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 ABSTRACT 

 Hygrothermal analysis of laminated composite plates has been done by using an efficient higher 
order shear deformation theory. The stress field derived from hygrothermal fields must be 
consistent with total strain field in this type of analysis. In the present formulation, the plate model 
has been implemented with a computationally efficient C0 finite element developed by using 
consistent strain field. Special steps are introduced to circumvent the requirement of C1coninuity 
in the original plate formulation and C0 continuity of the present element has been compensated in 
stiffness matrix calculations. The accuracy of the proposed C0 element is established by comparing 
the results with those obtained by three dimensional elasticity solutions and other finite element 
analysis. 

        © 2011 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HE composite materials are widely used in civil and other engineering applications, due to their advantage of 
high stiffness and strength to weight ratio. Temperature and moisture variations often represent a significant 

factor, and sometimes the predominant causes of failure of composite structures. The deflection and stress analysis 
of laminated composite plates subjected to temperature and moisture has been the subject of research interest in 
recent years, but most of the researchers studied the effect of temperature. Whitney et al. [1] obtained three 
dimensional elasticity solutions using classical laminate theory to study the effect of environment on the stability, 
vibration, and bending behavior of plates. Wu et al. [2] used classical laminated plate theory to analyze symmetric 
and antisymmetric laminated plates subjected to temperature. However, this kind of approach is not sufficient for 
laminated plate by neglecting the effects of transverse shear stress in the laminates. The first order shear deformation 
theory developed by Rolfes et al. [3] which assumes a constant transverse shear strain across the thickness direction 
and a shear correction factor is generally required. Reddy [4] used higher-order shear deformation theory which 
accounts for parabolic distribution of the transverse shear strains throughout the thickness of the plate. Reddy et al. 
[5] used finite element analysis for composite plates subjected to thermal loading and compared the results with 
closed form solutions obtained by using YNS (Yang-Norris-Stavasky) shear deformation theory, which assumes 
constant shear deformation throughout the thickness and therfore it is inadequate to account for accurate shear 
distortion. Ram et al. [6] investigated the effect of hygrothermal environment on laminated composite plates using 
finite element method based on first order shear deformation theory. Kapania et al [7] used Discrete Kirchhoff 
Theory for analysis of plate but it shows good results for thin plates only. Chandrashekhara et al. [8] presented shear 
flexible finite element model for nonlinear static and dynamic analysis based on first order shear deformation theory. 
However, in order to avoid the use of shear correction factor various higher order theories [9-19] has been proposed 
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by many researchers, but it requires C1 continuity.  Murakami [20] obtained an exact elasticity solution of the 
thermally induced cylindrical bending of layered composite plates. In case of thermal loading, a three dimensional 
thermal analysis has been carried out by Savoia et al. [21] in which some special boundary conditions are imposed at 
the edges which can cause significant mathematical problem for plates subjected to thermal loads. Three 
dimensional elasticity solutions carried out by Bhasker et al. [22] for thick laminates subjected to thermal loading 
gives non linear variation of inplane displacement throughout the thickness and thickness stretch/contraction effects 
in the transverse displacement. Kant et al. [23] developed a semi analytical model for thermo mechanical analysis 
where shear traction free conditions at the top and bottom of the plate has been assumed. Analytical and elasticity 
solutions are limted to simple boundary conditions and loadings. Shankara et al. [24] used the higher order shear 
deformation theory (HSDT) in finite element technique for the static analysis of anisotropic composite plates. A C0 
continuous nine noded Lagrangien element has been used for the analysis. Naganarayana et al. [25] has shown that 
unlike the first order formulations, the inconsistent strain field can also disturb the displacement recovery in the 
higher order shear deformable elements. Hence, possible errors due to such inconsistent terms are analyzed in 
analytical sense in this theory. Prathap et al. [26] has shown that stress resultant fields were of higher interpolation 
order than the strain field, hence higher degree terms did not participate in the stiffness matrix 
calculations.Therefore, stress field derived from temperature fields i.e. initial strains must be consistent with the total 
strain field used in the finite element formulations and also the C0 continuity has not been compensated. 

