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 ABSTRACT 

 This study deals with the vibration and stability analysis of double-graphene nanoribbon-
system (DGNRS) based on different nonlocal elasticity theories such as Eringen's nonlocal, 
strain gradient, and modified couple stress within the framework of Rayleigh beam theory. In 
this system, two graphene nanoribbons (GNRs) are bonded by Pasternak medium which 
characterized by Winkler modulus and shear modulus. An analytical approach is utilized to 
determine the frequency and critical buckling load of the coupled system. The three vibrational 
states including out-of-phase vibration, in-phase vibration and one GNR being stationary are 
discussed. A detailed parametric study is conducted to elucidate the influences of the small 
scale coefficients, stiffness of the internal elastic medium, mode number and axial load on the 
vibration of the DGNRS. The results reveal that the dimensionless frequency and critical 
buckling load obtained by the strain gradient theory is higher than the Eringen's and modified 
couple stress theories. Moreover, the small scale effect in the case of in-phase vibration is 
higher than that in the other cases. This study might be useful for the design of nano-devices in 
which GNRs act as basic elements. 
                                                                             © 2013 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 N recent years, nano-structural carbon materials including graphene sheet (GS), carbon nanotube (CNT), 
buckyball, and GNR have attracted considerable interest of scientific communities due to their exceptional and 

remarkable properties. GS, which can be described as a monolayer of carbon atoms tightly packed into a two-
dimensional honeycomb lattice in which carbon atoms bond covalently with their neighbors and was first produced 
in 2004 [1-3]. GNRs are obtained by patterning GS into narrow strips, which can be observed as quasi-one-
dimensional nanomaterials. The electronic structure of GNRs depends on not only the shapes of the edges (zigzag 
and armchair) but also the ribbon width [4-5]. GNRs possess extraordinary mechanical, thermal, electronic transport 
and spin transport properties, and a large aspect ratio, which have made them as desirable materials for a wide range 
of device applications, such as sensors [6]. 

In order to the mechanical modeling of micro- and nano-structures, the higher-order continuum theories, such as 
Eringen's nonlocal elasticity, strain gradient elasticity, and modified couple stress have been recently employed. 
These theories are capable of account and statement of the size-dependent behavior while the classical (local) theory 
can not explain size-dependent manner and it assumes that the stress at a defined point depends uniquely on the 
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strain at the same point. Among the size-dependent theories, Eringen's nonlocal theory expresses the stress at a 
defined point as a function of the strain at all the points of the continuum [7-9]. There are many works in the 
literature that have used this theory. For instance, Ghorbanpoure Arani et al. [10] investigated the Pasternak 
foundation effect on the axial and torsional waves propagation in embedded double-walled CNTs using nonlocal 
elasticity cylindrical shell theory. They deduced that with increasing the value of nonlocal parameter, the wave 
propagation frequencies are decreased. The strain gradient is more complete theory which was originated by 
Mindlin [11]. For more details, researchers can refer to Lam et al. [12] and Kong et al. [13]. Based on the strain 
gradient theory, the strain energy density is considered as a function of the symmetric strain tensor, the dilatation 
gradient vector, the deviatoric stretch gradient tensor and the symmetric rotation gradient tensor. Yin et al. [14] 
employed strain gradient beam model for dynamics of microscale pipes conveying fluid. Their results showed that 
the microscale pipe displays remarkable size effect when its outside diameter becomes comparable to the material 
length scale parameter while the size effect is almost diminishing as the diameter is far greater than the material 
length scale parameter. Among the aforementioned nonlocal theories, the modified couple stress theory was first 
introduced by Yang et al. [15] in which the strain energy has been demonstrated to be a quadratic function of the 
strain tensor and symmetric part of the curvature tensor. For example, Şimşek [16] utilized the modified couple 
stress theory to study dynamic analysis of an embedded microbeam carrying a moving microparticle. He concluded 
that the deflection of the microbeam under action of a microparticle predicted by the classical beam theory are 
always larger than those by the modified couple stress theory. This study aims to analyze vibration and critical 
buckling load of DGNRS based on aforementioned different nonlocal theories.    

