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 ABSTRACT 

 The issue of pressure sensitivity of anisotropic sheet metals is investigated with 

introducing two new non-AFR criteria which are called here linear and non-

Linear pressure sensitive criteria. The yield and plastic potential functions of 

these criteria are calibrated with directional tensile/compressive yield stresses 

and directional tensile Lankford coefficients, respectively. To determine 

unknown coefficients of yield and plastic potential functions of these criteria 

two error functions are presented which are minimized by Downhill Simplex 

Method. Three anisotropic materials are considered as case studies such as Al 

2008-T4 (BCC), Al 2090-T3 (FCC) and AZ31 (HCP). It is shown that the non-

Linear pressure sensitive criterion is more accurate than the linear one and 

other existed criteria compared to experimental results in calculating the 

directional mechanical properties of anisotropic sheet metals. 

                                                  © 2018 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 EW experimental tests on anisotropic materials showed that yield stresses and Lankford coefficients of some 

materials were different in tension and compression in different orientations from the rolling direction. Several 

investigations have been presented to model this phenomenon mathematically. Spitzig and Richmond [1] 

experimentally showed that in both iron-based materials and aluminum the flow stress was linearly rooted on 

hydrostatic pressure. Liu et al. [2] extended Hill criterion to contain orthotropic plastic materials with different yield 

stresses in tension and compression. Barlat et al. [3] introduced a plane stress yield function named Yld2000-2d and 

confirmed it with experimental and polycrystal data achieved on a binary Al-2.5 wt. % Mg alloy sheet. Stoughton 

and Yoon [4] suggested a non-AFR based on a pressure dependent yield criterion with isotropic hardening which 

was consistent with Spitzig and Richmond results [1]. Hu and Wang [5] proposed a yield function to anticipate the 

strength differential effect in tension and compression of materials. Hu [6] offered a yield function which defined 

the yield state by considering the influence of both loading force and loading direction for anisotropic materials. 

Artez [7] modified a plane stress yield function based on Hanford non-quadratic yield function called ‘Yld2003’ 

which was nearly as flexible as Balart yield function ‘Yld2000-2D’ but had a simpler mathematical form. Lee et al. 

[8] with considering the high directional differences in initial yield stress and also high asymmetry in tension and 
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compression developed a yield function with pressure dependent term. Stoughton and Yoon [9] presented a model 

for proportional loading for any biaxial stress conditions. The model was demonstrated to lead a reduction in error of 

prediction of anisotropic stress-strain relationship in uniaxial and equal biaxial tension. Hu and Wang [10] defined a 

plastic potential function to depict the feature of plastic flow of material to build a suitable constitutive model. Huh 

et al. [11] computed the accuracy of anisotropic yield functions contain of Hill48, Yld89, Yld91, Yld96, Yld2000-

2d, BBC2000 and Yld2000-18p based on root-mean square error (RMSE) of yield stresses and Lankford 

coefficients. Moayyedian and Kadkhodayan [12] were studied derivation of the second differentiation of a general 

yield surface by implicit time stepping method along with its consistent elastic-plastic modulus. Moreover, the 

explicit, trapezoidal implicit and fully implicit time stepping schemes were compared in rate-dependent plasticity. It 

was shown that implementing fully implicit time stepping scheme in rate-dependent plasticity predicts more 

accurate experimental results than other schemes. Lou et al. [13] proposed an approach to extend symmetric yield 

functions to consider the SD effect for incompressible sheet metals with associated flow rule. Safaei et al. [14] 

presented a non-associated plane stress anisotropic constitutive model with mixed isotropic-kinematic hardening. 

The quadratic Hill 1948 and non-quadratic Yld-2000-2d yield criteria were considered in the non-associated flow 

rule (non-AFR) model. Yoon et al. [15] proposed a yield function based on the first, second and third stress 

modified invariants of the stress tensor to depict strength differential effects of anisotropic materials. Safaei et al. 

[16] presented an approach to describe the evolution of anisotropy during plastic deformation. A non-AFR based on 

Yld2000-2d anisotropic yield model was employed. They described two simplified methods for the relationship 

between equivalent plastic strain and compliance factor in a non-AFR model. It was shown that if the non-AFR was 

simplified without any scaling of the plastic potential function, this resulted in a wrong definition of equivalent 

plastic strain. However, it was confirmed that this could be correct if the plastic potential function was scaled based 

on the data at uniaxial stress state. Moayyedian and Kadkhodayan [17] combined von Mises and Tresca surfaces in 

place of yield and plastic potential functions and vice versa. They showed that taking von Mises and Tresca surfaces 

as yield and plastic potential functions predicted experimental results more accurate than the associated von Mises. 

