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 ABSTRACT 

 In this paper the propagation of harmonic plane waves in a homogeneous anisotropic 

magneto-piezothermoelastic diffusive body with fractional order derivative is studied. 

The governing equations for a homogeneous transversely isotropic body in the context 

of the theory of thermoelasticity with diffusion given by Sherief et al. [1] are 

considered as a special case. It is found that three types of waves propagate in one 

dimension anisotropic magneto-piezothermoelastic diffusive body, namely quasi-

longitudinal wave (QP), quasi-thermal wave (QT) and quasi-diffusion wave (QD). The 

different characteristics of waves like phase velocity, attenuation coefficient, specific 

heat loss and penetration depth are computed numerically and presented graphically for 

Cadmium Selenide (CdSe) material. The effect of fractional order parameter on phase 

velocity, attenuation coefficient, specific heat loss and penetration depth has been 

studied.                                                      © 2017 IAU, Arak Branch.All rights reserved. 

 Keywords : Piezothermoelastic; Magneto; Harmonic plane wave; Phase velocity; 

Attenuation coefficient.  

1    INTRODUCTION 

N the recent years it has been seen an ever-growing interest in the investigation of models of an elastic body that 

take into account the influence of various physical fields such as thermal, electric, magnetic and other fields. An 

impetus for such studies was the creation of many new materials possessing properties that are not characteristic of 

usual elastic bodies. Among these materials are piezoelectric bodies that form the core of modern structures and 

instruments. A stressed state of a piezoelectric body is produced mainly by its deformation, as well as by thermal, 

magnetic and electric fields present in the body. Therefore a mathematical model magneto-piezothermoelastic quite 

adequately reflects the properties of such bodies. 

The theory of thermopiezoelectric material was first proposed by Mindlin [3] and derived governing equations of 

a thermopiezoelectric plate. The physical laws for the thermopiezoelectric material have been explored by Nowacki 

[4,5]. Chandrasekharaiah [6] used generalised Mindlin’s theory of thermopiezoelectricity to account for the finite 

speed of propagation of thermal disturbances.  

Sharma [7] discussed the propagation of inhomogeneous waves in anisotropic piezothermoelastic media. Sharma 

& Kumar [8] discussed the plane harmonic waves in piezothermoelastic material. Sharma & Walia [9] investigated 

Rayleigh waves in transversely isotropic piezothermoelastic materials. Sharma et al. [10] studied the propagation 

characteristics of Rayleigh waves in transversely isotropic piezothermoelastic materials. Fatimah [11] presented the 
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mathematical model for studying the influence of the initial stresses who relaxation waves in piezothermoelastic 

half-space. 

Sherief et al. [1] developed the generalized theory of thermoelastic diffusion with one relaxation time, which 

allows finite speeds of propagation of waves. Singh [12,13] discussed the reflection phenomenon of waves from free 

surface of an elastic solid with generalized thermodiffusion. Aouadi [14–18] investigated different types of problems 

in thermoelastic diffusion. Sharma [19-21] discussed plane harmonic generalized thermoelastic diffusive waves and 

elasto-thermodiffusive surface waves in heat-conducting solids. Kumar and Kansal [22] analysed the plane wave 

propagation in an anisotropic thermoelastic diffusive body. 

With the development of active material systems, there is significant interest in coupling effects between elastic, 

electric, magnetic and thermal fields, for their applications in sensing and actuation. Although natural materials 

rarely show full coupling between elastic, electric, magnetic and thermal fields, some artificial materials do. Van 

Run et al. [23] reported the fabrication of BaTiO3-CoFe2O4 composite which had the magnetoelectric effect not 

existing in either the constituent. Li and Dunn [24] quantitatively explained the magnetoelectric coupling created 

through the interaction between piezoelectric and piezomagnetic phases. Oatao and Ishihara [25] analysed the 

laminated hollow cylinder constructed of isotropic elastic and magneto-electro-thermoelastic material. Pang and Li 

[26] studied the SH interfacial waves between piezoelectric/piezomagnetic half-spaces with magneto-electro-elastic 

imperfect bonding. The effects of piezoelectric and piezomagnetic on the surface wave velocity of magneto-electro-

elastic solids are studied by Li and Wei [27]. Abd-alla, Alshaikh, Giorgio, and Corte [28] studied the influence of 

the initial stress on propagation of longitudinal waves in a hollow infinite circular cylinder in the presence of an 

axial initial magnetic field. 