Understanding mechanical behaviors of GNRs is a key step for designing many nano-devices. Particularly, 
vibration and stability responses of GNRs as nano-devices component have great importance. Herein, few 
researchers analyzed mechanical behaviors of GNRs based on nonlocal elasticity theory which was initiated in the 
papers of Eringen [7-9]. For instance, nonlocal vibration of embedded double-layer graphene nanoribbons 
(DLGNRs) in in-phase and anti-phase modes was studied by Shi et al. [17]. They concluded that the vibrational 
properties of DLGNRs show different behaviors in in-phase and anti-phase modes. Moreover, they showed that the 
natural frequencies of DLGNR embedded in an elastic matrix are significantly influenced by nonlocal effects, the 
aspect ratio of DLGNRs and the Winkler foundation modulus. Also, he and his co-workers [18] investigated 
nonlocal elasticity theory for the buckling of DLGNRs based on a continuum model. Their results indicated that the 
nonlocal effect has an inverse relationship with the buckling stress, and the nonlocal effect decreases with increasing 
aspect ratio of DLGNRs.  

With respect to developmental works on mechanical behavior analysis of GNRs, it should be noted that none of 
the papers mentioned above, have considered a coupled DGNRS. But there are studies about coupled systems such 
as double-carbon nanotube and double-graphene sheet. For example, axial instability of double-nanobeam-systems 
(DNBS) was studied by Murmu and Adhikari [19] who showed the small scale effects are higher with increasing 
values of nonlocal parameter for the case of in-phase buckling modes than the out-of-phase buckling modes. 
Besides, they found that the increase of the stiffness of the coupling elastic medium in DNBS reduces the small-
scale effects during the out-of-phase buckling modes. In another work, he and his co-worker [20] analyzed nonlocal 
elasticity based vibration of initially pre-stressed coupled DNBS. Their study indicated that increasing the stiffness 
of the springs in coupled nanosystems reduces the nonlocal effects. Furthermore, their results revealed that the 
small-scale effects in coupled nano systems are more prominent with the increasing nonlocal parameter in the in-
phase vibration than in the out-of-phase motion condition. These works are one-dimensional analysis. Analysis on 
coupled systems of two dimensional graphene sheets was taken up by several researchers lately. Murmu and 
Adhikari [21] examined nonlocal vibration of bonded double-nanoplate-systems (DNPS). They concluded that the 
small-scale effects in DNPS are higher with the increasing values of nonlocal parameter for the case of synchronous 
modes of vibration than in the asynchronous modes. In addition, analytical results clarified that the increase of the 
stiffness of the coupling springs in DNPS reduces the small-scale effects during the asynchronous modes of 
vibration. The papers [19-21] have considered the Winkler model for simulation of elastic medium between two 
nanostructures. In this simplified model, a proportional interaction between pressure and deflection of nanostructure 
is assumed, which is carried out in the form of discrete and independent vertical springs. Whereas, Pasternak 
suggested considering not only the normal stresses but also the transverse shear deformation and continuity among 
the spring elements, and subsequent applications for developing the model for vibration/buckling analysis, which 
proved to be more accurate than the Winkler model. Recently, Ghorbanpour Arani et al. [22] examined buckling 
analysis and smart control of single layered GS using elastically coupled polyvinylidene fluoride (PVDF) nanoplate 
based on the nonlocal Mindlin plate theory. In this study, single layered GS is coupled with PVDF nanoplate by the 
Pasternak model. This study aims to couple two GNRs by an elastic medium which simulated by the Pasternak 
model.  
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However, to date, no report has been found in the literature on vibration and stability analysis of a Pasternak 
coupled DGNRS. Motivated by these considerations, in order to improve optimum design of nanostructures, we aim 
to investigate the vibration and stability of a Pasternak coupled DGNRS based on different nonlocal theories 
including Eringen's nonlocal, strain gradient and modified couple stress. Herein, three cases of out-of-phase 
vibration, in-phase vibration and one GNR being stationary are considered. The influences of small scale parameter, 
elastic medium, mode number and axial load on vibration and critical buckling load of coupled DGNRS have been 
taken into account. 

