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 ABSTRACT 

 In this study, a novel and very simple finite element procedure is presented for free 

vibration and buckling analysis of slim beam-like structures damaged by edge cracks. A 

cracked region of a beam is modeled using a very short element with reduced second 

moment of area (I). For computing reduced I in a cracked region, the elementary theory 

of bending of beams and local flexibility approach are used. The method is able to 

model cracked beam-columns by using ordinary beam elements. Therefore, it is 

possible to solve these problems with much less computational costs compared to 2D 

and 3D standard FE models. Numerical examples are offered to demonstrate the 

efficiency and effectiveness of the presented method.          

                                          © 2016 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 EAM-Like structures are widely used in machines and structures, especially in mechanical, aerospace and 

civil engineering. The study of dynamic and stability behavior of these components is one of the main steps in 

the design process that must be accomplished because it is necessary to ensure the safety of structures against 

catastrophic collapses caused by resonance or buckling phenomena.    

The occurrence of crack in slim elements, which may be developed due to applied dynamic loads, mechanical 

vibrations, etc. can change total behavior of the structure and reduce its safety. Therefore, many researchers have 

focused on developing reliable models to study dynamic and buckling behavior of cracked beam-like structures.      

These attempts could be classified into three main groups; an equivalent reduced section method [3], a local 

flexibility or rotational spring method, and especial finite element models. 

Krishmar [1] and Thomson [2] introduced the equivalent reduced section method to simulate the effect of crack 

on natural frequencies of beams. The behind philosophy of the method is simulating the effects of the cracked region 

using a local bending moment and a reduced section.  The experimental method used to evaluate the stiffness 

reduction due to a crack was so time-consuming and tedious. Zheng and Ji [3] have recently developed an 

approximate approach for analysis of cracked beam utilizing the concept of the equivalent reduced section and 

improved Rayleigh method. A general expression of the natural frequencies of the beam was established in a close 
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form within their study, but the unknown coefficients revealed in the statement must be specified separately for any 

case of boundary conditions.  

The local flexibility approach was first introduced by Okamura et al [4]. In this method it is considered that the 

crack divides a beam into two separated parts, which are connected to each other with a massless rotational spring. 

The local flexibility of spring is a function of the cross-sectional geometry and crack size, and can be evaluated by 

the fundamental theory of fracture mechanics. Many researchers attempted to introduce local flexibility functions for 

different cross sections [5-8]. This method has been widely implemented to study the free and forced vibrations, the 

buckling capacity and the identification of crack depth and its location in inverse problems [9-14].  It must be noted 

that, the analytical solution method has been used in these works, so this method can only be utilized for the 

structures with simple geometry and boundary conditions. 

To remove the mentioned deficiency, numerous computational methods have been considered by researchers. 

For example, Standard 2D Finite Element Method (FEM) was implemented by chati et al to study natural 

frequencies of edge-cracked beams [15]. The 2 and 3D standard FEM can reliably model discontinuities in the 

structure using very fine girds and singular elements though due to high computational efforts they are not 

appropriate for primary design and solving inverse problems. 

To overcome this challenge, researchers focused on developing especial FE methods, which are able to model 

structural behavior of cracked slim components, with minimum computational costs. For example, a zero length 

element for representing a beam with rectangular cross section and a single edge crack was presented by Tharp [16]. 

In his work, the stiffness matrix of the cracked beam element is obtained using the compliance coefficients by partial 

derivative of the total strain energy. Gounaris and Dimarogonas [17] introduced a special element to evaluate the 

dynamic response of a cracked cantilevered beam. Ostachowicz and Krawczuk[18] presented a point finite element 

to model an open and closed non-propagating edge crack. Skrinar and Plibersek [19] introduced a new cracked beam 

finite element considering the effects of shear force for analyzing moderately thick beam structures. Bouboulas and 

Anifantis [20] introduced a cracked beam element for modeling of fractured skeletal structures based on the direct 

stiffness method.    

Most of these FE models are very simple to deal with, and can predict the behavior of fractured beam-columns 

with reasonable accuracy. But unfortunately they are not commonly addressed by commercial FEM packages. Thus, 

applying these models in practical engineering could become very tedious. 

In sum, the main objective of this investigation is to introduce a novel and very simple procedure for analyzing 

cracked beam-like structures using ordinary beam elements that are available within all commercial FEM packages. 

