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 ABSTRACT 

 In this paper, the dynamic response of an axially moving viscoelastic beam with 

simple supports is calculated analytically based on Timoshenko theory. The beam 

material property is separated to shear and bulk effects. It is assumed that the beam 

is incompressible in bulk and viscoelastic in shear, which obeys the standard linear 

model with the material time derivative. The axial speed is characterized by a simple 

harmonic variation about a constant mean speed. The method of multiple scales with 

the solvability condition is applied to dimensionless form of  governing equations in 

modal analysis and principal parametric resonance. By a parametric study, the 

effects of velocity, geometry and viscoelastic parameters are investigated on the 

response. 

                                               © 2016  IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 XIALLY moving beams are used in many engineering devices, such as band saws, aerial cableways, power 

transmission chains and serpentine belts. Transverse vibrations of these devices are investigated to avoid 

possible resulting fatigue, failure and low quality. 

Chen et al. [1] applied the averaging method to a discretized system via the Galerkin method to present the 

stability boundaries of axially accelerating viscoelastic beams. Mockensturm and Guo [2] convincingly argued that 

the axially moving beam should contain the material time derivative to account for the energy dissipation in steady 

motion. Tang et al. [3] determined  transverse nonlinear response of an axially moving Timoshenko elastic beam to 

external excitations via the method of multiple scales. By combination of the governing equations, they found a 

single equation and they used the orthogonlity of mode shapes  for the solvability condition. Chen et al. [4] 

investigated the dynamic stability of an axially accelerating viscoelastic beam undergoing parametric resonance by 

Timoshenko theory. The Kelvin model was used as the constitutive relation for  normal and shear stresses with 

material time derivative. As the solvability condition for two coupled equations, they used the orthogonality of each 

equations just related to the transverse mode shape. Ding and Chen [5] investigated the steady-state response for an 

axially moving viscoelastic beam. The method of multiple scales and differential quadrature schemes were applied 

to the governing equations to investigate the primary resonances under general boundary conditions. They used the 

Kelvin constitutive model for normal stress-strain relation and Euler-Bernolli (E-B) beam theory. Also, they used 

the orthogonality property as the solvability condition. Chen et al. [6], investigated the nonlinear parametric 
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vibration for axially accelerating viscoelastic beams subjected to parametric excitation. The method of multiple 

scales and the differential quadrature were employed to analyze the combination and the principal parametric 

resonances with the focus on steady-state responses. They used the Kelvin model for normal stress-strain relation 

and orthogonality property for solvability condition. Gayesh [7] investigated the forced dynamics of an axially 

moving viscoelastic beam with  the Kelvin model and employing time derivative in the viscoelastic constitutive 

relation. The dimensionless partial differential equation of motion is discretized using Galerkin's scheme. The 

resulting set of equations was solved numerically. Wang et al. [8] investigated the forced vibration of an axially 

moving viscoelastic beam. They describe the constitutive equation with the standard linear model for normal stress-

strain by considering  material time derivative. Also they used the E-B beam theory for formulation, multiple scales 

method to determine the steady-state response and the orthogonality property as the solvability condition. Ghayesh 

et al. [9] studied  the nonlinear coupled longitudinal-transverse vibrations and stability of an axially moving elastic 

beam, subjected to a harmonic force, which was supported by an intermediate spring, numerically. The equations of 

motion was discretized using Galerkin’s method and the frequency-response curves of the system and the 

bifurcation diagrams of Poincaré maps were analyzed.  Ghayesh et al. [10] examined the nonlinear dynamics of an 

axially moving viscoelastic beam, while both longitudinal and transverse displacements were taken into account, 

with employing a numerical technique. The Kelvin model which considers the material time derivative was used in 

the viscoelastic constitutive relations. The equations of motion for both longitudinal and transverse motions are 

discretized via Galerkin’s method and  the resulting equations were solved numerically. Youqi [11] studied  the 

nonlinear parametric vibrations for axially accelerating viscoelastic Timoshenko beams subjected to varying 

tensions and axial accelerations. He used Timoshenko beam theory and the Kelvin viscoelastic constitutive relation. 

