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 ABSTRACT 

 The present investigation deals with the propagation of waves in the layer of an anisotropic fibre 

reinforced thermoelastic solid. Secular equations for symmetric and skew-symmetric modes of 

wave propagation in completely separate terms are derived. The amplitude of displacements and 

temperature distribution were also obtained. Finally, the numerical solution was carried out for 

Cobalt material and the dispersion curves, amplitude of displacements and temperature 

distribution for symmetric and skew-symmetric wave modes to examine the effect of anisotropy. 

Some particular cases are also deduced. 

© 2010 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

IBER-REINFORCED are widely used in engineering structures, due to their superiority over the structural 

materials in applications requiring high strength and stiffness in lightweight components. Consequently, 

characterization of their mechanical behavior is of particular importance for structural design using these materials. 

Fibers are assumed an inherent material property, rather than some form of inclusion in models. In the case of an 

elastic solid reinforced by a series of parallel fibers it is usual to assume transverse isotropy.  

The idea of continuous self-reinforcement at every point of an elastic solid was introduced by Belfield et al [1]. 

The characteristic property of reinforced concrete member is that its components, namely concrete and steel act 

together as a single anisotropic unit as main long as they remain in the elastic condition, i.e. the two components are 

bound together so that there can be no relative displacement between them. The dynamical interaction between the 

thermal and mechanical fields in solids has great practical applications in modern aeronautics, astronautics, nuclear 

reactors and high energy particle accelerators. The generalized theory of thermoelasticity has drawn widespread 

attention because it removes the physically unacceptable situation of the classical theory of thermoelasticity, that is, 

that the thermal disturbance propagates with infinite velocity. Lord- Shulman theory [2] is important generalized 

theories of thermoelasticity that become center of interest of recent research in this area. They incorporated a flux 

rate term into the Fourier’s law of heat conduction (with one relaxation time) and formulated a generalized theory 

admitting finite speed for thermal signals. The temperature of a deformable body can vary both with time and from 

point to point. This variation can be caused both by heat exchange with external medium and by the process of 

deformation itself during which a part of the mechanical energy is transformed into heat. Acharya and Roy [3] 

discussed the propagation of plane waves and their reflection at the free/rigid boundary of a fiber-reinforced 

magnetoelstic semi space. Sengupta and Nath [4] investigated the problem of surface waves in fiber-reinforced 

anisotropic elastic media. Singh [5] showed that, for wave propagation in fiber-reinforced anisotropic media, this 

decoupling cannot be achieved by the introduction of the displacement potentials. However, no attempt has been 

made to discuss the propagation of waves in the layer of fiber-reinforced anisotropic generalized thermoelastic solid. 
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The aim of the present study is to enhance our knowledge about the propagation of waves in a layer of fiber-

reinforced transversely isotopic thermoelastic solid. This study has many applications in various fields of science 

and technology, namely, atomic physics, industrial engineering, thermal power plants, submarine structures, 

pressure vessel, aerospace, chemical pipes and metallurgy. After developing the solution, frequency equations 

connecting the phase velocity with wave number, for symmetric and skew-symmetric wave modes are derived. The 

amplitude ratios of displacements and temperature distribution are also obtained. The dispersion curves, attenuation 

coefficients, amplitude ratio of displacements and temperature distribution for symmetric and skew-symmetric 

waves are presented and illustrated graphically to evince the effect of anisotropy.  

2    BASIC EQUATIONS  

The linear equations governing thermoelastic interactions in homogeneous transversely isotropic fiber-reinforced 

solid are: 

2.1 Constitutive relations 

2 ( )
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The deformation tensor is defined by 
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Balance law: The balance laws for fiber-reinforced linearly elastic medium whose preferred direction is that of a are 

 

,ij j i iF u    (3)
 

2.2 Equation of heat conduction 
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where   is the mass density, 
ij  are components of stress, 

iu  the mechanical displacement, 
ije  are components of 

infinitesimal strain, T the temperature change of a material particle, 
0T  the reference uniform temperature of the 

body, ij i ijK k   (i not summed) the heat conduction tensor, ij i ij    (i not summed) the thermal elastic coupling 

tensor, ec  the specific heat at constant strain, ja  are components of a, all referred to Cartesian coordinates. The 

vector a may be a function of position. The coefficients , , ,L T   
 
and   are elastic constants with the dimension 

of stress. We choose a [6] so that its components are (1, 0, 0). The comma notation is used for spatial derivatives 

and superimposed dot represents time differentiation. 