2    MODELING OF PROBLEM  

Consider double-GNR-system as shown in Fig. 1. GNRs are modeled with nanobeam so that denoted as nanoribbon-
1 and nanoribbon- 2. The two nanoribbons with identical length L  and width b  are bonded by a Pasternak medium 
which is characterized by Winkler modulus, wk and shear modulus, gk . The elastic modulus, mass density, cross 

section area, and second moment of inertia of the i th nanobeam are denoted by iE , i , iA , and iI ( 2,1i ), 

respectively. The both nanoribbons in coupled system are considered to be identical (i.e. EEE  21 ,   21 , 

AAA  21 ,and III  21 ). Also, denote the deflections of two nanoribbons by ),(1 txw and ),(2 txw , respectively. 

Consider the nanoribbons be subjected to axial forces (i.e. xxx NNN  21 ). 
 
 

 
 

 

 
Fig. 1  
Schematic of a Pasternak coupled double-nanoribbons-
system subjected to axial load. 

3    FORMULATION 
3.1 Eringen's nonlocal theory 

In the Eringen's nonlocal elasticity model, the stress state at a reference point in the body is regarded to be dependent 
not only on the strain state at this point but also on the strain states at all of the points throughout the body. The basic 
equations for homogeneous, isotropic and nonlocal elastic solid with zero body forces are given by [10] 
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where ijklC  is the elastic module tensor of classical (local) isotropic elasticity; ij and ij are stress and strain 

tensors, respectively, and iu  is displacement vector. ),(  xx   is the nonlocal modulus. xx   is the Euclidean 

distance, and lae /0  is defined that l  is the external characteristic length, 0e  denotes a constant appropriate to 

each material, and a  is an internal characteristic length of the material (e. g., length of C-C bond, lattice spacing, 
granular distance). Consequently, ae0  is a constant parameter which is obtained with molecular dynamics, 
experimental results, experimental studies and molecular structure mechanics. The constitutive equation of the 
nonlocal elasticity can be written as [10] 
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where the parameter ae0  denotes the small scale effect on the response of structures in nanosize, and 2 is the 
Laplace operator in the above equation. 

On the basis of Refs. [23-26] and considering the following dimensionless parameter 
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The motion equations of coupled DNBS for Raleigh beam model can be introduced as:  
For nanoribbon-1, 
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For nanoribbon-2, 
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For simplifying analysis, the relative movement of two nanoribbons is introduced as: 
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By subtracting Eq. (4) from Eq. (5) and considering Eq. (6) gives:  
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Considering Eq. (7), Eq. (5) becomes: 
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3.2 Strain gradient theory 

Based on the strain gradient theory, the strain energy density is considered as function of the symmetric strain 
tensor, the dilatation gradient vector, the deviatoric stretch gradient tensor, and the symmetric rotation gradient 
tensor. In order to characterize these tensors and vectors, there are three independent material length scale 
parameters in addition to four classical material constants for isotropic linear elastic materials. So the strain energy 
U  that occupying region Ω  is represented by [14] 
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where i  represent the dilatation gradient vector, ij , )1(
ijk  and ij denote the strain, the deviatoric stretch gradient 

and the symmetric rotation gradient tensors, respectively which are defined by: 
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where iu , ij ,  and jpqe  are the displacement vector, the knocker delta, and the alternate tensor, respectively. The 

classical stress tensor, ij , the higher-order stresses, ip , )1(
ijk and ijm  are given by: 
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where k and G  are the bulk modulus and the shear modulus, respectively. ),,( 210 lll  are independent material length  
scale parameters. 