The governing equation was solved by employing the multiple scales method to investigate the parametric 

resonances with  focus on the steady-state responses.  

For analyzing a viscoelastic structure, it is convenient  to separate the shear (deviatoric) effects from the purely 

dilatational (bulk) components. This is due to the fact that in viscoelastic materials, the response to shear can be 

different from that in bulk. In other words, different types of stress can produce different responses [12]. There is 

three assumptions for viscoelastic analysis: 

 The material behaves viscoelastic in shear and incompressible in dilatation(bulk). 

 The material behaves viscoelastic in shear and elastic in bulk. 

 The shear and bulk moduli are synchronous. 

Each of the common assumptions defines a particular value for either the bulk modulus or Poisson’s ratio [13]. 

So, Kelvin or the other models of viscoelasticity, define the constitutive equation for  shear stress- strain and not 

normal stress- strain. It seems that the most reviewed papers, did not consider this subject.Also, when there is just,a 

single governing equation, the orthogonality can use as the solvability condition easily. The most paper converted 

the Timoshenko equations to a single equation and then use the orthogonality condition. This combination is not 

possible in some cases e.g. when one uses the shear deformation theory. When there is more than one governing 

equation, it is convenient to use the adjoint functions for the solvability condition. 

Determination of dynamic response of an axially accelerated viscoelastic Timoshenko beam with the standard 

linear model for modal and principal parametric resonance cases is the purpose of this article. We separated the 

effects of shear and bulk behaviors. We assumed the beam is viscoelastic in shear and incompressible in bulk. The 

governing equations are coupled and the adjoint functions are used as the solvability conditions.  In addition, by the 

sensitivity analysis, the effects of the geometric and viscoelastic parameters on the response are investigated. We use 
the perturbation technique up to order-one for analysis. Also we tried to define the perturbation parameter ε as a 

physical quantity and no just as a bookkeeping value. 

2    GOVERNING EQUATIONS    

A uniform axially moving beam travels between two supports separated by distance l at the transport time- 
dependent speed Γ(T). The density is ρ , A= cross section area, I =area moment of inertia and P =axial tension. 

When the effects of rotary inertia and shear deformation are considered, the bending vibrations can describe by 
transverse displacement of the mid-plane V(X,T) and its slope φ(X,T). T is time and X represents the location of 

each point. Applying the Newton’s second law in the transverse direction and the angular momentum principle 

yield: 

 

, ,XX XAV PV Q                (1a) 
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 , ,TT XI M Q                (1b) 

 

By using the material time derivative formula, Eqs. (1) result: 

 

 2
, , , , , ,2TT XT X XX XX XA V V V V PV Q                    (2a) 

 

 2
, 9 , , , ,(2 )TT XT X XX XI k M Q              (2b) 

 

where M(X,T) =bending moment, Q(X,T) =shear force and they define as the following [14]: 

 

 ,, XM z dA EI Q KAG V
X


 


   

  
    

(3) 

 
E =elastic modulus, σ =normal stress, K =shear correction factor and z =distance from the mid-plane. Chen et al. 

[4] considered Eq. (1b) instead of (2b) for extracting the governing equations. In the other word, they did not 

consider the material time derivative for Eq. (1b). We will investigate the validity of this assumption later. For this 

purpose we inserted parameter k9 which has the values zero or one, in Eq. (2b), We called it “material time 

derivative coefficient for rotation” in this text. If k9=1, then the material time derivative for rotation function i.e. 
φ(X,T) is inserted in formulation and if k9=0, it is not considered. Also by setting k9=0, one can compare some of 

the equations with  Chen et al. [4]. For a beam which is viscoelastic in shear and incompressible in bulk the stress- 

strain relation is [15]: 
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:
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2(1 ) 3 : 2 2
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

  

  
          

   

 

    

(4) 

 

where q
E
 , p

E 
=viscoelastic operators and G,k =shear and bulk modulus. So Eqs. (3)  lead to the following form: 

 

, ,(3 2 ) , ( 2 )( )E E E E
X XM q p I Q KA q p V     (5) 

 

For a viscoelastic material which obeys the standard linear model, by considering the material time derivative, 

the viscoelastic operators are: 

 

1 1 1 1 0 1 0 3,E Ep E q E E E
T X T X

     
   

     
   

 
 

(6) 

 

where  E0=E1+E2 , E3= E1 E2 . Fig 1. shows this model. 