For this purpose, the basic concept of the equivalent reduced section method is combined with the local flexibility 

approach.  This procedure has four main steps. In the first step, by using the basic theory of bending beams, the local 

flexibility of a beam in the crack position is computed in terms of mechanical and geometrical properties of it. In 

second step, the local flexural flexibility of cracked segment is computed using the available flexural stiffness 

functions in the literature. Afterward, the equivalent reduced cross sectional properties are computed by comparing 

two estimated local flexibilities in the two first steps. Finally, the cracked region of the beam is modeled using a 

very short ordinary beam element with reduced cross sectional properties. Numerical verifications show the 

effectiveness and the accuracy of the proposed procedure.     

2    LOCAL FLIXIBILITY DUE TO AN EDGE CRACK 

Fig. 1 shows a cracked beam under general loading condition. It is accepted that an open crack on an elastic 

structure is a source of local flexibility, so the cracked beam is modeled as two separated parts that interconnected 

by a massless flexible joint. In general form, the flexibility of cracked region is modeled by 6 6  compliance matrix 

[18]. In this study, the in-plane bending of beams is only considered. Therefore, a crack can be modeled as a 

massless rotational spring, whose flexibility is oriented in the z direction. To evaluate the flexibility of a rotational 

spring the relation between the strain energy concentration and the applied load is established according to the 

theory of linear elastic fracture mechanics. Then, it is expressed in terms of stress intensity factors by utilizing 

Castigliano’s theorem.    

Numerous rotational spring stiffness expressions for different geometries have been established by researchers. 

Some of the most important ones of these functions have been illustrated in Table.1. Although they are algebraically 

different, the predicted numerical values by them are in good agreement.  These stiffness functions will be used to 

evaluate the equivalent reduced section of a cracked beam in the next section. In this way, it will be possible to use 

ordinary beam finite elements available in all FE commercial packages for structural analysis of cracked beams.  
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Fig.1 

a) A cracked beam under general loading. b) Mathematical 

model.   
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Different expressions for local stiffness of a cracked beam. 
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In the above equations k is the local stiffness and   is a h . 

3    THE CONCEPT OF EQUIVALENT REDUCED FLEXURAL RIGIDITY  

The presence of edge cracks can significantly reduce flexural rigidity of beam structures. Therefore it is possible to 

model a cracked beam as an intact structure with reduced cross-sectional properties. There are two possible 

approaches to use this concept.  

In the first approach, it is considered that an edge crack has a uniform effect throughout the beam. Therefore the 

cracked beam can be replaced by an intact beam with a uniform equivalent reduced second moment of area (see Fig. 

2 a).  This approach has been utilized by Zheng and Ji [3] to establish an approximate method for determining the 

natural frequency and the static deflection of cracked beams. However, the format of equivalent I computation is 

highly dependent on the number and location of edge cracks as well as loading and boundary conditions.  

In the second approach, which is used in this research,  it is assumed that an edge crack only decreases a flexural 

rigidity of a very small segment of the beam and does not effect on the other parts (see Fig. 2 b). To verify this 

concept, 2D Finite Elements Analysis is conducted on the cracked beam of Fig. 3 a. The achieved results for lateral 

displacements are plotted in Fig. 4a.  

As evident the results for the intact beam is nearly equal to the analytical results. But the existence of crack 

reduced the rigidity of the beam and caused additional deflection in the cracked beam. According to the fundamental 

theory of bending of beams, a curvature of the beam can be written as Eq. (1). 
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The bending moment and the elastic modules are constant throughout the beam. Therefore it can be concluded 

that:  

 

1

I
   

 

(2) 

 

So, to compute the equivalent second moment of area, the amount of the curvature of the beam should be 

determined. For this purpose cubic polynomials are fitted to the finite elements results by using least square 

technique. To capture the true behavior of the cracked beam, the results are divided in to three parts (one short part 

in the region of the crack and two intact parts) and curve fitting is done for each section individually. The achieved 

results for the curvature of the cracked and intact beam are depicted in the Fig. 4 b. As evident the result for intact 

parts are very close to analytical value of the curvature. But a jumped increase in the region of the crack is detected.  

According to the Eq. (2), this jumping increase can be considered as a jumped decrease in the second moment of 

area. Therefore the cracked beam can be modeled as an intact beam with a reduced second moment of area in a very 

short region around the crack. In the next section a very simple method to evaluate the reduced  I is presented using 

the fundamental theory of bending of beams and the concept of local flexibility.  
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Fig.2 

a) Uniform effect approach. b) Local effect approach. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig.3 

a) Cracked beam under pure bending. b) Deformation in 

cracked segment. 