On the basis of Ref. [23, 27 and 28] and considering the following and above dimensionless parameters 
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The motion equations of DNBS for Raleigh beam model can be introduced as:  
For nanoribbon-1,  
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For nanoribbon-2, 

 

0)()(

)()()
5

4
2()

15

8
21(

2
2

2

2
1

2

2
2

2

12

22
2

4

2
2

2

6
2

6
2
1

2
04

2
4

2
2

2
1

2
0
































X

W
P

X

W

X

W
KWWK

X

WW

X

W
LL

X

W
LLL

GW




 

 
 

(21) 

 
Subtracting Eq. (20) from Eq. (21) and considering Eq. (6) gives:  
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Considering Eq. (7), Eq. (21) becomes: 
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3.3 Modified couple stress theory 

The modified couple stress theory was first proposed by Yang et al. [15] in which the strain energy density is the 
function of both the strain tensor and curvature tensor. When the additional scale parameters 0l and 1l in the strain 
gradient elasticity theory equal to zero, then the relation of the modified couple stress theory is obtained. In fact, 
only one length scale parameter 2l  is needed for this theory. 

By setting 010  ll  into Eqs. (22) and (23) , the equations related to modified couple stress are obtained as: 
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Noted that by setting 0210  lll in aforementioned nonlocal theories, the classical theory is obtained. 
By setting 0  into Eqs. (8) and (9) , the equations related to classical theory are obtained as:  
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4    VIBRATIONAL STATES OF THE COUPLED SYSTEM 
4.1 Out-of-phase vibration 

In this case, both of the nanoribbons vibrate asynchronously (i.e. 0),(),( 21   XWXW ) as shown in Fig.2(a). 
Based on the simply supported boundary condition, the following solution can be expressed as [20] 
 

,)sin(
1

 
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 i

m
m eXmWW  

 
(28) 

 
where m is half wave number. 

Substitiuting Eq. (28) into Eqs. (8), (22), (24) and (26), the out-of-phase frequency for different theories can be 
written as: 

4.1.1 Eringen's nonlocal theory 
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4.1.2 Strain gradient theory 
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4.1.3 Modified couple stress theory 
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4.1.4 Classical theory 
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(32) 

4.2 In-phase vibration 

In this case, both of the nanoribbons vibrate synchronously (i.e. 0),(),( 21   XWXW ) as shown in Fig. 2(b). 
Hence, the coupled system can treat as a single nanoribbon without elastic medium. Substitiuting Eq. (28) to Eqs. 
(9), (23), (25) and (27), the out-of-phase frequency for different theories can be written as: 
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4.2.1 Eringen's nonlocal theory 
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4.2.2 Strain gradient theory 
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4.2.3 Modified couple stress theory 
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4.2.4 Classical theory 
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4.3 One nanoribbon being stationary 

In this case, one nanoribbon is fixed (i.e. 0),(2 XW ) as shown in Fig. 2(c) . Hence, the coupled system can treat 
as a single nanoribbon with elastic medium. For this case, the vibration Eqs. (8), (22), (24), and (26) for Eringen's, 
strain gradient, modified couple stress and classical theories, respectively, reduce to:  
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Substitiuting Eq. (28) to Eqs. (37), (38), (39) and (40), the system frequency for different theories can be written 
as: 

4.3.1 Eringen's nonlocal theory 
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4.3.2 Strain gradient theory 

 

22

2222662
1

2
0

442
2

2
1

2
0 )

5

4
2()

5

8
21(





m

KmKPmmLLmLLL GW

fixedGNRone 


  

 
(42) 

4.3.3 Modified couple stress theory 
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4.3.4 Classical theory 
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(b) 

 
 

 

 

(c)  

Fig.2  
(a) out-of-phase vibration of coupled DGNRS (b) in-phase vibration of coupled DGNRS (c) vibration of coupled DGNRS when 
one nanoribbon is fixed. 
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5    RESULTS AND DISCUSSIONS 

