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 ABSTRACT 

 In the present study, nonlinear vibration of coupled carbon nanotubes (CNTs) in presence 

of surface effect is investigated based on nonlocal Euler-Bernoulli beam (EBB) theory. 

CNTs are embedded in a visco-elastic medium and placed in the uniform longitudinal 

magnetic field. Using von Kármán geometric nonlinearity and Hamilton’s principle, the 

nonlinear higher order governing equations are derived. The differential quadrature (DQ) 

method is applied to obtain the nonlocal frequency of coupled visco-CNTs system. The 

effects of various parameters such as the longitudinal magnetic field, visco-Pasternak 

foundation, Knudsen number, surface effect, aspect ratio and velocity of conveying 

viscous are specified. It is shown that the longitudinal magnetic field is responsible for an 

up shift in the frequency and an improvement of the instability of coupled system. Results 

also reveal that the surface effect and internal conveying fluid plays an important role in 

the instability of nano coupled system. Also, it is found that trend of figures have good 

agreement with previous researches. It is hoped that the nonlinear results of this work 

could be used in design and manufacturing of nano/micro mechanical system in advanced 

nanomechanics applications where in this study the magnetic field is a controller 

parameter.                                         

       © 2015 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 NTs are as one of the stable families of nanostructures where they are becoming the most promising material 

for nano-electronics, nano-devices and nano-composites because of their enormous application such as nano-

pipettes, actuators, reactors, fluid filtration devices, targeted drug delivery devices and scanning ion conductance 

microscopy [1-2]. Due to its potential, nanotubes are used in nano technology, particularly in recent years utilized in 

vibration of CNTs with/without conveying fluid. 

In this regard, Zhen and Fang [3] investigated the nonlocal thermal vibration single-walled carbon nanotubes 

(SWCNTs) conveying fluid where an elastic beam model developed for analysis of dynamical behavior of fluid 

conveying SWCNTs. Their results showed that the natural frequencies and critical flow velocity increase as the 

temperature changes increase. The nonlocal-model’s natural frequencies were smaller than the local model’s natural 

frequencies at all temperature changes and flow velocities considered. Vibration analysis of double-walled carbon 
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nanotubes (DWCNTs) based on nonlinear EBB and nonlocal elasticity theories was studied by Fang et al. [4]. They 

considered clamped-clamped condition and used Hamilton’s principle to drive nonlinear equations of motion. The 

influences of nonlocal parameters, nonlinear Van-der-Waals forces, aspect ratio and Winkler constant were 

discussed on nonlinear coaxial and non co axial vibration. Wang and Ni [5] used EB classical beam to modeling the 

nanotubes as a continuum structure conveying viscous fluid. They found that the effect of fluid viscosity on the 

vibration and instability of CNTs can be ignored but increasing the velocity of flow fluid has remarkable effect on 

the frequency and stability of CNTs. A nonlinear model developed for the flow-induced frequency of a SWCNT by 

Soltani and Farshidianfar [6], who solved the nonlinear equation of motion by the energy balance method. They 

indicated that the nonlinearity of the model can be effectively tuned by applying axial tension to the nanotube. 

Ghorbanpour Arani et al. [7] developed nonlinear vibration and stability of a smart composite micro-tube made of 

Poly-vinylidene fluoride reinforced by Boron-Nitride nanotubes (BNNTs) embedded in an elastic medium under 

electro-thermal loadings. The microtube conveyed a fully developed isentropic, incompressible and irrotational fluid 

flow. Their results indicated that increasing mean flow velocity considerably increases the nonlinearity effects so 

that small scale and temperature change effects become negligible. It had also been found that stability of the system 

was strongly dependent on the imposed electric potential and the volume percent of BNNTs reinforcement.   

Knudsen number (Kn) is the dimensionless ratio that introduced mean free path of the fluid molecules to a 

characteristic length of the flow geometry and it is used as a discriminate for identifying the different flow regimes 

[8]. The effects of Knudsen-dependent nano flow velocity on vibrations of EBB nano-pipe conveying fluid 

investigated by Mirdamadi et al. [8] and Rashidi et al. [9] who reformulated Navier–Stokes equations, with modified 

versions of Kn-dependent flow velocity. They found that the Knudsen number has dominated influence on the 

critical flow velocity and stability of nano structure conveying fluid. 