3    PROBLEM FORMULATION 

In the present paper, we consider an infinite layer with traction free surfaces at 2x H  (layer of thickness 2H), 

which consists of homogeneous, transversely isotropic thermoelastic material. We take the origin of the coordinate 

system 1 2 3( , , )x x x  on the middle surface of the layer. The 2 3x x  plane is chosen to coincide with the middle 
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surface and 
2x  axis normal to it along the thickness. For the two-dimensional problem, we assume the components 

of the displacement vector of the form 
 

1 2( , ,0),u u u  (5)
 

 
and assume that the solutions are independent of 

3x  i.e. 
3/ 0.x  Thus the field equations and constitutive 

relations for such a medium reduces to: 
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where 
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and , , , ,L T      are material constants, 
1 2,k k  are coefficients of thermal conductivity, 

1 2,   are coefficients of 

linear thermal expansion, 
0  is thermal relaxation time,

 1u , 
2u  are the components of displacement vector. For 

further considerations, it is convenient to introduce the non-dimensional variables defined by 
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4    BOUNDARY CONDITION 

The boundary conditions for the thermally insulated fibre-reinforced layer are the vanishing of normal stress, 

tangential stress and temperature distribution. Therefore, we consider the following non-dimensional boundary 

conditions at
 2x H : 

 

 
22 21

2

0, 0, 0
T

x
 (10) 

5    NORMAL MODE ANALYSIS AND SOLUTION OF THE PROBLEM 

We assume the solution for 1 2( , , )u u T  representing propagating waves in the 1 2x x  plane of the form 

 
1 3( )
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where 
 
is the wave number, c   is the angular frequency and c is the phase velocity of the wave, m is the 

unknown parameter which signifies the penetration depth of the wave, 
2 ,u T  are respectively, the amplitude ratios of 

the displacement 
2u  and temperature distribution T  to that of the displacement 

1.u With the help of Eqs. (9) and 

(11), field Eqs. (6)-(8) reduced to (after suppressing primes) 
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The condition for the non-trivial solution of system of Eqs. (12), yields a cubic equation in 2q m  as 
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The roots of this equation give three values of q, and hence of c. Three positive values of c will be the velocities 

of propagation of three possible waves viz., quasi-longitudinal displacement (qLD) wave, quasi-transverse 

displacement (qTD) wave and quasi-thermal (qT) wave. So Eq. (13) leads to the following solution for 

displacements and temperature distribution: 
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6    DERIVATION OF SECULAR EQUATION 

Substituting the values of 1 2,u u  and T  in the boundary conditions (10) at the surfaces H  of the layer 
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In order that the six boundary conditions given by Eq. (10) be satisfied simultaneously, the determinant of the 

coefficients of 
iA  and 

iB  (i=1, 2, 3) in Eqs. (15) vanishes. This gives an equation for the frequency of the layer 

oscillations. The frequency equation for the waves in the present case, after applying lengthy algebraic reductions 

and manipulations of the determinant leads to the following secular equations 
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These are the frequency equations which correspond to the symmetric and skew symmetric mode with respect to 

the medial plane
 3 0.x  Here, the superscript '+' corresponds to skew symmetric and '-' refers to symmetric modes 

and 
2tan  ( ),  i iT m x i=1,2,3. 

6.1 Amplitudes of displacements and temperature distribution 

In this section the amplitudes of displacement components and temperature distribution for symmetric and skew 

symmetric modes of plane waves can be obtained as 

 

1

3
i ( )

1 1 2 2

1

[( ) , ( ) ] [ cos( ), sin( )] e
x ct

sym asym i i i i

i

u u A m x B m x
 

 

1

3
i ( )

2 2 2 2

1

[( ) , ( ) ] [ sin( ), cos( )] e
x ct

sym asym i i i i i

i

u u r A m x B m x
 

 

1

3
i ( )

2 2

1

[( ) , ( ) ] [ sin( ), cos( )] e
x ct

sym asym i i i i i

i

T T t A m x B m x
   

(17)
 

6.2 Specific loss 

The specific loss is the ratio of energy ( )W  dissipated in taking a specimen through a stress cycle, to the elastic 

energy (W) stored in the specimen when the strain maximum. Kolsky [7] shows that specific loss ( / )W W  is 4  
time the absolute value of the ratio of the imaginary part of wave number to the real part of wave number i.e. 
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He noted that specific loss is the most direct method of defining internal friction for a material.