The material and geometrical properties of the GNRs are assumed same as the graphene sheets. Hence, the 

thickness, Young’s modulus and mass density of the GNR are nm34.0 , TPa02.1  and 3Kg/m2250 , respectively 
[17,18]. In this section, vibration behavior and critical buckling load of the coupled nanoribbons are studied for three 
cases of out-of-phase vibration, one nanoribbon fixed and in-phase vibration so that the effects of nonlocal 
parameter, axial load, elastic medium and mode number are considered. To this end, frequency ratio (FR) and 
frequency reduction percent (FRP) are defined as follows: 
 

 

Nonlocal

local

local Nonlocal

local

FR

FRP 100






 
 



 

 
 

 
where Nonlocal  and local  can be obtained from the Eringen's nonlocal and local theories, respectively. 

In the absence of similar publications in the literature covering the same scope of the problem, one can not 
directly validate the results found here. However, due to use nanobeam for modeling of nanoribbons in the present 
work, the results could be partially validated based on a simplified analysis suggested by Murmu and Adhikari 
[19,20] on the buckling and vibration of double coupled-SWCNT-systems modeled by Euler-Bernoulli beam. For 

this purpose, a SWCNT with TPa971.0E , nm34.0h  and 3Kg/m2300  is considered. Furthermore, the 

coefficient of spring foundation between two SWCNT is 30WK . A comparison between the present results and 
Refs. [19, 20] for buckling and vibration analysis of double coupled-SWCNT-systems using Eringen's nonlocal 
theory are presented in Fig. 3 and 4. In this Figures, buckling load reduction percent and FRP versus dimensionless 
nonlocal parameter are plotted for three cases of out-of-phase vibration, in-phase vibration and one SWCNT fixed. 
As can be seen, the present results based on Eringen's nonlocal theory match with those reported by Murmu and 
Adhikari [19, 20], indicating validation of our work. 

Table 1 shows the comparison of strain gradient, modified couple stress, Eringen's and classical theories in 
studying of coupled system frequency for different mode numbers and  three cases of out-of-phase vibration, one 
nanoribbon fixed and in-phase vibration. It is clear that the frequency of the DGNRS increases with increasing mode 
number for all cases and theories. Irrespective of theory type, the effect of vibrational states (i.e. three cases) on the 
frequency follows the order. 

Out-of-phase vibration > Vibration with one nanoribbon fixed > In-phase vibration  
For three cases mentioned above, it is also concluded that the frequency predicted by Eringen's nonlocal theory 

and strain gradient theories are minimum and maximum, respectively. However, the frequency obtained by different 
theories follows the order. 

Strain gradient theory > Modified couple stress theory > Classical theory > Eringen theory  
It is important to note that the results obtained here, are the same as those expressed in [14, 28], indicating 

validation of our work. 
For three aforementioned cases in Table 1. , the frequency of the DGNRS for classical, Eringen's, modified 

couple stress and strain gradient theories is illustrated in Table 2. Here, for showing the effects of elastic medium 
between two nanoribbons, three states of without elastic medium, Winkler medium and Pasternak medium are 
considered. The same as Table 2. , the values of frequencies for strain gradient theory are higher than those for 
classical, Eringen's and couple stress theories due to the three additional material parameters. With regard to elastic 
medium effect, it is clear that this effect on the frequency of the coupled system follows the order. 

Pasternak medium > Winkler medium >Without elasic medium 
It is due to the fact that the Pasternak medium consider not only the normal stresses (i.e. Winkler medium) but 

also the transverse shear deformation and continuity among the spring elements. It is also observed that the 
frequency of the coupled system in the case of in-phase vibration is unchangeable with internal elastic medium. This 
is because in this case, the elastic medium terms in governing equations are eliminated and the coupled system 
behaves as a single nanoribbon without elastic medium. 
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Fig. 3 
Comparison of buckling load reduction percent versus 
dimensionless nonlocal parameter between present work and 
Ref. [19]. 

 

  

 

 
 
 
 
 
 
Fig. 4 
Comparison of vibration reduction percent versus 
dimensionless nonlocal parameter between present work and 
Ref. [20]. 