Recently, it has become clear that when materials and structures shrink to nanometers, surface effects often play 

a critical role in their static or dynamical behavior due to  increasing ratio of surface/inter face area to volume. Wang 

[10] presented an analytical model for predicting inner and outer layers effects on the free vibration of fluid-

conveying nanotubes based on the non-local elasticity theory. They indicated that the surface effects with positive 

elastic constant or positive residual surface tension tend to increase the natural frequency and critical flow velocity. 

Based on type of continuum elasticity theory, the surface stresses are simulated as a mathematical thin layer that 

thickness can be neglected with different material properties from the underlying bulk which is completely bonded 

by the membrane. They proposed the following general and simple expression for surface stress–strain relation. [11, 

12]. In spite of many researches about behavior of CNTs using nonlocal elasticity theory, there are limited studies 

that consider nonlocal visco-elastic systems. Lei et al. [13] presented the dynamic behavior of nonlocal visco-elastic 

damped nanobeams where the Kelvin–Voigt visco-elastic model was employed to establish the governing equations 

for the bending vibration of nanotubes. They used transfer function method to obtain the natural frequencies and 

response functions. The flexural vibration of visco-elastic CNTs conveying fluid and embedded in viscous fluid 

based on Timoshenko beam (TB) elasticity theory investigated by Ghavanloo and Fazelzadeh [14] who 

demonstrated increasing visco-elastic structural damping coefficient decreases the critical flow velocity. 

It has been proved that the CNTs deform when subjected to the magnetic field due to changes in their magnetic 

state. There are some studies dealing with on the magneto-elastic behavior of such components in the literatures. 

Murmu et al. [15] reported an analytical approach to study the effect of a longitudinal magnetic field on the 

transverse vibration of a magnetically sensitive DWCNT based on nonlocal elasticity theory. Results revealed that 

presence of a longitudinal magnetic field increases the natural frequencies of the DWCNT. They studied the 

influence of small scale effects, temperature change, Winkler constant and vibration modes of CNT on the natural 

frequency. Wang et al. [16] studied the effects of magnetic field and elastic medium on wave propagation in CNTs. 

They showed that the longitudinal magnetic field increases the velocity wave propagation in some frequency regions 

where the longitudinal magnetic field has obvious influence on the velocity of wave propagation in CNTs. The 

behavior of nanoplates under an external in-plane magnetic field based on nonlocal elasticity theory is investigated 

by Murmu et al. [17], who found that the in-plane magnetic field increases the natural frequencies of the single layer 

grapheme sheet.   

Murmu and Adhikari [18] investigated nonlocal vibration analysis of double nano beam systems and obtained 

governing equations of motion for EBB model in terms of displacements. They solved the coupled equations by the 

new analytical method to decouple the set of partial differential equations and they showed that small scale 

parameters and stiffness of the coupling springs have important role in stability of double nanobeams system. Also 

these researchers [19, 20] investigated the effects of small scale parameter on the transverse and longitudinal 

vibration of double nanobeams system. Later Murmu and Adhikari [21] reported nonlocal vibration of double 

nanoplate system where two single layered grapheme sheets coupled by polymer matrix. They used explicit closed-

form expressions for natural frequencies for the case when all four ends are simply-supported. They showed the 
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effect of stiffness elastic medium, small scale parameter, aspect ratio and higher modes on the natural frequencies of 

coupled system based on an analytical method. Recently, GhorbanpourArani and Amir [22] investigated electro-

thermal vibration of double BNNTs which are coupled by elastic medium using strain gradient theory. Two BNNTs 

are placed in the uniform temperature and electric fields, the latter being applied through attached electrodes at both 

ends. Moreover, one of the BNNTs oscillates under flow fluid. They derived the higher-order equations of motion 

base on the Hamilton’s principle to obtain the frequency of coupled BNNTs system. 

In this study, nonlinear vibration and stability of a double visco-CNTs system based on EBB theory under 

longitudinal magnetic field with surface effect, conveying fluid is considered. Using Hamilton’s principle, the 

couple governing equations are derived and DQM is presented to estimate the frequency and critical fluid velocity of 

double bonded visco-CNTs. Several effects of fluid flow on the vibration behavior of the coupled system are 

investigated thoroughly; moreover the effects of other parameters such as small scale, surface effect, magnetic field 

and visco-elastic medium modulus are discussed in details. 