Moreover, taking Tresca and von Mises surfaces as yield and plastic potential functions predicted experimental 

results more precise than associated Tresca. Oya et al. [18] proposed a new expression for the plastic constitutive 

model for materials with initial anisotropy. For this purpose, a non-associated normality model, in which the plastic 

potential function was defined independently of the yield function, had been adopted. An explicit expression for the 

equivalent plastic strain rate, which was plastic-work-conjugated with the defined equivalent stress corresponding to 

the proposed yield function, was also presented. Moayyedian and Kadkhodayan [19] introduced Modified Yld2000-

2d II with inserting modified Yld2000-2d and Yld2000-2d in place of yield and plastic potential functions 

respectively to depict the behavior of anisotropic pressure sensitive sheet metals more accurately. Moayyedian and 

Kadkhodayan [20] modified Burzynski criterion used for pressure sensitive isotropic materials for anisotropic 

pressure sensitive sheet metals based on non-AFR to better describe the asymmetric anisotropic sheet metals 

behavior. Ghaei and Taherizadeh [21] presented a model to describe the anisotropic behavior of sheet metals in both 

yield stresses and plastic strain ratios by using the non-AFR and quadratic yield and potential functions. 

Additionally, to reproduce an accurate prediction of cyclic plastic deformation phenomena, a two-surface mixed 

isotropic-nonlinear kinematic hardening model was combined with the quadratic non-AFR anisotropic formulation. 

In the current study, two new non-AFR criteria are introduced entitled ‘linear pressure sensitive criterion’ and 

‘non-linear pressure sensitive criterion’. Two important aims are investigated here: 1.Investigating the effect of non-

linear hydrostatic pressure on yielding of anisotropic sheet metals. 2. Studying the use of non-AFR in anisotropic 

sheet metals. To calibrate these criteria some experimental data points are needed for the yield and plastic potential 

functions. It is preferred to use directional tensile and compressive yield stresses for calibrating the yield functions 

and directional tensile Lankford coefficients for calibrating the plastic potential functions. Three anisotropic 

materials with different structures are used as case studies, i.e. Al 2008-T4 (BCC), Al 2090-T3 (FCC) and AZ31 

(HCP). Directional tensile, compressive and Lankford coefficients of these materials are computed by these criteria 

and compared with Lou et al. [13], Yoon et al. [15] ones and experimental results. Finally, it is observed that the 

non-linear pressure sensitive criterion is more successful than the others in predicting experimental directional yield 

stresses and Lankford coefficients. 

2    LINEAR AND NON-LINEAR PRESSURE SENSITIVE CRITERIA   

To define the linear and non-linear pressure sensitive criteria, first the yield function of Yoon et al. [15] is improved 

to consider the influence of non-linear hydrostatic pressure on yielding of asymmetric anisotropic sheet metals with 

http://www.sciencedirect.com/science/article/pii/S0020740313001276
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a new calibration approach. Then a new pressure insensitive plastic potential function is added to compute 

directional Lankford coefficients. Yoon introduced the criterion by the aid of two modified deviatoric stress tensors 

(
ijs  and

ijs  ) in three dimensional space are: 
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(1) 

 

In this equation ij  is stress tensor while  1,6ic i     and  1,6ic i   are unknown anisotropic coefficients that 

are determined by different experimental tests. Assuming plane stress conditions in 
xx yy   plane for sheet 

metals, the modified deviatoric stress components can be achieved as: 
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(2) 

 

Hence, the modified invariants are defined for anisotropic sheet metals are defined as:  
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In this equation 1I  is the first modified invariant of stress tensor while 
2J   and 

3J   are the second and the third 

modified invariants of modified deviatoric stress tensors. Inserting Eq. (2) into Eq. (3), the modified invariants are 

obtained in terms of stress components as follows: 
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(4) 

 

As it is seen in Eq. (4), 
1I  is a linear, 

2J   is a quadratic and 
3J    is a cubic function of stress components. In Eq. 