 

 

 

 

 

 

 

 

 

Fig.1 

Standard linear model. 

 

 

By substituting Eqs. (5) into Eqs. (2) the governing equations of an axially moving viscoelastic Timoshenko 

beam can extract. 
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3    PERTURBATION METHOD     

The perturbation technique is used for analysis. At first, the following parameters are introduced: 
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 

      

 

 

 

 

(7) 

 
where t0 =characteristic time, Γ0=characteristic velocity (mean axial speed), h0 =thickness, τ0 =relaxation time, ( )

*
 

stands for a dimensionless parameter, e =a dimensionless quantity corresponding to the wave velocity and ε =a small 

parameter (the ratio of the thickness to the length) which is considered as the perturbation parameter. In the most 
presented works, ε is a bookkeeping parameter but in this work, it has physical meaning.  By using Eqs. (7), the 

dimensionless form of governing are obtained as the following: 
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(8b) 

 

Eqs. (8) are coupled differential equations with time dependent coefficients.The axial speed is considered a small 

simple harmonic variations about a constant mean speed: 

 

 * * *1

0

1 sin t

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(9) 

 
where εγ1/ Γ0 and ω

*
  are amplitude and  frequency of the axial speed fluctuations, respectively. By defining T0 =t

*
 

and T1 =εt
*
 , Eqs. (8) convert to multiple-scale form. So, V

*
 and φ are functions of T0, T1, η. The deflection and 

rotation of the beam is assumed as : 
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(10) 

 
By substituting Eqs. (10) into Eqs. (8) and considering the terms with zero and one orders of ε,  we have:  

Order-zero equations: 
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Order-one equations 
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(12b) 

 

Eqs. (11-12) are systems of partial differential equations with constant coefficients. We solve these equations 

analytically.  

4    MODAL ANALYSIS   

The response of the beam for ω
*
=ωn is considered as an uniform series of the parameter ε  as Eqs. (10) where ωn =a 

natural frequency. Then the zero and first orders of equations are determined. 

4.1 Order ε
0
  

The solutions of Eq.(11) can assume as: 
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(13) 

 

For mode ‘n’ the n
th

 term of the series is dominant, so just n
th

 term is considered as the response of the beam 

(mode shape). By substituting Eq. (13) into Eq. (11), a system of ordinary differential equations with constant 
coefficients (in terms of v00 and φ00) is obtained. The solution of this system  is considered as: 



                                                                                                                                        H. Seddighi and H. Eipakchi                      83 

© 2016 IAU, Arak Branch 

00 1

1 1

00 2

exp( ),
v A

V V
A




   
    

  
  

 

 

(14) 

 

After substituting, we have: 
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Nontrival solution of Eqs. (15) corresponds to set the characteristic equation to zero which result  β1..β4 in terms 

of ωn. Also the value of eigenvector 1V  can determine. The response of the system is: 
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Cn, C2, C3, C4  are functions of T1. By applying the boundary conditions, a system of algebraic equations in the 

form of [axx]4*4 {c}={0}4*1 is created. For nontrival solution, the determinant of [axx] matrix must be vanished. It is 
a complex algebraic equation of ωn which can solve with the numerical method. After calculation the eigenvalues, 

the values C2, C3, C4  are computed in terms of  Cn(T1)  (which we dropped index “n” for simplicity) and we have: 
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4.2 Order ε
1
  