2    GOVERNING EQUATIONS OF COUPLED SYSTEM    

According to the Eringen’s nonlocal elasticity model [23, 24], the stress state at a reference point in the body is 

regarded to be dependent not only on the strain state at this point but also on the strain states at all of the points 

throughout the body. On the other contract, at the local elasticity theory, the stress state at any point corresponds to 

the strain state at this point. The constitutive equations of the partial nonlocal elasticity can be considered as: 

 

  2 Nonlocal Local
01 e a ,                

 

   (1) 

 

where the right hand of Eq. (1) denotes the classical stress and 0e a  is a constant parameter showing the small scale 

effect. In the present model, the nonlocal stress  Nonlocal , the corresponding strain xx . Using above assumptions 

for the EBB model, Eq. (1) can be obtained as: 

 

2 2

0

Nonlocal Local
xx xxxx

1 (e a) E .                    
 

   (2) 

 

The geometry of the system and its surrounding medium are demonstrated in Fig. 1. This figure shows a double 

visco elastic CNT system which coupled by visco-Pasternak foundations with length l , radius r  and effective tubes 

thickness h that CNTs are contain of fluid flow. In this study CNTs are simulated by EBB model where this 

simulation can be suitable for CNTs, therefore the displacement filed based on the EBB theory becomes [6]: 

 

W(x, t)
U(x,z, t) U(x, t) z ,

x

V(x,z, t) 0,

W(x,z, t) W(x, t).


 







     

 

 

   (3) 

 

Using Eq. (3), where U(x,t),W(x,t)  and V(x,t)  are displacement components of middle surface and nonlinear 

strain displacement relation can be written: 
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   (4) 

 

According to Kelvin–Voigt visco elastic model [13] at real life, nano structure mechanical properties depend on 

the time variation. Therefore, based on this model and nonlocal elasticity model, the nonlocal visco-elastic 

constitutive relation for EBB can be written as [13]: 
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2 Nonlocal

2Nonlocal xx
0 xx2xx

e a E 1 g ,
tx

   
     

  
 

 

   (5) 

 

where E and g are Young’s modulus  and damping coefficient, respectively. In this study, the energy method is used 

to derive higher order governing equations of motion where total potential energy,   is expressed as [25]: 

 

 ,sU K        (6) 

 

where sU  is strain energy, K is total kinetic energy and   is the total external work in coupled system. Therefore, 

the motion equations of embedded visco-elastic coupled CNTs conveying viscose fluid can be derived by 

Hamilton’s principle given as follows [25]: 

 

 
1

0

0,

t

s nanotubes fluid visco Pasternak fluid Lorentz

t

U K K dt
          
   

    

(7) 

 

where strain energy of nanotubes are [25]: 

 

0

1
( ) ,

2

L

s xxi xxi i
Ai

U dA dx     
    

(8) 

 

Subscript i denotes the number of nanotube where i=1,2  demonstrate upper and lower nanotubes, respectively. 

Substituting Eq. (4) in Eq. (8), total strain energy is defined as: 

 

2 2

2
0

( , )1 1
,

2 2

L
i i i

s xxi i

Ai

U W x t W
U z dA dx

x x x

       
             

   

  

   

(9) 

 

and introducing forces and moments at the intermediate of CNTs as follow: 
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(10) 

 

Total strain energy of nanotubes is rewritten as: 
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(11) 

 

and the total kinetic energy nanotubes can be expressed as [26, 27]: 

 

2 2

0

1
.

2

L
i i

nanotubes t i
Ai

U W
K dA dx

t t

  
                        

   

    

(12) 

 

This velocity vector for the transmission fluid through the tubes in beam model can be expressed as [27, 26]: 
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(13) 

 

Work done of the fluid caused by the curvature of the CNT:  
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where W
x

  


 and fU is the constant velocity of fluid and kinetic energy of flow fluid is: 
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(15) 

 

According to the fluid viscosity effect of CNT, the Navier–stokes equation given as follows [28]: 

 

2
f

dV
P V.

dt
     

    

(16) 

 

Substituting the fluid velocity vector in Eqs. (15-14), Navier-stokes equations in x, z directions given as follows: 
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(17d) 

 

In above equations (Eqs. (17c) and (17d)), the effect of viscosity is demonstrated [28, 27]. 