(4), 
xh  and 

yh  are unknown coefficients for computing the first modified invariant of stress tensor (modified 

hydrostatic pressure) which can be computed with experimental tests and  1,4ia i   and  1,6ia i   are 

determined in terms of unknown coefficients 
ic   and 

ic    as: 
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Now the yield functions of linear and non-linear pressure sensitive criteria are respectively presented as: 
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It is observed that the yield function of non-linear pressure sensitive criterion is nonlinearly depended on 

modified hydrostatic pressure while the yield function of Yoon was linearly depended. In Eq. (6), p  is the effective 

plastic strain and  p 
 
defines the isotropic hardening for different anisotropic materials. These two yield functions 

are asymmetric in xx yy    plane due to 
1I  and 3J   . 

In the current research, to compute the directional Lankford coefficients, a pressure insensitive plastic potential 

function is considered for two criteria. Two modified deviatoric stress tensors (
ijs  and

ijs  ) are introduced as in Eq. 
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(7) where  1,6ic i    and  1,6ic i   are unknown coefficients and are determined with different directional 

experimental tests. The modified deviatoric stress tensors are as shown in Eq. (8). Hence, two modified second and 

third stress invariants of modified deviatoric stress tensors are introduced, Eq. (9). 

 

2 3 3 2

3 3 1 1

2 1 1 2

4

5

6

0 0 0
3 3 3

0 0 0
3 3 3

0 0 0
3 3 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

xx xx

yy yy

zz zz

yz yz

xz xz

xy xy

c c c c

s
c c c c

s

s
c c c c

s

s c
s c

c













 
 

    
    
    
       

     
    


   
 


   

  


   

   
   

      


 



 
 

   

2 3 3 2

3 3 1 1

2 1 1 2

4

5

6

0 0 0
3 3 3

0 0 0
3 3 3

0 0 0
3 3 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

xx xx

yy yy

zz zz

yz yz

xz xz

xy

c c c c

s
c c c c

s

s
c c c c

s

s c
s c

c











   
 


   

  


 




 
 

   
   
   
  

  
 

 
   
  
  
  





 

  


 

 


 
 

xy

 
 
 
  
 
 
 
 
  

 

 

(7) 

 

2 3 3 2 3 3

3 3 1 3 3 1

2 1 2 1

6 6

3 3 3 3

3 3 3 3

3 3 3 3

xx xx yy xx xx yy

yy xx yy yy xx yy

zz xx yy zz xx yy

xy xy xy xy

c c c c c c
s s

c c c c c c
s s

c c c c
s s

s c s c

   

   

   

 

      
    

      
      

  

 
 
 



      

    


 
 
 
 
 
 
 

 
 

(8) 

 
2

2

2

3

xx yy yy zz xx zz xy

xx yy zz zz xy

J s s s s s s s

J s s s s s

            


      

 
 

(9) 

 

Substituting Eq. (8) into (9), 
2J   and 

3J    are obtained in terms of stress components and  1,4ia i   and 
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are computed, Eqs. (10) and (11).  
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 Thus, plastic potential function of linear and non-linear pressure sensitive criteria is proposed as follows: 
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The pressure insensitivity of the plastic potential function of these criteria is due to satisfying the 

incompressibility of the plastic flow rule. It should be noted that Yoon et al. [15] have not considered a plastic 

potential function to compute Lankford coefficients. The proposed plastic potential function of linear and non-linear 

pressure sensitive criteria is generally asymmetric in 
xx yy    plane because of

3J  . To find the function in terms 

of stress components, Eq. (11) can be inserted in Eq. (10) and its result can be substituted into Eq. (12). To calibrate 

the function, its first differentiation with respect to stress tensor is required as in the following: 
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In the Eq. (13), 2
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3    CALIBRATION OF LINEAR AND NON-LINEAR PRESSURE SENSITIVE CRITERIA    

To calibrate the linear and non-linear pressure sensitive criteria, biaxial and uniaxial tensile and compressive yield 

stresses for its yield function and biaxial and uniaxial tensile Lankford coefficients for their plastic potential 

functions are needed in different orientations. In tensile test (in   direction from rolling direction) the stress 

components can be found as: 
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(15) 

 

And similarly in compression test it is found that: 
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For tensile biaxial test the stress components are: 
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And for compressive biaxial test the stress components are: 
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In the current study, due to the pressure dependency of yield function of linear and non-linear pressure sensitive 

criteria, a non-AFR in plasticity theory is employed. Then the increment of the plastic strain tensor 

 j
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id  components is introduced as: 
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(19) 

 

where d   plastic multiplier and G is plastic potential function. In Eq. (19), the incompressibility condition of 

increment of plastic strain tensor stated as: 
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Due to incompressibility condition of plastic strain in Eq. (20), the proposed plastic potential function is pressure 

insensitive. Moreover, tensile uniaxial  TR  and biaxial  T

bR  Lankford coefficients (R-values) are defined as Eq. 