The solution of Eqs. (12) is assumed as: 
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C(T1) appears in the non-homogeneous part of  Eqs. (12). The solvability condition is used for determining 
C(T1). Two adjoint functions ψ1(η), ψ2(η)  are multiplied to order-zero equations (Eqs. 11) and  integrated from the 

sum of them over the total domain [16]. 
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In general, by considering Eq. (11,13), if we define 1Eq  and 2Eq  as the following: 
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where  a1, a2,a3, b1, b2  are as the following: 
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(20b) 

 
The adjoint functions  ψ1, ψ2, are established for all values of v00,φ00 as the following: 
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(21a) 

 

For a simply supported beam the boundary conditions are V=0 and  0 / 0M d d     (From Eq. (5)) at two 

ends and the appropriate boundary conditions  for ψ1(η), ψ2(η)   are set as the following: 

 

  2
1 1 1 2 0, 0

0,1 0,1
b d


 
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(21b) 

 

The solution of Eq. (21a) is considered as: 
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(22) 

 

So, we have: 
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(23) 

 

The eigenvector is : 
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(24) 

 

The solution of Eq. (23) is as the following: 
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(25) 

 

By applying the boundary condition Eqs. (21b) the coefficients  d2, d3, d4 are obtained in terms of d1. After 

determination the adjoint functions, these functions are multiplied into Eqs. (12) and then integrated from the sum of 

them. 

 

   
1 1

1 3 2 4 1 1 2 2

0 0

Eq Eq d f f d
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(26a) 
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Eq3, Eq4 are the left hand side of the first order Eqs. (12). From Eqs. (21) it results that the left hand side of Eq. 

(26a) is zero.   f1, f2  are the coefficients of 0exp( )ni T  terms which can produce secular terms. We have: 
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(26b) 

 

where: 
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(26c) 

 

The right hand side of Eq. (26a) is : 
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(27) 

 

After integrating, we have 
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(28) 

 

Eq. (28) is a first order differential equation which can solve for  C(T1).The particular solution is as the following 

form: 
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(29) 

 
By substituting Eq. (29) into the first order equations (Eqs.12), A1(η), A2(η), B1(η), B2(η) can determine. The 

total response is: 
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(30a) 

 
vg and  φg are homogenous solutions in the form of Eq. (16).  The boundary conditions are: 

 

1 10, 0 0,1/v at         (30b) 

 



86                      Dynamic Response of an Axially Moving Viscoelastic Timoshenko Beam                   

© 2016 IAU, Arak Branch 

5    PRINCIPAL PARAMETRIC RESONANCE     

If  the dimensionless natural frequency  ω
*
  approaches to two-times of  natural frequency of generating autonomous 

linear system Eq. (11) the principal parametric resonance may occur. A detuning parameter µ is introduced to 
quantify  the deviation of ω

*
 from 2ωn as the following:  

 
* 2 n     (31) 

 

We investigate the order-zero and one equations (Eqs. (11-12)). The order- zero Eqs. (11) are homogenous and 

the solution is:  
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(32) 

 

where “bar” stands for the complex conjugate and for simplicity, we dropped index “n”. The procedure of 

determining C(T1) is similar to  modal analysis i.e. the adjoint function has to distinguish. We substitute Eqs. (31-32) 

into Eqs. (12). The coefficients of the secular terms in non-homogenous part of Eqs. (12) are as the following:  
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(33a) 

 

f11, f12  are the coefficients of 0exp( )ni T   terms. According to Eq. (26a) we have: 
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After integration we have: 
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(34) 

 
where and b11..b44, κ were defined in Eqs. (26). If  C(T1)= an(T1) exp(i β1(T1))  then Eq.(34),  results: 

 

1 1 1 1( ) exp( ) exp( 2 ) 0n n n na a i a a i T i          (35) 

 
We assume  β1= μT1/2  and Eq.(35) simplifies as: 

 

1( / 2) 0n n na i a a       (36) 

 

By considering the real (Re) and imaginary (Im) parts of  an as an=p(T1) + i q(T1) and assuming zero initial 

condition p(0)=0,  an is obtained from  Eq. (36). So, C(T1) can determine. After removing the secular terms, the total 

solution of Eqs. (12), is as the following: 
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(37) 

 
vg and  φg  are homogenous solutions of Eqs. (12). 

