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 ABSTRACT 

 Free vibration characteristics of continuous grading fiber orientation (CGFO) beams resting on 
variable Winkler and two-parameter elastic foundations have been studied. The beam is under 
different boundary conditions and assumed to have arbitrary variations of fiber orientation in the 
thickness direction. The governing differential equations for beam vibration are being solved 
using Generalized Differential Quadrature (GDQ) method. Numerical results are presented for a 
beam with arbitrary variation of fiber orientation in the beam thickness and compared with 
similar discrete laminate beam. The main contribution of this work is to present useful results for 
continuous grading of fiber orientation through thickness of a beam on variable elastic 
foundation and its comparison with similar discrete laminate composite beam. The results show 
the type of elastic foundation plays very important role on the natural frequency parameter of a 
CGFO beam. According to the numerical results, frequency characteristics of the CGFO beam 
resting on a constant Winkler elastic foundation is almost the same as of a composite beam with 
different fiber orientations for large values of Winkler elastic modulus, and fiber orientations has 
less effect on the natural frequency parameter. The interesting results show that normalized 
natural frequency of the CGFO beam is smaller than that of a similar discrete laminate beam and 
tends to the discrete laminated beam with increasing layers. It is believed that new results are 
presented for vibrational behavior of CGFO beams are of interest to the scientific and 
engineering community in the area of engineering design. 
                                                                                © 2012 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 UNCTIONALLY graded materials (FGMs) are heterogeneous materials in which the elastic and thermal 
properties change from one surface to the other, gradually and continuously. These structures support applied 

external forces efficiently by virtue of their geometrical shapes. Suresh and Mortensen [1] studied on functionally 
graded materials and describe the fundamentals of FGMs. Pradhan et al. [2] assumed that material properties follow 
a through-thickness variation according to a power-law distribution in terms of the volume fractions of constituents. 
FGM is a class of composite that has a smooth and continuous variation of material properties from one surface to 
another and thus can alleviate the stress concentrations found in laminated composites.  

Beams and columns supported along their length are very common in structural configurations. Beam structures 
are often found to be resting on earth in various engineering applications. These include railway lines, geotechnical 
areas, highway pavement, building structures, offshore structures, transmission towers and transversely supported 
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pipe lines. This motivated many researchers to analyze the behavior of beam structures on various elastic 
foundations. Studies on homogenous isotropic beams resting on variable Winkler foundation are found in various 
papers. Zhou Ding [3] presented a general solution for vibration of beam on variable Winkler elastic foundation. 
Employing the finite element method, Thambiratnam and Zhuge [4] studied the free vibration analysis of beams 
resting on elastic foundations. For two-parameter elastic foundation, Matsunaga [5] studied the linear vibration of 
non- prismatic beams resting on two-parameter elastic foundations. Ying et al. [6] presented solutions for bending 
and free vibration of FG beams resting on a Winkler–Pasternak elastic foundation based on the two-dimensional 
theory of elasticity. Yas et al. [7] studied free vibration analysis and optimization of functionally graded Euler–
Bernoulli beams resting on two-parameter elastic foundations.   

The differential quadrature method (DQM) is found to be a simple and efficient numerical technique for solving 
partial differential equations as reported by Bellman et al. [8]. The mathematical fundamental and recent 
developments of GDQ method as well as its major applications in engineering were discussed in detail in book [9]. 
Combination of the state-space method and the technique of DQ were used for free vibration of generally laminated 
beams by Chen et al. [10]. They did this by discretizing the state space formulations along the axial direction using 
the technique of DQ, new state equations at discrete pointes were established. Chen [11] used DQM to determine 
vibration characteristics of cross-ply laminated plates subjected to cylindrical bending. Khalili [12] used a mixed 
Ritz-DQ method to study the dynamic behavior of functionally graded beams subjected to moving loads and 
considered the material properties of the FG beam vary through the thickness according to exponential and  power-
law functions. Pradhan [13] studied thermo-mechanical vibration of FGM sandwich beam under variable elastic 
foundations by using GDQ method.   