(21). By inserting Eqs. (15) to (18) into the first relation in Eq. (6) for linear pressure sensitive criterion and into the 

second relation of Eq. (6) for the non-linear pressure sensitive criterion the directional uniaxial and biaxial tensile 

and compressive yield stresses can be achieved respectively as Eq. (22). 
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Moreover, by inserting Eq. (15) and Eq. (17) into Eq. (12) and the results into Eq. (21), the uniaxial and biaxial 

tensile Lankford coefficients are obtained as: 
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(23) 

 

where A,B,C,D,E,H,I  are as follows: 
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(24) 

4    PARAMETER EVALUATIONS AND ROOT MEAN SQUARE ERRORS (RMSEs)  

The yield functions which are asymmetric functions (pressure sensitive) are required to be calibrated with ten yield 

stress experimental tests such as uniaxial tensile  T

 , compressive  C

  yield stresses in orientations of 0 ,15 ,45  

and 90  from the rolling direction and also tensile biaxial  T

b  and compressive biaxial  C

b  yield stresses. The 

new proposed plastic potential function which is an asymmetric function (pressure insensitive), is calibrated with 

eight experimental results such as uniaxial tensile Lankford coefficients 
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. With these experimental results for an 

anisotropic sheet metal, 10 unknown coefficients in yield functions such as  , , 1,2,3,6x y ih h c i   and  1,2,3,6ic    

, and also 8 parameters in the plastic potential functions such as  1,2,3,6ic i   and  1,2,3,6ic i    are 
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determined by minimizing error functions  1 2,E E   in Eq. (25) and Eq. (26) respectively with Downhill Simplex 

Method. 
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By minimizing 
1E  and

2E , the unknown coefficients of yield and plastic potential functions are achieved for an 

anisotropic sheet metal. To understand the difference between the calibration of modified criterion and Yoon et al. 

[15], it is mentioned that Yoon constructed an error function for obtaining yield function with eight experimental 

data points such as 
45 90 0 45 900 , , , , , , ,T T T C C C

b

T C

b       and to obtain 
xh   and 

yh  for a pressure sensitive anisotropic 

material, they proposed uniaxial tensile yield stress tests which should be carried out in a hydrostatic pressure 

chamber. They have not proposed plastic potential function for predicting Lankford coefficients. 
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After finding 18 unknown coefficients of yield and plastic potential functions, the accuracy of two criteria in 

compared to experimental results can be investigated with introducing root-mean square errors (RMSEs) of the 

tensile  TE , compressive  CE  yield stresses, tensile Lankford coefficients  T

RE  , biaxial tensile yield stress 

 TbE , biaxial compressive yield stress  CbE , biaxial tensile Lankford coefficient  TbE  as in Eqs. (27-32). By 

computing the RMSEs, the accuracy of two criteria and other ones such as Yoon et al. [15] and Lou et al. [13] in 

compared to experimental results can be investigated. 

5    CASE STUDIES   

To calibrate the linear and non-linear pressure sensitive criteria, eighteen experimental results for each one are 

required as explained in previous section. To the best knowledge of the authors these experimental values are not 

computed for any anisotropic sheet metal, therefore three proper anisotropic materials are considered, i.e. Al2008-

T4, Al2090-T3 and AZ31. 
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In the following, the mechanical properties of three materials such as Al 2008-T4 (a BCC material), Al 2090-T3 

(a FCC material) which are aluminum alloys and also AZ31 (a HCP material) which is a magnesium alloy given by 

Lou et al. [13] and Yoon et al. [15] are presented in Tables 1 to 3. If the biaxial tensile and compressive yield 

stresses cannot be determined for an anisotropic material experimentally, they can be determined from uniaxial 

tensile and compressive yield stresses in 0 ,45 , and 90  direction 0 45 90 0 45 902 2
,

4 4

T T T C C C
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b b
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. 

Using these mechanical properties, the material parameters of the yield and plastic potential functions in Eqs. (6, 12) 

can be achieved by minimizing the error functions in Eqs. (25, 26) with Downhill Simplex Method, see Tables 4-7. 