 
Table 1 
 Effect of mode number on frequency of the coupled system for different theories 

Vibrational states Mode 
number 

Classical 
theory 

Eringen's 
nonlocal 
theory 

Modified couple 
stress theory 

Strain 
gradient 
theory 

 Mode 1 4.0676 3.9573 4.1042 4.1269 
Out-of-phase vibration Mode 2 6.4467 5.5141 6.8078 7.0240 

Mode 3 9.4875 6.9473 10.6883 11.3747 
 Mode 4 12.5990 7.8857 15.3397 16.8275 
 Mode 1 3.6335 3.5096 3.6744 3.6998 

One nanoribbon fixed Mode 2 6.3639 5.4170 6.7294 6.9481 
Mode 3 9.4538 6.9032 10.6585 11.3466 

 Mode 4 12.5795 7.8545 15.3237 16.8129 
 Mode 1 3.1400 2.9958 3.1873 3.2165 

In-phase vibration Mode 2 6.2800 3.3182 6.6501 6.8713 
Mode 3 9.4200 6.8568 10.6285 11.3184 

 Mode 4 12.5600 7.8233 15.3077 16.7984 
 
 
Table 2  
Effect internal elastic medium on frequency of the coupled system for different theories 
Vibrational states Mode number Classical 

theory 
Eringen's 
nonlocal 
theory 

Modified couple 
stress theory 

Strain 
gradient 
theory 

 Without elastic edium 3.1400 2.9958 3.1873 3.2165 
Out-of-phase vibration With Winkler medium 3.9931 3.8807 4.0304 4.0535 

With Pasternak  medium 4.0676 3.9573 4.1042 4.1269 
 Without elastic medium 3.1400 2.9958 3.1873 3.2165 

One nanoribbon fixed With Winkler medium 3.5920 3.4666 3.6334 3.6590 
 With Pasternak medium 3.6335 3.5096 3.6744 3.6998 
 Without elastic medium 3.1400 2.9958 3.1873 3.2165 

In-phase vibration With Winkler medium 3.1400 2.9959 3.1873 3.2165 
 With Pasternak medium 3.1400 2.9958 3.1873 3.2165 
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Fig. 5 demonstrates the relationship between the dimensionless frequency ( ) and the dimensionless axial load 
( P ) for three cases of out-of-phase vibration, one nanoribbon fixed and in-phase vibration which are obtained by 
different theories, including classical, Eringen's, modified couple stress and strain gradient. As can be seen,   
decreases with increasing P . When the dimensionless frequency becomes zero, critical buckling load is reached, 
which the system loses its stability. Therefore, with increasing axial load, system stability decreases and becomes 
susceptible to buckling. Comparing classical theory with Eringen's nonlocal theory, it can be concluded that the 
dimensionless frequency and critical buckling load of the classical theory are higher than Eringen's nonlocal theory. 
This is because in Eringen's nonlocal theory, the interaction force between nanoribbon atoms decreases, and that 
leads to a softer structure. The dimensionless frequency and critical buckling load obtained by the strain gradient 
theory are higher than the Eringen's and modified couple stress theories. This is due to the fact that the strain 
gradient theory expresses the three additional dilatation gradient tensor, the deviatoric stretch gradient tensor and the 
rotation gradient tensor. Furthermore, for all classical and nonlocal theories, observation of Fig. 5 implies that the 
  and P  for the case of out-of-phase vibration are higher than two other cases including in-phase vibration and 
one nanoribbon fixed. The reason is that in the cases of one nanoribbon fixed and in-phase vibration, the coupled 
system behaves as the single GNR with and without elastic medium effects, respectively. 