In the present study, a C0 continuous type FE element model has been developed based on higher order shear 
deformation theory [4] for hygro-thermal analysis of laminated plates. The total number of unknowns in the present 
theory is independent of number of layers .In the present formulation, a nine noded Lagrangian element with seven 
degree of freedom per node has been used. Moreover, the conditions of zero transverse shear stresses on the top and 
bottom surfaces of the laminate have been enforced. Thus, the proposed plate model has been implemented with a 
computationally efficient C0 finite element developed by using consistent strain field. Special steps were introduced 
(e.g. sampling at gauss points) to compensate this problem and C0 element implementation has been compensated in 
computing stiffness matrix calculations.  

2    MATHEMATICAL MODEL 

A multilayered plate is a laminated structure obtained by stacking rectangular layers until the desired thickness and 
stiffness are reached. Laminae is considered homogeneous, perfectly bonded with each other. To analyze such a 
laminated structure, a Cartesian co-ordinate system x, y, z referred to the middle surface of the laminate is used. In 
plane, displacement is given by 

 
2 3

0 1 1xu u z z z = + + +  (1)
 

2 3
0 2 2yv v z z z = + + +  (2)

 

 
where u0 and v0 are the displacements on mid-plane in x and y direction, respectively. x  and y  are total rotations 

about x and y axis, respectively. Transverse displacement is given by 
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The displacement field expressed in Eq. (6) and (7) contains first order derivatives of w which requires C1 

continuity for finite element approximation. In order to avoid the usual difficulties associated with C1 continuity 
requirement /w x¶ ¶  and /w y¶ ¶  are considered as independent field variables. For the sake of convenience to 

represent all variables as C0 continuous, the derivative of w with respect to x and y is expressed as follows:  
 

0 0,x y
w w

x y
 

¶ ¶
= =

¶ ¶
  

 
with this, the in-plane displacement field may be rewritten as 
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The unknown nodal parameters for the present model 
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The strain vectors corresponding to the displacement field 
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where “,” are the derivative of variables with respect to x and y, respectively, for example u0,xu0/x. The stress 
strain relations for the kth orthotropic lamina of a laminate consisting of N layers having fibers oriented in any 
arbitrary orientation with respect to the reference axis (x) are 

 

{ } { }ijk k
Q é ù= ê úë û  (12)

 

 
where 
 

{ } { } { }b SK = +   

 

where { }
 
is the mechanical strain and ijQé ù

ê úë û  are the reduced stiffness coefficients of the k-th lamina . The 

temperature strain may also be included appropriately which is discussed in the next section. 

3     FINITE ELEMENT FORMULATION 

A nine noded isoparametric element shown in Fig. 2 with seven nodal unknowns   0 0 0 )( x y x yu v w  

per node has been used for the present analysis. 
  

{ } { }w N é ù= ë û  (13)
 

 
{ } { }i.e. .dw N dé ù= ë û  Now to find stress at any point 

{ } { }Q é ù= ê úë û  (14)
 

 
where 
 

{ } { }k  = -  (15)
 

 
Now { } { }.H é ù= ë û where Hé ùë û  

is a matrix of order 5x13 and comprises of term containing different order of z. The 

strain terms now need to be carefully analyzed { }  is the total strain and { }k  is the initial strain or hygrothermal 

strain. 
 

{ } { }B d é ù= ë û  (16)
 

 
where { }d

	
is the vector of nodal displacements. In a finite element formulation, the displacement and 

temperatures/moistures are interpolated within the domain of the element using the same interpolations functions. 
The calculation of total strains involves differentiation of displacement fields and strain field functions will therefore 
be of lower order than shape functions. Hence, higher order terms of thermal stress components are not sensed by 
the total strain interpolations. Thus, a thermal load vector is created which corresponds to an initial strain (and 
stress) vector that is consistent with the total strain vector. Therefore, only the consistent part of the thermal stress 
should be computed when stress recovery is made from the nodal displacements. The inclusion of the inconsistent 
part in thermal stress recovery leads to thermal stress oscillations. Special steps were introduced there (e.g. sampling 
at reduced gauss points) to compensate for this problem. By applying virtual work method and equating work done 
by internal forces we get 
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{ } { }K Pé ù =ë û  (17)
 

 
where Ké ùë û  is the element stiffness matrix and {P} is nodal load vector and 
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Thermal loading is obtained by following Eq. 
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Here i, j=1, 2, 6. Also, { } , , .
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Case1. When temperature is uniform across the depth 
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where 1, 2 , 12 are the coefficient of thermal expansion referred to the principal material axes of the lamina and 

,x ,y xy are the transformed coefficient of thermal expansion referred to the  x-y coordinate system. 
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Case2. When temperature is varying across the depth 
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where, UT Temperature at top surface and LT Temperature at bottom surface. 