 

 
 

 
Fig.4 

Results for a beam under pure bending. a) Lateral deflection. b) Curvature. 

4    THE EVALUATION OF REDUCED SECOND MOMENT OF AREA 

Consider Fig. 3 b. The flexural stiffness of a small segment of the beam that is affected by the edge crack can be 

written as: 
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where, M is the bending moment and 1 2       . 

The bending deflection of the beam is assumed very small. Therefore it can be concluded that: 
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Substituting Eq. (4) into Eq. (3), the flexural stiffness of the cracked region is obtained as: 
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As noted before, the local flexural stiffness of a cracked beam can be obtained by available especial stiffness 

functions in the literature. Hence, the reduced second moment of area in the edge crack region can be easily 

determined as: 
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The above formulations lead us to introduce a very simple procedure for structural analysis of cracked beam-

columns, which is summarized as follows: 

Step 1: Determining the flexural stiffness of the cracked region by one of the stiffness functions introduced in 

Table.1. 

Step 2: Selecting the suitable value of *I  for the cracked region. 

Step 3: Determining the reduced second moment of area *I  for the cracked region using Eq. (6). 

Step 4: Establishing the appropriate mesh using ordinary beam elements to model the problem. 

In this step a cracked region of the beam is being modeled by only one element having reduced second moment 

of area *I  and length *I . 

Step 5: Solving the problem. 

In the next section, the above procedure is utilized to solve some problems related to free vibration and buckling 

analysis of cracked beams. The effect of some parameters like *I  and mesh density in convergence of the problem 

will be illustrated as well.  

5    NUMERICAL RESULTS AND DISCUSSION 

5.1 Natural frequencies of a prismatic cracked beam 

In this example, the first three natural frequencies of a prismatic cracked beam with different boundary conditions 

have been studied. The geometry and mechanical characteristics of the beam is depicted in Fig. 5. To study the 

effect of mesh density, each case is studied using three different mesh patterns, which are illustrated in Fig.6.  

As it is evident, the first mesh pattern is the very rough one with the minimum computational costs and equal-

length elements in intact region. Also, a very short reduced beam element is used to model the cracked region of the 

beam. In the second mesh pattern, variable-length beam elements are utilized to discrete the model. The lengths of 

elements have become smaller near to the cracked region in this pattern. And finally, in the third pattern a very fine 

grid with equal-length elements in both cracked and non-cracked region are used.  

Also, three different *I , 0.01,  0.001, 0.0001 m, is used to model each case.The local stiffness expression 

introduced by Yazdchi and Gowhari [8] is used to compute the reduced second moment of area, *I . To validate the 

presented results 2D FE model has been developed using ANSYS FEA commercial package [21]. Four- node 

quadratic plane stress element has been used to establish the model with total of 2154 DOFs. The results are 

summarized in Table. 2 . These have been non-dimensionalized based on the corresponding natural frequency of 

intact beam.  

Evidently, the presented procedure is definitely mesh and *I  independent. Obviously, in most cases the 

presented results are reasonably close to those achieved by 2D FE model, and the differences are less than 3%, even 

thought the obtained differences for third natural frequency in a fixed-free case exceed 8%. To explain the reason of 

this disagreement, all extracted natural mode shapes are shown in Fig.7. As evident, for the lateral or bending 

vibration mode shapes, the results are close and the presented procedure can handle the problem with much less 

computational efforts compared to 2D FE model. But one of the nine extracted natural frequencies, where the 

maximum difference between two methods is happened, is related to the axial vibration of the beam.   
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Table2 

The natural frequencies obtained for the first example. 

       Cracked/Intact 

     mode 1 mode 2 mode 3 

case 
boundary 

conditions 
mesh 

pattern 
*( )I m  present 

2D 

FEM 
Diff% present 

2D 

FEM 
Diff% present 

2D 

FEM 
Diff% 

1 Free-Free 1 0.01 0.7540 

0.7375 

2.237 1.000 

0.9949 

0.532 0.8182 

0.7958 

2.819 

2 0.001 0.7512 1.854 1.000 0.510 0.8196 2.998 

3 0.0001 0.7488 1.529 1.000 0.503 0.8187 2.877 

4 2 0.01 0.7559 2.489 1.000 0.524 0.8180 2.790 

5 0.001 0.7489 1.539 1.000 0.503 0.8194 2.974 

6 0.0001 0.7488 1.529 1.000 0.503 0.8192 2.940 

7 3 0.01 0.7527 2.055 1.000 0.510 0.8178 2.761 

8 0.001 0.7485 1.487 1.000 0.489 0.8192 2.940 

9 0.0001 0.7155 -

2.989 
0.999 0.395 0.8187 2.877 

 