Fractional Calculus is a field of mathematic study that grows out of the traditional definitions of the calculus 

integral and derivative operators in much the same way fractional exponents is an outgrowth of exponents with 

integer value. Studied over the intervening three hundred years have proven at least half right. It is clear, that within 

the 20
th

 century, especially numerous applications have been found. However these applications and mathematical 

background surrounding fractional calculus are far from paradoxical. While the physical meaning is difficult to 

grasp, the definitions are no more rigorous than integer order counterpart. Kumar and Gupta [29] studied the plane 

wave propagation in an anisotropic thermoelastic body with fractional order derivative and void. Bassiory and Sabry 

[30] discussed fractional order two temperature thermo-elastic behaviour of piezoelectric materials. Attenuated 

fractional wave equations in anisotropic media are studied by Meerschaert and McGough [31]. Kumar and Gupta 

[32] analysed the plane wave propagation and domain of influence in fractional order thermoelastic materials with 

three phase lag heat transfer. Meral and Royston [33] investigated the response of the fractional order on viscoelastic 

half space to surface and subsurface sources. Meral et al. [34] discussed the Rayleigh-Lamb wave propagation on a 

fractional order viscoelastic plate. 

In this article, propagation of plane waves in an anisotropic magneto-piezothermoelastic  diffusive body with 

fractional order derivative in one dimensional model has been investigated. The phase velocity and attenuation 

coefficient, specific heat loss and penetration depth of plane waves has been computed and presented graphically for 

different values of frequency. The analytical results have also been computed numerically and represented 

graphically for illustration of various physical phenomena occurring in such solids. 

2    BASIC EQUATIONS   

Following Sherief [1,2], Li [35], and Kuang [36], the basic equations for a homogeneous anisotropic magneto-

piezothermoelastic diffusive body with fractional order derivative in the absence of body forces, free charge density, 

heat and mass diffusive sources are: 

 Constitutive equations: 
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Equations of motion: 
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, 0,ij j iu    (2) 

 

Gauss equations: 
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Equation of heat conduction: 
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Equation of chemical potential: 
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where ijklc are elastic parameters, *, , , , , , , ,ij ij ij i ijk i i ij ijf m q b d b    are tensors of magneto-piezothermal and 

diffusion moduli respectively. , eC  are, respectively , the density and specific heat at constant strain. a,r,b are, 

respectively, coefficients describing the measure of thermal and mass diffusion effects,
 iq and i are the components 

of heat and mass diffusion flux vectors q and   respectively, ,S  are entropy and chemical potential per unit mass 

respectively, , ,ij ijk iA e  are the piezoelectric coefficients , C is the mass concentration of the diffusion material in the 

elastic body, T is the absolute temperature of the body,
 0T  is the reference temperature, 0  is the thermal relaxation 

time, and 0  is the diffusion relaxation time,  which will ensure that the heat conduction equation will predict finite 

speeds of heat propagation of matter from one body to other. iu  are the components of displacement vector u, 

( )ij ji  are the components of the stress tensor, , ,

1
( )

2
ij i j j iu u    are the components of the strain 

tensor, ( )ij jiK K are the components of thermal conductivity, iE is the electric field intensity, iD is the electric 

displacement, iH is the magnetic field intensity, iB is the magnetic displacement,  is the fractional order such that 

0 1, and    , are the electric and magnetic potentials. The symbols “,” and “.” corresponds to partial and time 

derivatives, respectively. 

3    FORMULATION AND SOLUTION OF THE PROBLEM  

We consider a homogeneous anisotropic magneto-piezothermoelastic diffusive body with fractional order derivative 

initially at the uniform temperature 0T . The governing equations in magneto-piezothermoelastic diffusive body with 

fractional order derivative are 
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For plane harmonic waves, we assume the wave solution as: 

 

     , , , , , , , , exp , 1,2,3k k k ku T C u T C i n x t k           (8) 

 

where is the angular frequency and   is the complex wave number. , , , andku T C  are the undetermined 

amplitude vectors that are independent of time t and coordinates 1 2 3, andx x x . Upon using Eq. (8) in system of 

Eqs. (7) with the aid of system of Eqs. (1), yields  
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We introduce the Christoffel’s notation as follows: 
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Then field equations in a homogeneous anisotropic magneto-piezothermoelastic diffusive body with fractional 

order derivative in one dimension are 
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Eq. (9) represents a linear system of five homogeneous equations in five unknowns 1, , , andu T C  which 

possesses non- trivial solution if the determinant of the coefficients 1, , , ,
tr

u T C  
   vanishes i.e. 
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 The Eq. (10) yields to the following polynomial characteristic equation in   as: 

 
6 4 2 4

11 12 13 14 0 , 0.p p p p         (11) 

 