The governing equations for the conventional fluid-structure interaction problems have been derived by the 

assumption of no-slip boundary conditions. Consider a fully developed flow for a Newtonian fluid with a constant 

pressure gradient irrespective to gravitational body force; the Navier–Stokes equations will be given as follow [8, 9, 

29]:  

 

2 ,f e
dV

P V
dt

      
    

(18) 
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The solution Navier-Stokes equations and applying boundary conditions for Eq. (19), the final equation for 

Knudsen number reaching [8-9]: 

 

 
ave_slip v

ave,(no_slip) v

V 2- Kn
VCF= = 1+ Kn 1+4 .

V 1+Kn

    
          

 
    

(19) 

 

It is just adequate to replace the 
avg,slip

V by 
avg,slip avg,(no-slip)

V =VCF×V , in the governing equations. Magnetic field 

effects and Lorentz force will satisfy in this study by respect to [15-17] that Lorentz force vector will drive as below: 
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(22) 

 

Based on the Visco-Pasternak foundation, the effects of the surrounding medium on the upper and lower nano 

tube are considered as follows: 
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where m and n  m n=1,2   indicate number of nanotubes. Here 
wK ,C and pG are spring, damper and shear 

modulus of elastic medium, respectively. 

In nano structure such as nanotubes and nano plates, the ratio of surface to volume is high relating micro scale, 

therefore the surface effect should be considered. According to Fig. 1 some essential surface layer’s geometric 

specifications can be investigated as follows [10, 12]:  
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(24) 

 

where iR
 
and oR are the inner and outer radius of the CNT, respectively. To consider the surface stresses into 

structure, Gurtin and Murdoch [11] obtained theoretical relations based on the continuum mechanics including 

surface stress [11-12]. Based on this type of continuum elasticity theory, the surface is simulated as a mathematical 

layer of zero thickness with different material properties. They proposed the following general and simple 

expression for surface stress–strain relation in inner and outer CNT’s layers for nonlinear EBB [12]: 
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where ,s s  and 
s are surface Lame constants and residual surface stress respectively. Therefore, according to 

above relation and Hamilton’s principal, motion equations are obtained for each nanotubes as follow: 
 m

U : 
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(27) 

 

Using Eq. (10) and (5) can be written as: 
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Using Eqs. (26-28) and use some mathematical manipulations the motion equations of coupled CNT system will 

be derived that mentioned in Appendix A. 

Dimensionless parameters are defined as follows [27]: 
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Equations of motion will be converted to dimensionless form by using above dimensionless parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 

Schematic of coupled CNTs conveying fluid under longitudinal magnetic field. 

3    SOLUTION PROCEDURE 

DQ method is a rather efficient numerical method for the solution of linear and nonlinear partial differential 

equations involving one dimension or multiple dimensions [32, 33]. A striking merit of the method is of high 

efficiency in computing complex nonlinear problems [34, 35], Compared with the standard numerical techniques 

such as the finite element and finite difference methods, the DQ method produces nonlinearity solution of 

reasonable accuracy with relatively small computational effort [36, 37]. The traditional linear algebraic approach, 

which is very successful for linear numerical computations, has been extended to handle the nonlinear problems. 

However, nonlinear problems have actually different from linear ones, linear algebraic and the relative matrix 

approaches, which are based on the concept of linear transformation. The Hadamard and SJT product of matrices are 

two types of special matrix product, They are alternate matrix approach to handle nonlinear problems [38]. 

To solve nonlinear equations by using DQ method, at first eliminating all the nonlinear terms in the matrices and 

calculating linear eigenvalues and eigenvectors. Then By using the Hadamard and SJT products, the nonlinear 

formulations are greatly simplified.  

3.1 Hadamard product 

Hadamard product of matrices and state its some properties first [39]. Based on the Hadamard product concept, the 

Hadamard power and function are also defined [39-38]. 

do

  
di

  

Outer surface 

layer Bulk of CNT 

Inner surface 

layer 
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Let matrices ijA a     and N M N M
ij ij ijB= b C  so A B= a b   C         , where N MC  denotes the set of 

 N M  real matrices and symbol  ‘o’ denotes Hadamard products.  