In this paper, we study the dynamic behavior of a new type of materials called "functionally graded fiber volume 
or fiber orientation materials". These kinds of materials have some advantages over discrete laminated ones. For 
these materials significant improvements are found in their applications due to the reduction in spatial mismatch of 
mechanical material properties. This research is in the continuation of our previous work [14] to consider vibrational 
behavior of CGFO beams on variable elastic foundation and its comparison with discrete laminated beam. The 
present work provides an enhanced insight into the mechanical behavior of this type of materials. For this purpose, a 
semi-analytic solution procedure for the free vibrations analysis of continuous grading fiber orientation beam on 
variable elastic foundation is presented. A detailed parametric study is carried out to highlight the influences of fiber 
orientation in the beam's thickness, material property graded indexes, coefficients of elastic foundations with 
constant, linear and parabolic modulus on the vibration frequencies of beams and finally comparison is made with 
similar discrete laminate composite beams. 

2    PROBLEM DESCRIPTION 

Consider a functionally graded fiber orientation beam with its coordinate system (x, z) as shown in Fig. 1. Three 
different Winkler elastic foundations including: 
a:   Winkler elastic foundation with constant  modulus                     

0( )k x k  

b:  Winkler elastic foundation with  linear variation type                 
0( ) (1 )k x k x   

c:   Winkler elastic foundation with nonlinear variation type           2
0( ) (1 )k x k x   

are considered in this study. The beam is divided into N fictitious thin layers in the thickness direction, thus each 
layer can be considered as a plane stress state. The on-axis and off-axis coordinate systems coincide with the "1- 2" 
and "x-y" directions respectively. The mechanical constitutive relations, which relates the stresses to the strains for 
the Kth layer is expressed as [15]: 
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(1)
 

 
where 

ijQ  
is the stiffness of the beam at the Kth layer. 

The solution presented here is applicable for arbitrary variation of material composition through the thickness of 
the beam. For the beam, we assume the following specific power-law variation of the fiber orientation [14]:   
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where i  and o  denote the fiber orientation on the 
2

h
z   and 

2

h
z   respectively and may typically ranges from 0o 

to 90o. The power p denotes the manner in which the orientation of the fibers varies through the thickness.  Fig. 2 

shows the variations of the fiber orientations through the thickness ( z

h
  ). In this figure the fiber orientations are 

assumed as i  = 0o and o  =90o on the lower and upper surfaces respectively.  

For continuous grading fiber orientation beam resting on variable two-parameter elastic foundation, the linear 
governing equation can be expressed as [7]: 
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where 1( ), ( )k x k x are Winkler and shearing layers elastic coefficients of the foundation. To obtain the natural 

frequency, the above equation is formulated as an eigen value problem by using the following periodic function: 
 

( , ) ( ) i tw x t W x e   (5)
 
where ( )W x  is the mode shape of the transverse motion of the beam, therefore: 
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Eq. (6) is a fourth-order ordinary differential equation. Thus, it requires four boundary conditions. The following 

two types of boundary conditions are considered.  
Simply supported edge 
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Fig.1 
Various Winkler elastic foundations along the axial 
direction: (a) linear type, (b) parabolic type. 
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Fig.2 
Variations of the fiber orientation ( ) through the thickness 
for different value of p. 

3   GDQ SOLUTION OF GOVERNING EQUATION 

The generalized differential quadrature (GDQ) approach is used to solve the governing equation of the beam. The 
GDQ approach was developed by Shu and coworkers [9, 16] based on the (DQ) technique [8]. It approximates the 
spatial derivative of a function of given grid point as a weighted linear sum of all the functional value at all grid 
point in the whole domain. The computation of weighting coefficient by GDQ is based on an analysis of a high 
order polynomial approximation and the analysis of a linear vector space. The weighting coefficients of the first-
order derivative are calculated by a simple algebraic formulation, and the weighting coefficient of the second-and 
higher-order derivatives are given by a recurrence relationship. The details of the GDQ method can be found in [9, 
16]. In the GDQ method, the nth order of a continuous function ( , )f x z  with respect to x at a given point xi can be 

approximated as a linear sum of weighting values at all of the discrete point in the domain of x , i.e. [9]: 
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where N is the number of sampling points, and n
ijc  is the xi dependent weight coefficients.  