4    NNMERICAL RESULTS AND DISCUSSIONS 

Numerical results are presented for symmetric and antisymmetric laminated rectangular plates as shown in Fig. 1 
with different boundary conditions (BC). 
 
BC I: 0u w x x= = = =    at   AB and CD 
        0v w y y= = = =      at   AD and BC 

 
BC II: 0u v w x x y y  = = = = = = =    at   AB and CD  

           0v w y y= = = =    at   AD and BC 

 
All the lamina are assumed to be of the same thickness and made of the same orthotropic materials. To illustrate 

the preceding thermal structural analysis, many problems are solved and comparisons are made with the results 
available in the literature.  

4.1 Effect of different moisture concentration and different temperature on antisymmetric cross-ply 

In this section, the effect of different moisture concentrations has been first investigated on the deflection of 
antisymmetric cross-ply (00/900/00/900) of a square laminate having side to thickness ratio of 100 using the material 
properties given in Table 1. The deflection w is plotted along x axis for the simply supported boundary conditions as 
shown in Fig. 3.  

 
 

 
 
 
 
 
Fig. 1 
Geometry of laminated composite plate. 

         

 
 
 
 
 
 
 
Fig. 2 
Nine noded isoparametric elements with typical node 
numbering. 
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The Deflection is maximum near the centre of the supported edge and it vanishes along the diagonals. In case 
of clamped boundary conditions, the deflection is zero throughout the laminate boundary. Results closely match 
with Ram et al. [6]. The effect of different temperatures has also been analyzed in this section for the same laminate 
for simply supported boundary conditions using material properties given in Table 2. The deflection w is plotted 
along x axis for the simply supported boundary conditions as shown in Fig. 4. The observation made in case of 
moisture also applies to temperature. Results closely match with Ram et al. [6]. 
 
 

Fig. 3 
Deflection along x axis at different moisture concentrations (C).

  
  

 Fig. 4 
Deflection along x axis at different at different temperatures (T). 

 
 
 
 
Table 1 
Material properties at different moisture concentrations G13 = G12, G23 = 0.5 G12, ν12 = 0.3, β1 = 0, and β2 =0.44 [6] 
Elastic moduli (GPa) Moisture Concentrations C (%) 

 0 0.25 0.5 0.75 1.0 1.25 1.5 

E1 130 130 130 130 130 130 130 

E2 9.5 9.25 9.0 8.75 8.5 8.5 8.5 

G12 6.0 6.0 6.0 6.0 6.0 6.0 6.0 

 
 
 
Table 2  
Material properties at different temperatures G13 = G12, G23 = 0.5 G12, ν12 = 0.3, α1 = -0.3×10-6, and α2 =28.1×10-6 [6] 

Elastic moduli (GPa) Temperatures T (K) 

 300 325 350 375 400 425 

E1 130 130 130 130 130 130 

E2 9.5 8.5 8.0 7.5 7.0 6.75 

G12 6.0 6.0 5.5 5.0 4.75 4.5 
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Table 3  
Effect of aspect ratio and boundary conditions on the deflection w  for an isotropic rectangular plate subjected to uniform 
temperature in the xy plane and linearly varying through the thickness (q= 0, To= 0, ν = 0.3) with thickness ratio (t/a) =0.01 

Reference BCI  BCII 

 a/b=1 a/b=1.5 a/b=2  a/b=1 a/b=1.5 a/b=2 

Present (4×4) 0.9586 0.5823 0.3697  0.2052 0.0338 0.0049 
Present (6×6) 0.9592 0.5830 0.3705  0.2063 0.0355 0.0054 
Present (8×8) 0.9593 0.5832 0.3706  0.2065 0.0357 0.0056 
Present (10×10) 0.9594 0.5832 0.3707  0.2065 0.0357 0.0055 
Present (12×12) 0.9594 0.5832 0.3707  0.2065 0.0358 0.0058 

Present (16×16) 0.9594 0.5832 0.3707  0.2065 0.0358 0.0059 

Prathap [26] 0.961 _ 0.371  0.206 _ 0.0048 
Reddy [5] 0.9575 0.5822 0.3701  0.2063 0.036 0.00561 
Timoshenko [28] 0.9578 0.5824 0.3702  _ _ _ 
Das and Rath [27] 0.957 0.582 0.370  0.206 0.036 0.0055 

Entries inside the parenthesis indicate mesh division w  = 10tw/αTa2. 