3.2 SJT product 

Chen [38] presented a new multiplication operation−SJT product of matrix and vector. If matrices N M
ijA a C     , 

vector N 1
ijB= b C    , then N M

ij jA B= a b C      N MC  , is defined as the post multiplying SJT product of matrix 

A and vector B, where ‘  ’ represented the SJT product. 

3.3 Linear DQ procedure 

DQ according to a spatial variable, a weighted linear combination of function values at some intermediate points in 

that variable is used. For example, the n
th

 order partial derivative of a function )(xg  at the i
th

 discrete point is 

approximated [40]: 

 

i i i

L(x)
g(x)= i=1,2,...,N,

(x-x )L (x )
 

 

(29) 

N N

j i i j

j=1 j=1

L(x)= (x-x ), L (x)= (x -x ).   
 

(30) 

 

The weighting coefficient for the first order derivative is explicitly defined by: 
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where 
i

x
 
are the coordinates of the grid points in this work, the non-uniform grid distribution given by the 

Chebyshev points are used to calculate the weighting matrices and is given by [40, 41]: 
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(32) 

 

The solution of the motion equations that have been added to Appendix A can be assumed as follows [42, 43]: 
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The DQ numerical solution approach equations of motion of coupled CNTs in dimensionless form as:  
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(35) 

 

where 
f

h E   
 
the dimensionless natural frequency,  is natural frequency and 

f
  is density of fluid. Also 

the DQ approach form of mechanical linear boundary conditions at both ends in each layer of elastic coupled CNT 

may be written in dimensionless form as: 
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(37) 

Eqs. (36-37) named boundary condition equations and Eqs. (34-35) are domain equation. Linear differential 

boundary condition and linear differential equation of motion will be changed to algebraic equations by DQ 

approach. Eqs. (34-37) lead the following constitutive matrix equation as: 
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(38) 

 

where    K , D and  M  are the stiffness matrix, damping matrix and mass matrix, respectively, and subscript b 

denotes the elements related to the boundary points while subscript d is associated with the remainder elements. Eq. 

(38) can be expressed as below: 
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Using Eq. (39), equation of motion can be written as: 

 

          2
e d e d e dM d D (i ) d K d 0.       (40) 

 

That e eM ,D and eK are the primary mass, damper and stiffness finally matrices which have been written as 

follows: 
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(41) 

 

For solving the Eq. (40) and reducing it to the standard form of eigenvalues problem, it is convenient to rewrite 

Eq. (41) as the following first order variable as: 
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(42) 

where    A , 0 and I    are the state, zero and unitary matrices, respectively. The solution of Eq. (42) is complex due 

to the presence of fluid flow viscous damping. Hence, the results are containing two real and imaginary parts. The 

imaginary part is corresponding to the system damping and the real part representing natural frequencies of the 

system. 
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3.4 Non-linear DQ procedure 

The nonlinear DQ numerical solution approach equations of motion of coupled CNT in dimensionless form are 

shown at Appendix A. using Hadamard and SJT operators, the nonlinear terms of Eqs. (A1-A2) are simplified. To 

solve nonlinear equation by DQ method has some steps that are: 

1. Scaling up the linear eigenvectors and using, Hadamard, SJT products and linear eigenvectors to estimate 

nonlinear terms of Eqs. (A.1-A.2). 

2. Adding nonlinear matrices to linear matrices and calculating eigenvalues and eigenvectors of the updated 

eigenvalues problem.  
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Natural frequency of nonlinear equations will obtain like Eqs. (34) to (35) in prior section. 

3. Repeat step (2) until the response converges to a prescribed error tolerance  
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4    NUMERICAL RESULTS AND DISCUSSION 

In this study, nonlinear vibration of coupled CNTs system conveying fluid linked by visco-Pasternak medium is 

carried out. In following figures the effects of parameters such small scale, elastic medium, Knudsen number, visco-

elastic structural damping coefficient and magnetic field on frequency versus fluid velocity ( fU ) of the clamp-

clamp coupled CNTs are discussed in detail. It is noted that Re( )  represents the resonance frequencies of the 

coupled CNTs while Im ( )  denotes the damping which resulting from the moving fluid to the CNTs. Mechanical 

and geometrical properties of the CNTs are considered as [44, 10]: 
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In order to validate the accuracy of this study, Tables 1-3. show comparison the DQ result of this study with 