10 Fixed-Free 1 0.01 0.9489 

0.9304 

1.987 0.797 

0.7962 

0.062 0.9997 

0.9209 

8.561 

11 0.001 0.9484 1.927 0.794 -

0.259 
0.9998 8.569 

12 0.0001 0.9470 1.779 0.794 -

0.303 
0.9998 8.569 

13 2 0.01 0.9453 1.600 0.798 0.191 0.9994 8.527 

14 0.001 0.9424 1.285 0.794 -

0.259 
0.9994 8.527 

15 0.0001 0.9386 0.877 0.794 -

0.303 
0.9994 8.527 

16 3 0.01 0.9441 1.471 0.798 0.191 0.9987 8.452 

17 0.001 0.9434 1.395 0.794 -

0.262 
0.9987 8.452 

18 0.0001 0.9344 0.426 0.786 -

1.281 
0.9987 8.452 

             

19 Fixed-

Fixed 
1 0.01 0.8634 

0.8845 

-

2.386 

1.001 

0.9949 

0.584 0.8998 

0.8751 

2.824 

20 0.001 0.8630 -

2.431 
1.000 0.507 0.8972 2.524 

21 0.0001 0.8607 -

2.690 
1.000 0.507 0.8970 2.494 

22 2 0.01 0.8649 -

2.209 
1.000 0.521 0.8995 2.788 

23 0.001 0.8666 -

2.023 
1.000 0.493 0.9007 2.925 

24 0.0001 0.8625 -

2.478 

1.000 0.486 0.8966 2.454 
25 3 0.01 0.8644 -

2.273 
1.000 0.507 0.8993 2.762 

26 0.001 0.8628 -

2.450 
1.000 0.479 0.8966 2.459 

27 0.0001 0.8653 -

2.164 
0.999 0.403 0.8961 2.397 

Natural Frequencies for intact beam (Hz) :  Free-Free & Fixed-Fixed: 1 1 253.132, 146.45, 287.34        

                                                                      Fixed-Free:  1 1 28.3487, 52.247, 129.261       

 

 

 

 

 

 

Fig.5 

Setup of the first example.  

 

 
 

 

 

 

 

 

 

 

Fig.6 

Different mesh patterns used to model cracked beam. 
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Fig.7 

Extracted mode shapes for a cracked beam.  

 

As noted earlier, the case of in-plane bending of beams is only considered in this study, so the presented 

procedure cannot estimate the effects of crack existence in the other natural frequencies of the beam. However this 

approach can be easily generalized to study all possible natural modes by rewriting the local flexibility function in a 

general form. It is also worth to note that when a crack is located close to the stationary point of the vibration mode, 

the second mode for free-free and fixed –fixed cases, it does not affect natural frequency of the beam. Another 

parameter that can affect the results of presented procedure is the selected local flexibility expression to compute the 

reduced second moment of area in the cracked region of the beam. To study the effect of this parameter in the 

convergence of problem, a sensitivity analysis is done on the case No.11 of Table. 2 , and the problem is solved 

using different local stiffness functions. The achieved results are summarized in Table. 3. As it is evident, the 

differences between results are negligible. This shows that the presented procedure is independent of the selected 

local flexibility function. In fact, predicted numerical values for the local stiffness of cracked region by the use of 

these functions are in good agreement. Therefore, all of them compute nearly same reduced second moment of area 

for the same cases.   
 

Table3 

The effect of different selected stiffness functions on results. 