The effect of enclosing elastic medium between two GNRs is shown in Figs.6(a-d) on the dimensionless 
frequency with respect to the dimensionless axial load for Eringen's nonlocal theory. The three vibrational states 
including out-of-phase vibration, one nanoribbon fixed and in-phase vibration are considered in this figure. It can be 
found that the vibrational states are equal in the case of without elastic medium and this effect becomes more 
prominent with increasing elastic medium coefficient. It is also worth mentioning that the elastic medium has not 
any effect on the vibration of coupled system in the case of in-phase vibration, since in this case, the DGNRS treats 
as a single GNR without internal elastic medium. Furthermore, the stability region of the coupled system in the 
cases of out-of-phase vibration and one nanoribbon fixed increases with increasing dimensionless axial load. 
Although not presented here, the same conclusions are also valid for other theories. 

Figs.7(a-d) and Figs. 8(a-d) illustrate the FR and FRP versus dimensionless Eringen's nonlocal parameter for 
different dimensionless axial loads including 0P , 2P , 4P  and 8P . In these figures, similar to pervious 
figures, three cases for vibrational states are considered (i.e. out-of-phase vibration, in-phase vibration and vibration 
with one nanoribbon fixed). It can be observed that the FR and FRP for the case of in-phase vibration are, 
respectively smaller and higher than cases of out-of-phase vibration and one nanoribbon fixed. This is due to the 
absence of coupling effect of the elastic medium between the two GNRs in the case of in-phase vibration. 
Meanwhile, the small scale effect in the case of in-phase vibration is higher than that in the other cases. As 
mentioned in discussion of Fig. 5, the coupled system becomes unstable when the FR and FRP are equal to zero and 
100%, respectively. In the case of 0P , the coupled system is stable in three aforementioned cases but with 
increasing dimensionless axial load, the system stability decreases. In other words, when 2P , the DGNRS 
becomes unstable in the case of in-phase vibration at 66.0 . With increasing P  from 2 to 4, the coupled system 
buckles in two cases of in-phase vibration and one nanoribbon fixed at 41.0 and 87.0 , respectively. When 

8P , the DGNRS becomes unstable in three cases mentioned above. However, it can be concluded that the 
coupled system in the case of out-of-phase vibration buckles later with respect to two other cases. It should be noted 
that, the same conclusions are also valid for other theories, although not presented here. 

 
 

 

   
 
 
 
 
 
 
 
 
 
Fig. 5 
Dimensionless frequency versus dimensionless axial load for 
different theories. 
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Fig. 6 
Dimensionless frequency versus dimensionless axial load for Eringen's nonlocal theory (a) 0W GK K   (b) 5, 0.05W GK K   

(c) 15, 0.15W GK K   (d) 35, 0.35W GK K  . 
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Fig. 7 
Frequency ratio versus dimensionless nonlocal parameter for Eringen's nonlocal theory (a) 0P   (b) 2P   (c) 4P   (d) 

8P  . 
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Fig. 8 
Frequency reduction percent versus dimensionless nonlocal parameter for Eringen's nonlocal theory (a) 0P   (b) 2P   (c) 

4P   (d) 8P  . 

6    CONCLUSION 

Using Rayleigh beam model, vibration and stability of the DGNRS were investigated in this manuscript based on 
the classical, Eringen, modified couple stress and strain gradient theories. An analytical approach was used for 
obtaining the frequency and critical buckling load of the coupled system for three cases of out-of-phase vibration, 
one nanoribbon fixed and in-phase vibration. The proposed strain gradient and Eringen's theories contains three and 
one material length scale parameters to capture the size effect, respectively. Hence, the frequency and critical 
buckling load predicted by strain gradient theory was higher than those predicted by Eringen's theory. It was 
observed that the elastic medium has not any effect on the vibration of coupled system in the case of in-phase 
vibration. Meanwhile, the small scale effect in the case of in-phase vibration was higher than that in the other cases. 
It was also concluded that the coupled system in the case of out-of-phase vibration buckles later with respect to two 
other cases. The results of this study are validated as far as possible by Refs. [19,20]. This investigation on the 
vibration and critical buckling load of coupled-GNRs may be used as a useful reference for the study and design of 
nano- devices in which GNRs act as basic elements. 
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