Galerkin method [43] for different boundary conditions. A simplified case of the analysis is carried out by 

considering CNTs conveying fluid and neglecting viscoelastic characteristics, Knudsen number, surface effect and 

magnetic field effects. The dimensionless natural and damping frequencies versus the dimensionless flow velocity 

( f
u ) for different vibration mode are depicted in Figs. 2(a) and 2(b), respectively. Generally, the system is stable 

when the imaginary part of the frequency remains zero and it is unstable when the imaginary and real parts of the 

frequency become positive and zero, respectively. It can be seen that Re( )
 
decreases with increasing f

u .As the 
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dimensionless flow velocity increases at the vicinity of 0.229, both Im( )  and Re( )
 
are equal to zero for the first 

mode. In this region, the coupled system becomes unstable and susceptible to buckling due to the divergence via a 

pitchfork bifurcation. The corresponding fluid velocity is called the critical flow velocity. For 

f 00.229<u <0.326 and e a=0 nm
 
the real part of first mode is exactly zero while the imaginary part becomes 

nonzero. When the flow velocity increases beyond 0.336 , the coupled system undergoes a flutter. As the flow 

velocity reaches about 0.326 , the CNTs system regains stability in the first mode. By increasing the flow velocity 

the sequence of the divergence, flutter and stable behaviors is occurred again. The same behavior can also be 

observed for other vibration modes. Fig. 3 shows the difference between linear and nonlinear solutions for clamped 

ends boundary condition. It is visible in this figure that the nonlinear geometric terms play stabilizer role for the 

structure. This effect will grow when the dimensionless fluid flow velocity go over of fu 0.087 the effects of 

nonlinear geometrics terms become undeniable. Fig. 4 shows real part of dimensionless frequency versus flow 

velocity for different values of dimensionless small scale parameter. Also in this figure demonstrates the nonlinear 

frequency for 0e a 1.2nm . It is obvious that nonlocal parameter is a significant parameter in vibration of coupled 

system. As can be seen increasing the nonlocal parameter decreases the frequency and critical flow velocity. This 

decrease can be attributed to the distributed transverse force due to the curvature change in the nano structure and 

the interaction between the atom at reference point and all other atoms. It is need to point out that, the zero value for 

nonlocal parameter (i.e. 0e a=0 ) denotes the result obtained by the classical EBB model which has the highest 

frequency and critical fluid velocity. 

The effects of foundation stiffness on natural frequency are shown in Fig. 5. This figure demonstrates that the 

visco-Pasternak foundation has lowest stability where critical flow velocity is 0.171 and Pasternak foundation has 

largest stability. The effect of visco-elastic structural damping coefficient on dimensionless nonlinear natural 

frequency is shown in Fig. 6. It can be concluded that elastic CNTs (
*g =0 ) has the most value of critical fluid 

velocity and located at the top of other curves. Moreovere, increasing the visco-elastic structural damping 

coefficient, shifts the curves to the lower frequency zone. 

 

 
Table1 

Comparison of the frequency of the present work with those obtained by other methods for a CNT conveying fluid for clamped-

clamped boundary condition 

  Linear DQ Method 

(C-C) 

Galerkin Method 

(C-C) 

Nonlinear DQ 

Method (C-C) 

Compare NL and 

LDQ’s results 

 

0.0769wK  

0.1fluidV  0.9845  0.9845  0.9908  0.64% 

0.15fluidV  0.8126  0.8126  0.8216  1.1% 

0.2fluidV  0.5313  0.5313  0.5448  2.54% 

  ( )0 fluid CRV  0.238 0.238 0.241 1.26% 

 

 

0.1538wK  

0.15fluidV  0.8326  0.8326  0.8413  0.87% 

0.2fluidV  0.5577  0.5577  0.5702  1.25% 

0.22fluidV  0.3933  0.3933  0.4121  1.88% 

  ( )0 fluid CRV  0.242 0.242 0.244 0.2% 

 0.18fluidV  0.7065  0.7065  0.7155  0.9% 

0.2307wK  0.2fluidV  0.5829  0.5829  0.5946  1.17% 

 0.24fluidV  0.1775  0.1775  0.2175  4% 

   ( )0 fluid CRV  0.245 0.245 0.247 0.81% 
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Table2 

Comparison of the frequency of the present work with those obtained by other methods for a CNT conveying fluid for clamped-

simply boundary condition 

  Linear DQ Method 

(C-S) 