    Cracked/Intact 

Local Stiffness Function Predicted * 4( )I m  mode1  mode2  

Yazdchi & Gowhari.[8] 0.00002531 0.9484 0.7940 

Okamura et al.[4] 0.00002596 0.9591 0.8012 

Zheng & Fan.[7] 0.00002512 0.9476 0.7917 

Ostachovicz and Krauczuk.[6] 0.00002579 0.9537 0.8003 

5.2 Buckling analysis of a prismatic cracked column 

In the second example, buckling capacity of a prismatic fixed-pinned column with single and double edge cracks 

under concentric axial load has been studied (Fig.8). Thus, the effect of crack depth and its location on the buckling 

load of the column is investigated. The cracked region of the column is modeled using one reduced beam element 

with * 0.001I m . To compute the reduced second moment of area , *I , the local stiffness expressions introduced 

by Ostachowicz and Krawczuk [6] for single and double edge crack are used. Again, to validate the presented results 

a 2D FE model is conducted using ANSYS FEA package. As shown in Table. 4, the results of both methods are in 

good agreement, and the maximum difference is less than 6%. In addition, two important points could be concluded 

from the results. As expected, the carrying capacity of the column decreases as the crack depth increases. In 

addition, for a constant crack depth, the maximum reduction of the buckling capacity occurs when the crack is 

located at the position of maximum curvature of the column buckling mode shape. 

 

 

 

 

 

 

Fig.8 

Setup of the second example.   
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Table 4 

The buckling load obtained for the second example. 

        Buckling Load Cracked/Intact 

case a h  cx   present 2D FEM ANSYS Diff% 

1 0.1 3 single crack 0.9938 0.9382 5.927 

2  double crack 0.9929 0.9379 5.868 

3 5 single crack 0.9734 0.9266 5.052 

4  double crack 0.9651 0.9129 5.718 

5 7 single crack 0.9558 0.9186 4.046 

6  double crack 0.9365 0.8897 5.261 

       
7 0.2 3 single crack 0.9938 0.9379 5.959 

8  double crack 0.9907 0.9373 5.690 

9 5 single crack 0.9422 0.8928 5.529 

10  double crack 0.8656 0.8173 5.901 

11 7 single crack 0.9098 0.8644 5.251 

12  double crack 0.8054 0.7646 5.343 

       
13 0.3 3 single crack 0.9932 0.9373 5.962 

14  double crack 0.8860 0.8505 4.169 

15 5 single crack 0.8795 0.8380 4.942 

16  double crack 0.6502 0.6275 3.617 

17 7 single crack 0.8227 0.7836 4.996 

18  double crack 0.5090 0.5061 0.561 

Buckling load for intact column; 2 2 8/ (0.7 ) 35.249 10crP EI L      

5.3 Free lateral vibration of a cracked conical shaft 

As noted before, the main advantage of the presented method is the ability of modeling cracked slim structures with 

ordinary available beam elements within all commercial FEM packages. Therefore, the method can model problems 

with much less computational efforts compared to 2D and 3D FEMs. This advantage is more obvious when complex 

practical engineering problems are considered. To validate this claim, as a third example, free bending vibration of 

simply supported conical shaft of Fig.9 is studied. The details of the geometry and finite element model are depicted 

in that figure. Again, the mechanical properties of example 1 are used.  The shaft is modeled using 118 Euler beam 

elements with total 354 DOFs. A cracked region of the shaft is modeled using one reduced element 

with * 0.005I m . The reduced second moment of area, *,I  is computed using the function introduced by Zheng and 

Fan [7]. To validate the presented results, 3D FE model with total 5437 DOFs is conducted using ANSYS. Table.5 

shows the results achieved by both methods. As it is shown, despite the vast differences in computational efforts, 

there is a good agreement between two methods. 

Table5 

The Natural Frequencies obtained for the third example. 

   Cracked/Intact     

Natural Frequencies Presented Method 3D FEM Diff% 

First Mode 0.975 0.951    2.5 

Second Mode 0.978 0.961    1.5 

Third Mode 0.979 0.948 3 
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Fig.9 

Setup of the third example a) Geometry b) Proposed FE 

model.   

6    CONCLUSIONS 

A very simple Finite Element procedure for modal and buckling analysis of cracked beam-like structures has been 

presented. Using this approach, it is possible to model fractured beam-like structures by ordinary beam elements 

rather than 2 & 3D FE models, and he computational efforts would be reduced significantly. This approach is 

introduced by the mixture of the local flexibility method and the concept of equivalent reduced section. The 

presented procedure is able to model complicated engineering cases of cracked slim structures. Also, this approach 

is validated by the comparison of achieved results with those obtained by 2 & 3D FEA.  Although only in plane 

bending of structures is considered in this work, the approach can easily be generalized to calculate all possible 

vibration and instability modes. It is feasible by rewriting the local stiffness function of cracked region in the general 

form ( 6 6  matrix) and then computing the flexibility variation of the beam in all possible degrees of freedom.   
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