4.2 Effect of aspect ratio and boundary conditions on isotropic plate 

In this section, the effect of aspect ratio and boundary conditions on non-dimensional deflection w  for an isotropic 
rectangular plate subjected to temperature distribution that is uniform in the x-y plane and linearly varying through 
thickness is investigated using material properties given below [26]: 
 

1 2 12 2 23 2 12 12 13 12 13, 2 1/ 25, / 0.5, / 0.2,  0.25 3E E G E G E G G    = = = = = = =
 

 
The central deflection obtained is presented in Table 3 with those obtained by Prathap et al. [26] and other 

investigators [5, 26-28] (finite element analysis). The present result indicates accuracy and rate of convergence 
obtained by the proposed finite element model. The results obtained by proposed element are quite close to those 
obtained by Prathap et al. [26], Reddy et al. [5] and others [27, 28]. The effect of aspect ratio (a/b) and side to 

thickness ratio (t/a) on non-dimensional deflection w  for an isotropic rectangular plate subjected to temperature 
distribution that is uniform in the x-y plane and linearly varying through thickness is studied here. The material 
properties are the same as used in previous section. The central deflection has been presented in Table 4. The present 
results obtained are in good agreement with Prathap et al. [26], Reddy et al. [5] and others [27, 28]. 

4.3 Effect of aspect ratio, number of plies and their orientation on orthotropic plate  

In this section, the effect of aspect ratio, number of plies and their orientation on non dimensional deflection w   for 
simply supported orthotropic plate subjected to temperature distribution that is sinusoidal in x-y plane and linearly 
varying through thickness has also been investigated. The material properties are the same as in the previous section. 

The central deflection has been presented in Table 5. The normalized deflection w  as obtained are compared with 
the results obtained by Prathap et al., the standard FE software MSC/NASTRAN and Reddy et al. [5].The result 
obtained by proposed element are in good agreement with Prathap et al. [26]. It can be noticed that proposed 
element gives values between MSC/NASTRAN and Reddy et al. [5] respectively, because result obtained by Reddy 
et al.[5] were based on first order shear deformation theory and  total strain field was not consistent with stress field.  

4.4 Effect of thickness ratio on cross-ply (00/900/00) laminate 

The effect of thickness ratio, on non dimensional deflection and stresses for simply supported cross ply (00/900/00) 
square laminate subjected to temperature distribution that is sinusoidal in x-y plane and linearly varying through 
thickness is presented. The material properties used are as given below [22]: 
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1 2 12 2 23 2 12 12 13 12 13 2 1/  25,    / 0.5  ,    /  0.2,     0.25  ,     ,    1125E E G E G E G G    = = = = = = =
  

 
Table 4  

Effect of aspect ratio and side to thickness ratio on deflection w  for an isotropic rectangular plate subjected to uniform 
temperature gradient 

Thickness Ratio Reference 
BCI  BCII 

a/b=1 a/b=1.5 a/b=2  a/b=1 a/b=1.5 a/b=2 
0.01 Present (16×16) 0.9594 0.5832 0.3707  0.206 0.0358 0.0055 

Prathap [26] 0.961 ­ 0.371  0.206 - 0.0055 
Reddy [5] 0.9575 0.5822 0.3701  0.2063 0.0360 0.00561 
Timoshenko [28] 0.9578 0.5824 0.3701  ­ - - 
Das and Rath [27] 0.957 0.582 0.370  0.206 0.036 0.0055 

         
0.05 Present (16×16) 0.9594 0.584 0.3707  0.213 0.0359 0.0066 

Reddy [5] 0.9576 0.5821 0.3700  0.2132 0.0390 0.0066 
Timoshenko [28] 0.9578 0.5824 0.3702  ­ - - 
Das and Rath [27] 0.960 0.584 0.371  0.213 0.039 0.0067 

         
0.075 Present (16×16) 0.9594 0.5832 0.3707  0.2218 0.4319 0.0082 

Reddy [5] 0.9576 0.5821 0.3700  0.2219 0.0432 0.0085 
Timoshenko [28] 0.9578 0.5824 0.3702     
Das and Rath [27] 0.962 0.586 0.373  0.223 0.044 0.0085 

         
0.1 Present (16×16) 0.9594 0.5838 0.3707  0.2328 0.0358 0.0106 

Reddy [5] 0.9576 0.5821 0.3700  0.2330 0.0492 0.0108 
Timoshenko [28] 0.9578 0.5824 0.3702  - ­ - 
Das and Rath [27] 0.967 0.589 0.375  0.235 0.050 0.0114 

Entries inside the parenthesis indicate mesh division. 
 