 

6.3 Particular case: 

Isotropic elastic case: Taking 
L T    and 0   the Eq. (13), we obtain the corresponding expression 

for isotropic fiber-reinforced elastic solid.  

7    NUMERICAL RESULTS AND DISCUSSION 

In order to illustrate theoretical results obtained in the preceding sections, we now present some numerical results. 

For the purpose of numerical computations, we have used MATLAB’s Program. The following relevant physical 

constants are taken for a fiber-reinforced transversely isotopic material 
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Fig. 1 

Variation of phase velocity with wave number for symmetric 

mode. 
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Fig. 2 

Variation of attenuation coefficient with wave number for 

symmetric mode. 
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Fig. 3 

Variation of specific loss with wave number for symmetric mode. 
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Fig. 4 

Variation of phase velocity with wave number for skew symmetric 

mode. 
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Fig. 5 

Variation of attenuation coefficient with wave number for skew 

symmetric mode. 
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Fig. 6 

Variation of specific loss with wave number for skew symmetric 

mode. 
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Fig. 7 

Variation of amplitude of normal displacement. 
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Fig. 8 

Variation of amplitude of tangatial displacement. 
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Fig. 9 

Variation of amplitude of temperature displacement. 

  

 

The plots of non-dimensional phase velocity, attenuation coefficient and specific loss with non-dimensional 

wave number restricted to thickness H=1 for symmetric and skew symmetric modes are shown in Figs. 1-6. Here, 

solid lines with and without center symbol represents the variation corresponding to transversely isotropic fiber-

reinforced thermoelastic solid (FRTE) while, broken lines with and without center symbol represents the variation 

corresponding to fiber-reinforced isotropic elastic solid (FRIE). The lines shown in the figures without center 

symbol represent the variations corresponding to initial mode (n=1) of wave propagation, lines with center symbol 

)(   represent the variations corresponding to second mode (n=2) and lines with center symbol )(   

represent the variations corresponding to final mode (n=3) of wave propagation. 

Figs. 1 and 4 show the variation of phase velocity with respect to wave number for symmetric and skew 

symmetric modes, respectively. It is depicted from these figures that for all the modes of wave propagation, the 

value of phase velocity decreases sharply to attain a constant value at the end. The variation of attenuation 

coefficient with respect to wave number for symmetric and skew symmetric modes can be depicted from Figs. 2 and 

5, respectively. It is seen from Fig. 2 that for initial mode, the value of attenuation coefficient sharply increases over 

the interval (0, 0.6), and then sharply decreases for FRTE. The variation pattern for FRIE is similar to that of FRTE 

with difference in their amplitude. As we move to higher modes, its value sharply decreases up to the range 1.2, and 

then sharply increases for both FTRE and FRIE. However, for the skew symmetric mode, the variation pattern is 

similar to those of symmetric mode, except for the initial mode, where its value constantly increases with increase in 

wave number. Figs. 3 and 6 illustrate the variations of specific loss with wave number for symmetric and skew 

symmetric modes. It is depicted from these figures that for symmetric mode, at the initial mode, its value decreases 

to attain a constant value. But for the higher modes, its value oscillates with small amplitude about the origin. 

However, for the skew symmetric mode, and for all the modes of wave propagation, its value oscillates arbitrarily 

with different amplitudes.  

Figs. 7-9 indicate the trend of variations of amplitude of normal displacement, tangential displacement and 

temperature distribution with respect to thickness H of the layer. It is depicted from Figs. 7 and 9 that the amplitude 

of normal displacement and temperature distribution sharply decreases for symmetric mode and increases with 

increase in wave number for skew symmetric mode. The variation pattern for both FRTE and FRIE remain same. 

Fig. 8 depicts the variation of tangential displacement with thickness of the layer. For all the values, its value 

oscillates near the origin except for the skew symmetric case and for FRIE solid where its value sharply increases 

with increase in wave number. 

8    CONCLUSIONS 

The propagation of waves in an infinite layer of fiber reinforced thermoelastic transversely isotropic medium after 

deriving the secular equation is investigated. The phase velocities of highest mode of wave propagation attain quite 

large values at vanishing wave number, which sharply flattens out to become steady with increasing wave number 

for both symmetric and antisymmetric modes. The value of attenuation coefficient initially increases and then tends 

to zero at higher values of wave number. An appreciable anisotropy is evinced from all the curves. The values of 
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phase velocity get decreased with increase in anisotropy, while that of attenuation coefficient and specific loss 

oscillates arbitrarily. 
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