In order to determine the weighting coefficients n
ijc , the Lagrange interpolation basic functions are used as test 

functions, and explicit formulation for computing these weighting coefficients can be obtained [9,16] : 
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For the first-order derivative; i.e. n=1 and for higher-order derivative, one can use the following relations 

iteratively: 
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A simple and natural choice of the grid distribution is the uniform grid spacing rule. However, it was found that 
non-uniform grid spacing yields results with better accuracy [17]. Hence, in this work, the Chebyshev-Gauss-
Labatto quadrature points are used, that is [9] 
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4   RESULTS AND DISCUSSION 

First, verification study of the results is considered for an isotropic beam resting on Winkler elastic foundation in 
Table 1. As observed there is good agreement between the present results with similar ones obtained by Zhou Ding 
[3].  

In this section, we characterize the response of the CGFO beam resting on different types of two-parameter 
elastic foundation. It is assumed the beam has the following mechanical properties [15]: 
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First the convergence of the method is investigated in evaluating the natural frequency parameter 2

T

A
L

E I


    . 

The results are prepared for a graded beam with a linear variation of fiber orientation (p=1) from i  = 0o at 

2

h
z   to 0 = 90o at 

2

h
z 

 
and is shown in Fig. 3. Fast rate of convergence of the method is evident at different 

boundary conditions and it is found that only ten DQ grid in the thickness direction can yield accurate results. It is 
also observed for the considered system the formulation is stable while increasing the number of points and that the 
use of 50 points guarantees convergence of the procedure. 

Now we compare a continuous grading fiber orientation beam with a linear variations of fiber orientation (p =1), 

from i  = 0o at 
2

h
z    to o  = 90o at 

2

h
z   with discretely laminated 2-layer [0o /90o], 3-layer [0o /45o /90 o], 4-layer 

[0o /30o /60 o /90 o] and 7-layer [0o /15o /30o /…/90o] respectively. This comparison is shown in Table 2. for various 
values of the wave numbers. It results the natural frequency of the CGFO beam is smaller that of a discrete laminate 
composite one. Also it is found that by increasing the layers of a discrete laminate composite beam, its natural 
frequency decreases and tends to a similar functionally graded fiber orientation one. Here we consider the effect of 
various Winkler elastic foundations on the CGFO beam with simply supported ends. Fig. 4 shows variations of the 
natural frequency parameter of a functionally graded fiber orientation as well as composite beams with different 
fiber orientations versus various constant Winkler elastic foundations. In this figure the shearing layers elastic 
coefficient (k1) is assumed to be unity while Winkler elastic modulus (k) is considered to vary from 10 to 100,000. 
From this figure one could observe that for k>10000, the natural frequency parameter of the CGFO beam as well as 
composite one with different fiber orientation are the same. In other words for the large values of Winkler elastic 
modulus (k), fiber orientations has less effect on the natural frequency parameter. Fig. 5 shows variations of the 
natural frequency parameter of continuous grading fiber orientation beam with a linear variation of fiber orientation 

(p=1) from i  = 0o at 
2

h
z   to 0 = 90o at

2

h
z  resting on different types of Winkler elastic foundation. As 

observed, different types of Winkler elastic foundation doesn't affect on the natural frequency parameter of CGFO 
beam for Winkler elastic constant ( k0 ), ranges 10< k0<1000 and then for k0>1000, the natural frequency parameter 
of a CGFO beam  resting on a variable Winkler elastic foundation decreases from constant type to parabolic and 
then linear types. In this figure the ends of the CGFO beam is simply supported. The effect of Winkler elastic 
foundation coefficients with constant modulus on the natural frequency parameter of a CGFO beam with simply 
supported ends is illustrated in Fig. 6 for different shearing layer coefficient. As it could be observed the natural 
frequency parameter converges with increasing the shearing layer elastic coefficient. For further study, the first three 
natural frequency parameters of the CGFO beam on Winkler elastic foundation with various linear modulus ( )  as 
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well as parabolic modulus ( ) is shown for different boundary conditions in Tables 3. and 4. As noticed the natural 

frequencies parameter decrease with the increase of linear and parabolic modulus.  
 
