values are higher for symmetric mode as compared to those for antisymmetric mode. Figs. 5 
and 6 indicate that the values of specific loss decrease with wave number. Fig. 5 indicates that for the first two 
modes the values of specific loss are higher for symmetric mode as compared to those for antisymmetric mode but 
the behavior is reverse for the third mode. It is observed from Fig. 7 that the behavior and trend of variation of 
specific loss for first and third mode is similar for both symmetric and antisymmetric modes of wave propagation 
whereas for second mode the values are higher for antisymmetric mode within the range 20 << R  and the behavior 
is reverse beyond this range. 

Figs. 7 and 8 represent the variations of amplitudes of displacement components of mixture w.r.t the thickness of 
plate. It is observed that for symmetric mode of propagation the amplitude of displacement components 1u , 3u  
increase w.r.t the thickness of plate whereas the amplitudes of 1w  and 3w  decrease. For antisymmetric mode the 
variation of amplitude for 3u , 3w  show behavior similar to that for symmetric mode whereas the displacement 
component 1u  , 1w  show opposite behavior. It is observed from Fig. 9 that for elastic solid, the trend of variation of 
amplitudes of both displacement components for antisymmetric mode is similar with the exception that the values of 
displacement component 3u  are higher than those for 1w   but for symmetric mode the values of 3u  are greater than 

1u  within the range 7.10 << z  whereas the behavior is reversed beyond this range. 
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8    CONCLUSION 

The characteristics of the dispersion relations of plane waves propagating in a layer of binary mixture of elastic 
solids and in isotropic elastic solid are presented. After deriving secular equation, the behavior of dispersion curves 
of phase velocity and attenuation coefficient is studied graphically for various modes of wave propagation. The 
amplitudes of displacement and specific loss are also computed from the relative expressions and are shown 
graphically for both symmetric and antisymmetric modes of wave propagation. The numerically computed results 
are found to be in close agreement with the theoretical results. 
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