Galerkin Method 

(C-S) 

Nonlinear DQ 

Method(C-S) 

Compare NL and 

LDQ’s results 

 0.01fluidV  0.5222  0.5222  0.4623  12.95% 

0.0769wK  0.05fluidV  0.4792  0.4792  0.425  12.75% 

0.1fluidV  0.3208  0.3208  0.288  11.38% 

  ( )0 fluid CRV  0.13 0.13 0.13 0% 

 0.05fluidV  0.5167  0.5167  0.469  10.17% 

0.1538wK  0.1fluidV  0.3717  0.3717  0.3464  7.31% 

0.13fluidV  0.1775  0.1775  0.1868  5.23% 

  ( )0 fluid CRV  0.139 0.139 0.142 2.15% 

 0.01fluidV  0.8266  0.8266  0.7796  6.02% 

 0.05fluidV  0.7924  0.7924  0.7411  6.92% 

0.2307wK  0.14fluidV  0.5145  0.5145  0.3705  38.86% 

   ( )0 fluid CRV  0.186 0.186 0.165 12.72% 

 
 

 

Table3 

Comparison of the frequency of the present work with those obtained by other methods for a CNT conveying fluid for simply-

simply boundary condition. 

  Linear DQ Method 

(S-S) 

Galerkin Method 

(S-S) 

Nonlinear DQ 

Method(S-S) 

Compare NL and L 

DQ’s results 

 0.01fluidV   0.5222   0.5222   0.4623   12.95% 

0.0769wK   0.05fluidV   0.4792   0.4792   0.425   12.75% 

0.1fluidV   0.3208   0.3208   0.288   11.38% 

  ( )0 fluid CRV   0.13 0.13 0.13 0% 

 0.05fluidV   0.5167   0.5167   0.469   10.17% 

0.1538wK   0.1fluidV   0.3717   0.3717   0.3464   7.31% 

0.13fluidV   0.1775   0.1775   0.1868   5.23% 

  ( )0 fluid CRV   0.139 0.139 0.142 2.15% 

 0.01fluidV   0.5905   0.5905   0.5423   8.88% 

 0.05fluidV   0.5517   0.5517   0.509   8.54% 

0.2307wK   0.14fluidV   0.1596   0.1596   0.1994   19.9% 

   ( )0 fluid CRV   0.147 0.147 0.151 2.72% 
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Fig. 2 

a) Dimensionless natural frequencies versus dimensionless fluid velocity for clamped end boundary condition. b) Dimensionless 

damping frequencies versus dimensionless fluid velocity for clamped end boundary condition. 
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Fig. 3 

Dimensionless natural frequencies versus dimensionless 

fluid velocity for linear and nonlinear solutions. 

 

 

 

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

u
f

Im
a

g
in

a
ry

 p
a

rt
 o

f 
fr

e
q

u
a

n
c

y
( 

)

e
0
a=0nm

e
0
a=0.5nm

e
0
a=1nm

e
0
a=1.2nm(NL)

e
0
a=1.2nm(L)

0.188 0.19 0.194
0.26

0.28

0.3

 

 

X: 0.192

Y: 0.3015

X: 0.192

Y: 0.2659

((
NL

-
L
)/

L
)*100=13.38%

 

 

 

 

 

 

 

 

 

 

Fig. 4 

Effect of small scale parameter on dimension natural 

frequency versus dimension flow velocity. 
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Fig. 5 

Effect of the elastic foundation on the dimension natural 

frequency versus dimension flow velocity. 
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Fig. 6 

Effect of the viscoelastic structural damping of CNTs on 

the dimensionless natural frequency. 

 

Nonlinear variation of natural frequency with respect to fluid velocity for different values of Knudsen number is 

illustrated in Fig. 7. As already was mentioned, Knudsen number is defined based on various flow regimes where 

the slip flow regime is considered. As shown in these figures, continuum fluid ( 0Kn  ) predicts the highest 

frequency zone. Considering fluid with higher Knudsen number results in shifting the curves to the lower frequency 

region. Therefore critical flow velocity of coupled system decreases with increasing Knudsen number. 

The effect of longitudinal magnetic field on nonlinear dimensionless frequency of coupled CNTs is shown in Fig. 8. 