 
Table 1 
Comparison of the frequency parameters of an isotropic beam resting on parabolic type of Winkler elastic foundation 

4
2 4 2

0 1
0

( (1 ), 0, )   i i
AL

k k x k
EI

    

0k
 

  
 

1 2 3  4 5 6 
1000 0.4 Zhou[3] 5.597 7.022  9.675 12.675 15.763 18.882 

  Present 5.5961 7.0231 9.6744 12.6743 15.7636 18.8818 
 0.8 Zhou[3] 5.409 6.935  9.638 12.659 15.753 18.878 

  Present 5.4100 6.9347 9.6385 12.6582 15.7552 18.8769 
1500 0.4 Zhou[3] 6.138 7.321  9.792 12.728 15.792 18.898 

  Present 6.1382 7.3207 9.7923 12.7273 15.7912 18.8979 
 0.8 Zhou[3]  5.917 7.206  9.741 12.704 15.778 18.892 

  Present 5.9162 7.2070 9.7407 12.7034 15.7786 18.8906 
2000 0.4 Zhou[3] 6.564 7.587  9.905 12.780 15.819 18.913 

  Present 6.5642 7.5865 9.9063 12.7797 15.8187 18.9140 
 0.8 Zhou[3] 6.312 7.454  9.841 12.749  15.802 18.903 

 
 
Table 2 
Comparison of natural frequency parameter of CGFO beam with discretely laminated beam   1 1, 2000k k   

M [0°/90°]  [0°/45°/90°] [0°/30°/60°/90°] [0°/15°/30°/…/90°]  CGFO(0°,90°) 
1 57.9724 57.7744 57.4724 57.2721 56.9237 
2  153.800 152.603 150.767 149.543 147.399 
3 333.937 331.146 326.861 324.002 318.989 
4 589.911 584.917 577.250 572.132 563.160 
5 920.096 912.278 900.277 892.265 878.219 
6 1324.07 1312.80 1295.51 1283.96 1263.72 
7 1801.68 1786.35 1762.80 1747.08 1719.52 
8 2352.88 2332.84 2302.08 2281.55 2245.55 
9 2977.62 2952.26 2913.33 2887.34 2841.78 

10  3675.90 3644.59 3596.53 3564.44 3508.18 
 
 
Table 3 
Variation of the first three natural frequency parameters of CGFO beam resting on the elastic foundation with various linear 
modulus (k1=1, k=k0(1-αx)) 

0k  
  s-s  c-c  c-s 

  
1  2 3 1 2  3 1 2 3 

500 0 41.717 142.220 316.629 82.676 220.434 430.399 59.282 179.102 371.308 
 0.2 41.113 142.044 316.550 82.373 220.320 430.341 58.800 178.957 371.239 
 0.4 40.500 141.868 316.471 82.068 220.207 430.283 58.314 178.812 371.170 
 0.6 39.877 141.692 316.392 81.763 220.093 430.225 57.825 178.666 371.102 
           

1000 0 47.332 143.967 317.418 85.646 221.565 430.980 63.359 180.493 371.980 
 0.2 46.263 143.619 317.260 85.060 221.339 430.864 62.455 180.204 371.843 
 0.4 45.167 143.271 317.103 84.470 221.113 430.748 61.537 179.916 371.706 
 0.6 44.042 142.923 316.945 83.875 220.887 430.632 60.604 179.627 371.569 
           