6    DISCUSSION   

By a parametric study, the effects of mechanical and geometrical parameters on the response in modal and principal 

parametric resonance are investigated. Table 1. reports the beam properties. 

 
Table1  

Beam characteristic. 

l=1 (m) Length 

b=0.04 (m) Width 

h0=0.004 (m) Thickness 
ρ =7800 (kg/m3) Density 

P=100 (N) Initial tension force 

E1=1e10, E2=0.33e10 (Pa) Modulus of viscoelastic model 
η1=0.25e9 (Pa.s) Viscosity coefficient 
Γ0=0.5 (m/s) Mean speed 
γ1/ Γ0=0.5 Amplitude of velocity fluctuations 

K=0.83 Shear correction factor 

k9=1 material time derivative coefficient 

6.1 Modal analysis 

Fig. 2  shows the mode shape for T0={0.5,1,3,5}. All the figures related to mode 2. 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 

Mode shape in different times for modal analysis (mode 2). 

 

 

Fig. 3  shows the time response in the middle point of the beam for Kelvin,  standard linear and elastic models. 

The response for the linear standard and Kelvin models are very close but the deflection in elastic case is more than 

the viscoelastic models. Figs. 4-5 show the effect of  axial tension and mean axial speed on the response. Increasing 

the axial tension decreases the displacement due to increasing the stiffness and increasing the mean axial speed 
increases it. The axial mean speed does not have significant effect on the response for Γ0< 0.5 (m/s). Fig. 6 shows 

the effect of speed amplitude on the response. Increasing the amplitude, decreases the response for small T0 but for 

large T0, The solution is not sensitive to this quantity. Fig. 7 shows the effect of width on the response. By increasing 

the width, the displacement increases. Fig. 8 shows the effect of thickness on the response. The displacement is very 

sensitive to the thickness. By increasing the thickness, the decay rate decreases very fast. According to Fig. 9 by 

increasing the viscosity coefficient, the response value decreases. It corresponds to increasing the relaxation time. In 
our problems, this quantity affects significantly on the response approximately in the range 1e7< η1 < 1e10 (Pa.s). 

For η1>1e10 there is a heavy damping on the system.  From Fig. 10 the response is very sensitive to the elastic 

modulus E2. Increasing of this quantity decreases the period of oscillations. The calculations show that the response 

does not change by E1 (1e8< E1 <1e14  Pa). This graph has not shown.  
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Fig.3 

Response of middle point for different  models. 

  

 

 

 

 

 

 

 

 

 

 

Fig.4 

Effect of tension (in terms of Newton) on response. 

  

 

 

 

 

 

 

 

 
Fig.5 

Effect of mean axial speed (m/s) on response. 

  

 

 

 

 

 

 

 

 

Fig.6 

Effect of speed amplitude on response. 

  

 

 

 

 

 

 

 

 

 

 

Fig.7 

Effect of width (m) on response. 
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Fig.8 

Effect of thickness (m) on  response. 

  

 

 

 

 

 

 

 

 

 

Fig.9 

Effect of viscoelastic coefficient (Pa.s) on response. 

  

 

 

 

 

 

 

 

 
Fig.10 

Effect of elastic modulus E2 (Pa) on response. 

 
The variations of  displacement  with tension P, mean axial speed Γ0 , width b, density ρ for a typical time   is 

approximated with a power trend line as V*=b . x
c
,  where x is the mentioned parameters. The values c  for T0=0.5,1 

has been listed in Table 2. The other parameters for each case, is according to Table 1. The variation of the 
displacement with the speed amplitude γ1/ Γ0 is linear with a small slope. For example for T0=0.5 we have V*= -2e-

5*γ1/ Γ0 + c1 where c1 is a constant.  