The coefficients 11 12 13 14, , ,p p p p  are given in the appendix A. Solving Eq. (11) , we obtain three roots of  , in 

which we are interested to those roots whose imaginary parts are positive because only those roots give the negative 

roots of the decay coefficient Im( ) . Corresponding to these roots, there exist three waves corresponding to 

descending order of their velocities, namely quasi-longitudinal wave (QP), quasi-thermal wave (QT) and quasi-

diffusion wave (QD). We denote the values of   associated with these modes by 1 2,  and 3 respectively. The 

offer phase velocity, attenuation coefficient, specific heat loss and penetration depth of these types of waves:  

(i) Phase velocity: The phase velocity is given by 
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 where 1 2,V V and 3V are the velocities of the quasi-longitudinal wave (QP), quasi-thermal wave (QT) and  quasi-

diffusion wave (QD) modes respectively.  

(ii) Attenuation coefficient:  The attenuation coefficient is defined as: 

 

Im( ), 1,2,3i iQ i   (13) 

 

where 1 2,Q Q and 3Q are the attenuation coefficients of the quasi-longitudinal wave (QP), quasi-thermal wave (QT) 

and  quasi-diffusion wave (QD) modes respectively. 

(iii) Specific heat loss: The specific heat loss is given by 
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 where 1 2,SP SP and 3SP are the specific heat loss of the quasi-longitudinal wave (QP), quasi-thermal wave (QT) and  

quasi-diffusion wave (QD) modes respectively.  

(iv) Penetration depth:  The penetration depth is defined as: 

 

1
, 1,2,3

Im( )
i

i

PD i


   
 

(15) 

 

where 1 2,PD PD and 3PD are the penetration depth of the quasi-longitudinal wave (QP), quasi-thermal wave (QT) 

and  quasi-diffusion wave (QD) modes respectively. 

4    TRANSVERSELY ISOTROPIC MEDIA   

 

Following Slaughter [37], applying transformation in Eqs. (2)- (6), the basic governing equations for a homogeneous 

transversely isotropic, magneto-piezothermoelastic diffusive body  with fractional order derivative in one dimension 

can be written as: 
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where 

 

1 11 1 11, ,t cc b c      

 

Here, ,t c   are the coefficients of thermal and diffusion expansion. In Eqs. (16) we have used the contracting 

subscript notations 1 11 to relate 1111 11c c and so on. 

Using Eq. (8) in Eqs. (16), we obtain the following characteristics equation 
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Here, 
2
1

1
1

eC c

K


  is the characteristic frequency of the body, 11

1

c
c


 is the longitudinal wave velocity in the 

body. 

If 1  , we obtain the characteristic polynomial equation which is similar to that if we solve the problem 

directly without fractional order derivative. 

If we neglect the magnetic effect i.e. 1 0, 0, 0, 0, 0q f m d     , then we obtain the characteristic 

polynomial equation for a piezothermoelastic diffusive body with fractional order. 

If we neglect the piezoelectric effect i.e. * *
1 0, 0, 0, 0, 0e f A b     , then we obtain the characteristic 

polynomial equation for a magneto-thermoelastic diffusive body with fractional order. 

5    NUMERICAL RESULTS AND DISCUSSIONS  

For the purpose of numerical calculation, we consider the case of an anisotropic media. We can solve Eq. (17) with 

the help of the software Matlab 7.8 & using the formulas given by Eqs. (18), (19), we can compute the phase 

velocity, attenuation coefficient, specific heat loss and penetration depth for intermediate values of angular 

frequency ( ). Following Vashishth and Sukhija [13] and Kumar and Kansal [22], the numerical values have been 

taken as follows: 
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In all the graphs, notations   ALP 0.25, ALP0.75,  ALP1 denote the curves of phase velocities, 

attenuation coefficients, specific heat loss and penetration depth of waves corresponding to the different values of 

fractional order parameter i.e. 0.25,0.75   and 1  , respectively. 

Figs. 1, 2,3 show the variations of the phase velocities 1 2,V V and 3V of waves with respect to . Figs. 4,5,6 show 

the variations of the attenuation coefficients 1 2,Q Q and 3Q of waves respectively. Figs. 7, 8, 9 show the variations 

of the specific heat loss 1 2,SP SP and 3SP of waves respectively. Figs. 10,11,12 show the variations of the 

penetration depth 1 2,PD PD  and 3PD of waves respectively.  

5.1 Phase velocity  

It is clear from Fig. 1, that phase velocity 1V  of QP  wave monotonically increases and then tends to decrease with 

increase in angular frequency ( )  for different values of  i.e. 0.25,0.75,1.    But for 10.25,V  , is maximum 

i.e. least value of  corresponds to the highest value of phase velocity. 

For 21 4, V   increases strictly and shows a quick downfall. Among the different values of 2,V , possesses  

highest magnitude value for 0.25  . 