2000 0 56.924 147.399 318.989 91.298 223.810 432.138 70.812 183.242 373.322 
 0.2 55.136 146.720 318.676 90.195 223.363 431.907 69.186 182.674 373.049 
 0.4 53.284 146.039 318.362 89.078 222.915 431.675 67.520 182.104 372.776 
 0.6 51.359 145.356 318.048 87.946 222.467 431.444 65.809 181.534 372.503 
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Table 4 
Variation of the first three natural frequency parameters of CGFO beam resting on the elastic foundation with various linear 
modulus (k1=1, k=k0(1-βx)) 

0k 
 s-s  c-c  c-s 

  
1 2 3 1 2 3 1 2 3 

500 0 41.717 142.220 316.629 82.676 220.434 430.399 59.282 179.102 371.308 
 0.2 41.377 142.107 316.578 82.511 220.365 430.362 58.986 179.010 371.263 
 0.4 41.033 141.994 316.526 82.346 220.296 430.326 58.689 178.918 371.219 
 0.6 40.686 141.882 316.474 82.180 220.227 430.289 58.390 178.826 371.174 
           

1000 0 47.332 143.967 317.418 85.646 221.565 430.980 63.359 180.493 371.980 
 0.2 46.730 143.744 317.315 85.328 221.428 430.906 62.804 180.310 371.891 
 0.4 46.119 143.521 317.211 85.008 221.291 430.833 62.245 180.127 371.802 
 0.6 45.498 143.299 317.108 84.687 221.154 430.759 61.679 179.944 371.714 
           

2000 0 56.924 147.399 318.989 91.298 223.810 432.138 70.812 183.242 373.322 
 0.2 55.919 146.964 318.784 90.700 223.539 431.992 69.817 182.881 373.145 
 0.4 54.891 146.529 318.578 90.097 223.268 431.845 68.805 182.521 372.968 
 0.6 53.838 146.094 318.373 89.489 222.997 431.699 67.775 182.160 372.790 
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Fig.3 
Convergency of the normalized natural frequency. 
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Fig.4 
Effect of Winkler elastic foundation coefficients on the 
natural frequency parameter of CGFO as well as composite 
laminated beams (k1=1).  
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Fig.5 
Variations of the natural frequency parameter of a CGFO 
beam resting on different kinds of Winkler elastic 
foundation  1( 1)k  . 
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Fig.6 
Variations of the natural frequency parameter vs. shearing 
layer elastic coefficient for different Winkler elastic 
foundation with constant modulus (p=1). 
 

5    CONCLUSIONS 

In this research work, the GDQ method has been used to study free vibration analysis of continuous grading fiber 
orientation (CGFO) beam. We checked the effectiveness of this method in predicting free vibration behavior of a 
functionally graded fiber orientation beams by comparing its results for isotropic condition with corresponding 
numerical results in the literature. From this study, some conclusions can be made:  
 It has been found that the convergence of the GDQ results is very fast. The numerical results obtained by using 

only ten grid points agree very well with those in the literature. 
  It results frequency characteristics of the CGFO beam behave very much the same as that of discrete laminate 

one. The new and interesting results show that the natural frequency of the CGFO beam is smaller that of a 
discrete laminate composite one and tends to the discrete laminated beam with increasing layers. 

 It results frequency characteristics of the CGFO beam resting on a constant Winkler elastic foundation is almost 
the same as of a composite beam with different fiber orientations for large values of Winkler elastic modulus 
(k), and fiber orientations has less effect on the natural frequency parameter. 

 The kind of Winkler elastic foundation doesn't affect on the natural frequency parameter of CGFO beam for 
Winkler elastic constant (k0), ranges 10< k0<1000. 

 It has been resulted the natural frequency parameter converges with increasing the shearing layer elastic 
coefficient  

 It is noticed, the natural frequency parameter of a CGFO beam resting on a variable Winkler elastic foundation 
decreases from constant type to parabolic and then linear types. 
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