 
Table 5  

Effect of aspect ratio on the deflection w  for simply supported rectangular laminated composite plates subjected to sinusoidal 
temperature gradient (thickness ratio (t/a) =0.01) 
Reference 00/900/00  00 00/900 

a/b=1 a/b=1.5 a/b=2  a/b=1 a/b=1 
Present 1.0429 0.8802 0.6566  1.0332 1.1520 
Prathap [26] 1.0249 0.8802 0.6566  1.0332 1.1434 
NASTRAN 1.0028 0.8346 0.6108  1.0109 1.9374 
Reddy [5] 1.0949 0.9847 0.7643  1.0313 1.6765 

w =10tw/αTa2. 
 
 
Table 6  
Deflections and stresses in (00/900/00) square laminate 
S=a/h  ( / 2)u h  ( / 2)v h  ( / 2)w h  ( / 2)x h   ( / 2)y h   ( / 2)xy h   

100 Present ±16.17 ±16.15 10.30 ±971.6 ±1075 ±50.76 
Elasticity [22] ±16.00 ±16.17 10.26 ±965.4 ±1065 ±50.53 

        
50 Present ±16.42 ±16.42 10.45 ±974.6 ±1074 ±51.58 

Elasticity [22] ±16.02 ±16.71 10.50 ±967.5 ±1063 ±51.41 
        
20 Present ±17.75 ±17.75 11.30 ±965.1 ±1059 55.45 

Elasticity [22] ±16.17 ±20.34 12.12 ±982.0 ±1051 ±57.35 
        
10 Present ±22.20 ±22.14 14.13 ±945.6 ±1029 ±68.43 

Elasticity [22] ±16.61 ±31.95 17.39 ±1026 ±1014 ±76.29 

z values are given in  parentheses: (x,y) values are (a/2,a/2) for , ,x yw    and (0,0) for .xy  
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Fig. 5 
Variation of central deflection with the ratio, α2/α1. 

 
 
The deflections and stresses obtained are presented in Table 6. The results obtained by the proposed element are 

in good agreement with elasticity solution given by Bhaskar et al. [22] for thin plates to moderately thick plates. 

4.5 Effect of coefficient of thermal expansion ratio (α2/α1) on angle-ply 

In this section, the variation of non dimensional transverse centre deflection for a four layer (450/-450/-450/450) angle 
ply square laminate under sinusoidal temperature in x-y plane and linearly varying through thickness are shown in 
Fig 5. The deflection increases with the increase in ratio, α2/α1. The material properties used are the same as in 
section 4.2. The central deflections are plotted for thickness ratio (a/h= 20) in Fig 5. 

5    CONCLUSIONS 

(a) The proposed efficient higher order shear deformation theory calculates deflections and stresses in an efficient 
manner for isotropic, multi-layered plate of orthotropic cross ply and angle ply laminate subjected to hygro-thermal 
load of uniform and sinusoidal distribution. 
(b) The results provided by proposed model for isotropic plates for different aspect ratio, and boundary conditions 
converge very rapidly. The deflections obtained for laminated composite plates for different aspect ratio, thickness 
ratio and boundary conditions exactly matches with Prathap et al. [26], Reddy et al. [5] and others. 
(c) The results obtained by proposed model for different aspect ratio for orthotropic plates under sinusoidal 
temperature load closely matches with Prathap et al. [26] in which the inconsistent part of the thermal stress was 
compensated by introducing special steps at reduced gauss points etc, but the present results based on consistent 
strain field are not matching closely with those obtained by Reddy et al. [5] where the thermal stress was not 
consistent with strain field. 
(d) The results obtained for deflection and stresses in case of cross ply (00/900/00) square laminate by the proposed 
model closely match with elasticity solution given by Bhaskar et al. [22] for moderately thin to thick plates. 
However, it is observed that in-plane displacement and transverse deflection values vary considerably for a/h≥20. 
Based on the above observation it may be concluded that the proposed finite element model is quite efficient in 
calculating deflections and stresses very accurately for laminated composite plates subjected to hygro-thermal 
loadings in the range of very thin to moderately thick plates. 
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