Fig. 3 shows that for 31 4, V   increases then it shows a sudden change in slope but behaviour remains the 

same. 
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Fig.1 

Variation of phase velocity w.r.t angular frequency (quasi-

longitudinal wave). 
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Fig.2 

Variation of phase velocity w.r.t angular frequency (quasi-

thermal wave). 
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Fig.3 

Variation of phase velocity w.r.t angular frequency (quasi- 

diffusion wave). 

5.2 Attenuation coefficient  

 

It is clear from Fig. 4 that the attenuation coefficient 1Q  of quasi-longitudinal (QP) wave strictly increases with 

difference in magnitude values for different values of   with increase in angular frequency. For 0.25  , it 

possesses least magnitude value. 

Fig. 5, 6 show the behaviour of 2 3andQ Q opposite to each other. From Fig. 5, it is clear that 2Q  for 

2 4 5    shows a downfall in values and then tends to increase so that it gains highest value for 1  . Fig. 6 

shows the trend of 3Q  just revert to 2Q . 
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Fig.4 

Variation of attenuation coefficient w.r.t angular frequency 

(quasi-longitudinal wave). 
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Fig.5 

Variation of attenuation coefficient w.r.t angular frequency 

(quasi-thermal) wave). 
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Fig.6 

Variation of attenuation coefficient w.r.t angular frequency 

(quasi-diffusion wave). 

5.3 Specific heat loss  

Fig. 7 depicts that the specific heat loss 1SP  of quasi-longitudinal wave decreases more with decrease in   and 

increase in angular frequency. 

It is clear from Fig. 8 that 2SP shows a decreasing trend for 4 4 5    and then tends to increase as angular 

frequency increases and it is least for least value of . 

Fig. 9 shows that initially decreases for 1 4 5    and possesses similar magnitudes values for different values 

of , following a stationary behaviour as angular frequency increases.  
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Fig.7 

Variation of specific heat w.r.t angular frequency (quasi-

longitudinal wave). 
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Fig.8 

Variation of specific heat w.r.t angular frequency (quasi-

thermal wave). 
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Fig.9 

Variation of specific heat w.r.t angular frequency (quasi- 

diffusion wave). 

 

5.4 Penetration depth  

We noticed that the Fig. 10 show that the penetration depth 1PD  of the quasi-longitudinal wave monotonically 

decreases with increase in . For least value of 1PD   is maximum.  

It is clear from Fig. 11 that the penetration depth 2PD of quasi-thermal wave and its peak value is obtained 

5   and further it decreases. For least value of 2PD  is maximum. 

For 1 4 5    penetration depth 3PD  of quasi diffusion wave is constant for all values of   and then tends to 

decrease as angular frequency increases but for 1  , it gains in its numerical value in comparison to the other 

values of fractional order derivative.  

 

0 2 4 6 8 10

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
e

n
e

tr
a

tio
n

 D
e

p
th

(P
D

1)

Angular Frequency ( )

 ALP0.25

 ALP0.75

 ALP1

 

 

 

 

 

 

 

 

 

 

 

Fig.10 

Variation of specific heat w.r.t angular frequency (quasi-

longitudinal wave). 
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Fig.11 

Variation of specific heat w.r.t angular frequency (quasi-

thermal wave). 
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Fig.12 

Variation of specific heat w.r.t angular frequency (quasi- 

diffusion wave). 

6    CONCLUSIONS 

Analysis of plane wave propagation is a significant problem of continuum mechanics. The propagation of plane 

harmonic waves in a homogeneous, anisotropic magneto-piezothermoelastic diffusive body with fractional order 

derivative has been studied. The anisotropic variations of phase velocities, attenuation coefficients, specific heat loss 

and penetration depth depending upon the fractional order derivative are observed in the context of theory of 

thermoelasticity with diffusion given by Sherief et al. [1,2]. All the field quantities are found to be sensitive towards 

the fractional order parameter. 

1. A predominant effect of fractional order on quasi-longitudinal wave (QP), quasi-thermal wave (QT) and 

quasi-diffusion wave (QD is observed for the values of thermal and diffusion relaxation times.  

2. It is observed that the phase velocities of QP and QT waves show an alternating behaviour but phase 

velocity of QD wave strictly increases. For 0.25    the phase velocities 1V and 2V  possess the highest 

magnitude value whereas the attenuation coefficients 1Q  and 2Q  least magnitude value in comparison to 

the other values of  . 

3. For 0.25   minimum specific heat loss is observed for all the waves. 

4. Behaviour and trend of values of penetration depth of the waves is similar for all considered values of 

 with difference in their magnitude values.  
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