 
Table 2 

Curve-fitting parameter c 

Parameter (x) c (T0=0.5) c (T0=1) Reference 

P -0.82  -0.86 Fig. 4 
Γ0   1.310    1.108 Fig. 5 

b   0.515    0.486 Fig. 7 

6.2 Principal parametric resonance 

Fig. 11 shows the response of middle point of the beam for different models. Similar to the modal analysis the 

displacement for viscoelastic models is less than the elastic case. Fig. 12 shows the response with respect to the 

relaxation time. Decreasing the relaxation time corresponds to decreasing the displacement. 
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Fig.11 

Response of middle point  for different models (parametric 

resonance). 

  

 

 

 

 

 

 

 

 

Fig.12 

Displacement of middle point in terms of  relaxation time 

(parametric resonance). 

 

 

The presented results were based on two-term expansion in Eqs. (10). Fig. 13 shows the displacements for one-
tem (V*=v0)  and two-terms (V*=v0+ε v1)  in

 
Eqs. (10). It is seen that there is a  good convergence in response for 

order-one in Eqs. (10).  

 

 

 

 

 

 

 

 

 
Fig.13 

Effect of different orders on displacements. 

 

 
Table 3 
Effect of material time derivative parameter (k9) on natural frequency. 

a 2 3 4 5 6 7 8 9 10 11 

k9=1 0.4075 0.5077 0.5753 0.4485 0.4486 0.4495 0.4580 0.5355 1.0263 2.9524 

k9=0 0.4485 0.4485 0.4485 0.4485 0.4486 0.4495 0.4580 0.5355 1.0263 2.9524 

2
2 3.330 10 ; 5.856 10a aE e    

 
 

Table 3. reports the effect of material time derivative k9 on natural frequency. In the derived formulas, ther is the 

term e.k9. The value of this quantity can affect on determination of frequency. For small values of e, the value of k9 

cannot affect on the calculations. It corresponds to large values of “a” in Table 3. But for small values of “a” , 

considering the material time derivative parameter is essential. By decreasing “a”, the model (Fig. 1) approaches to 

Maxwell model. So, inserting material time derivative parameter in formulation is very important for small values 

“a” especially for Maxwell model. In Fig.1 when E2 approaches to infinity, the model is converted to Kelvin model, 

so according the presented calculations, the parameter k9 is not important to calculate the natural frequency. Chen et 

al. [4] used the Kelvin model and they set k9=0 or their calculations are acceptable for the used model. Due to 

depending of the response to natural frequency, one can expect the similar result for the response. The results of 

Table 3 are based on Table 1 data (except that E2) and the calculations performed using the presented algorithm by 

Seddighi and Eipakchi [17].  
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7    CONCLUSIONS 

In this paper the dynamic response of an axially accelerated viscoelastic beam was determined analytically. The 

beam modeled by considering the Timoshenko beam theory, separating the effects of shear and bulk behavior, using 

the standard linear model for shear behavior, the material time derivative and the harmonically axial speed 

fluctuating about a constant mean value. The governing equations are coupled and the adjoint functions are used as 

the solvability conditions.  Then the response of the beam was obtained in both modal and principal parametric 

resonance by using the multiple-scale method. Finally by a parametric study, the effects of mechanical and 

geometrical parameters on the response in modal and principal parametric resonance, demonstrate the following 

conclusions. 

 Increase the viscoelastic coefficient decreases the response for special range. The modulus of elasticity 1E  

has no effect on the displacement, but the modulus of elasticity 2E  has significant effect on the response. 

 Increasing the axial velocity increases the displacement, but amplitude of speed fluctuations has no 

influence on the displacement for large T0. 

 Increasing the width increases the displacement. The thickness variations has much effect on displacement. 

 Increasing the axial tension  decreased the displacement. 

 The difference in response between Kelvin model and  standard linear model is about 0.06%  so, the 

standard model can not improve the result. 

 Difference in response between elastic case and  standard linear model is about 65.5% in modal analysis 

and 40% in principal parametric resonance so, by assumption the viscosity for structure, the displacements 

decrease. 

 There is a little differences between order-zero perturbation and first order of it, so considering just two 

terms in perturbation expansion is enough for convergence. 

Inserting the material time derivative for rotation is important especially for small values E2. 
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