As already was mentioned applying magnetic field in axial direction generate the force in radial direction which is called 

Lorentz force. It is concluded that frequency and critical flow velocity increase with increasing longitudinal magnetic 

intensity. This is due to the coupling effect of the vibrating double CNT and the longitudinal magnetic field. Regarding 

Lorentz force effect, it is evident that the longitudinal magnetic field is fundamentally an effective factor on increasing 

resonance frequency leading to stability of system. Figs. 9 and 10 depict the effect of surface stress effect on 

dimensionless frequency of coupled system. It is evident that surface stress plays an important role on natural frequency. 

The residual surface tension is  s =0.9108N/m , Young’s modules multiply thickness of both surface layers is 

 s sE t =5.1882N/m  and aspect ratio is  outl/R =20 . The nonlinear frequency values and stability of the system in this 

study are higher than those obtained by Wang [10] with the lack of surface stress effect. It is found that by increasing 

bending rigidity and surface residual stress, CNT’s stability will increase. Figs. 11 and 12 show the first and second 

flutter displacements where modes 1 and 2 and modes 2 and 3 are combined, respectively for pined- pined boundary 

condition.  
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Fig. 7 

Effect of Knudsen number on dimensionless natural 

frequency. 
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Fig. 8 

Effect of longitudinal magnetic field on dimensionless 

frequency of double CNTs. 



112                   Nonlinear Instability of Coupled CNTs Conveying Viscous Fluid 

© 2015 IAU, Arak Branch 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

u
f

D
im

en
si

o
n

le
ss

 F
re

q
u

en
cy

 R
ea

l( 
 

)

 

 

Without surface effect

Ests=5.1882N/m s=0.31N/m

Ests=5.1882N/m  s=0.71N/m

Ests=5.1882N/m  s=0.89N/m

Ests=5.1882N/m  s=0.9108N/m

    

 

 

 

 

 

 

 

 

Fig. 9 

Surface effect on dimensionless natural frequency. 
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Fig. 10 

Surface effect on dimensionless natural frequency. 

  

 

 

 

 

 

 

 

 

Fig. 11 

The transverse displacement of the combination of 

modes 1 and 2 versus varieties of time. 

  

 

 

 

 

 

 

 

 

 

Fig. 12 

The transverse displacement of the combination of 

modes 2 and 3 versus varieties of time. 

5    CONCLUSIONS 

In this work, nonlinear vibration of double bonded visco-CNTs conveying viscous fluid embedded in a visco-

Pasternak medium was investigated. Coupled visco-elastic nano system is placed in a uniform longitudinal magnetic 

field and the surface stress effect was considered. The higher order governing equations of motion are solved by DQ 

approach in which Hamilton’s principle was used to obtain fundamental governing equations. The results presented 

in this work can be useful for the study and design of the next generation of nano/micro structures that make use of 

the nonlocal vibration properties of visco CNTs embedded in visco-Pasternak medium. The following conclusions 

may be made from the results: 
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1. Regarding fluid flow effects, it has been concluded that the fluid flow is basically an effective factor on 

decreasing natural frequency leading to instability of the coupled nano system. 

2. The stability of the coupled visco CNTs is strongly dependent on the imposed longitudinal magnetic field so 

that increasing the imposed longitudinal magnetic field significantly increases the stability of the system. In this case 

the stability of the system can be controlled by imposing longitudinal magnetic field and the coupled CNTs can 

behave as an actuator. 

3. Increasing the small scale parameter decreases the real and real parts of frequency and critical fluid velocity. 

4. Increase of damping constant of medium and visco-elastic parameter of CNTs caused to decrease of stability 

of visco coupled system. 

5. The results of this study are validated as far as possible by another numerical analysis method (Galerkin 

method) at Table 1-3. 

The result of this study can be used in design and optimization of nano-devices such as drug delivery systems 

and sensitive applications. 
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APPENDIX A 

Nonlinear equations of CNT’s motion respect to longitudinal direction can be simplified as below:  mU =0    
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Nonlinear equations of CNT’s motion respect to transverse direction can be simplified as below:  m
W =0    
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After using dimensionless parameters the dimensional equations of motion can be converted to simple algebraic 

equation by applying DQ method. Eqs. (A. 3) and (A. 4) are algebraic equations of motion. 
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and the transverse equations can be written as:
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