  
Table 1 

Experimental results for Al 2008-T4, Al 2090-T3 and AZ31 in tension. 

 Al 2008-T4 Al 2090-T3 AZ31 

0
T  211.67 279.62 170.82 

15
T  211.33 269.72 - 

30
T  208.50 255.00 - 

45
T  200.03 226.77 177.13 

60
T  197.30 227.50 - 

75
T  194.30 247.20 - 

90
T  191.56 254.45 191.83 

T
b  185.00 289.40 179.23 

    

 
Table 2 

Experimental results for Al 2008-T4, Al 2090-T3 and AZ31 in compression. 

 Al 2008-T4 Al 2090-T3 AZ31 

0
C  213.79 248.02 96.58 

15
C  219.15 260.75 - 

30
C  227.55 255.00 - 

45
C  229.82 237.75 94.45 

60
C  222.75 245.75 - 

75
C  220.65 263.75 - 

90
C  214.64 266.48 103.38 

C
b  222.02 247.50 97.47 
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Table 3 

Experimental results for Al 2008-T4, Al 2090-T3 and AZ31 for Lankford coefficients in tension. 

 Al 2008-T4 Al 2090-T3 AZ31 

0
TR  0.870 0.210 - 

15
TR  0.814 0.330 - 

30
TR  0.634 0.690 - 

45
TR  0.500 1.580 - 

60
TR  0.508 1.050 - 

75
TR  0.506 0.550 - 

90
TR  0.530 0.690 - 

T
bR  1.000 0.670 - 

 
 

Table 4 

Coefficients in the yield function of linear pressure sensitive criterion for Al 2008-T4, Al 2090-T3 and AZ31. 

 Al 2008-T4 Al 2090-T3 AZ31 

1c   1.9095 0.8355 2.1153 

2c   1.7286 -3.4787 2.5661 

3c   1.7117 2.7316 2.3311 

6c   1.6715 -2.1596 2.4751 

1c   -0.0086 -0.0165 -1.0019 

2c   -0.1139 0.0324 -1.6883 

3c   5.1651 16.2643 -3.6159 

6c   -0.0028 -20.6152 3.2528 

xh  0.0426 -0.1605 -0.1768 

yh  0.0621 0.0758 -0.2536 

 
 

Table 5 

Coefficients in the yield function of non-linear pressure sensitive criterion for Al 2008-T4, Al 2090-T3 and AZ31. 

 Al 2008-T4 Al 2090-T3 AZ31 

1c    1.9541 1.9920 2.3407 

2c   1.7078 1.6551 2.7187 

3c   1.8569 1.8120 2.3128 

6c   1.7925 2.1289 2.5491 

1c    -0.0626 0.0987 -0.2131 

2c   -0.1128 8.4847 -0.2709 

3c   5.3326 -0.0049 -13.2943 

6c   -0.0009 0.7497 -9.9399 

xh  0.2461 -0.3160 -0.6423 

yh   0.4374 0.1637 -0.6699 
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Table 6 

Coefficients in the plastic potential function of linear pressure sensitive criterion for Al 2008-T4, Al 2090-T3 and AZ31. 

 Al 2008-T4 Al 2090-T3 AZ31 

1c   1.2338 0.7243 - 

2c   1.4122 1.4675 - 

3c   0.3153 -0.4850 - 

6c   0.4779 1.3773 - 

1c   1.4175 0.9125 - 

2c   2.2194 0.6933 - 

3c   -0.1905 5.2155 - 

6c    -0.0010 -1.0651 - 

 
 

Table 7 

Coefficients in the plastic potential function of non-linear pressure sensitive criterion for Al 2008-T4, Al 2090-T3 and AZ31. 

 Al 2008-T4 Al 2090-T3 AZ31 

1c   1.2338 0.5277 - 

2c   1.4122 1.0691 - 

3c   0.3152 -0.3533 - 

6c   0.4778 1.0034 - 

1c   1.4176 0.6647 - 

2c   2.2194 0.5051 - 

3c   -0.1905 3.7995 - 

6c   -0.0011 0.7759 - 

5.1 Application to Al 2008-T4 

Substituting material parameters from Tables 4, 5. into Eq. (6) for Al 2008-T4, the yield functions in xx yy   

plane can be determined for linear and non-linear criteria. The yield louses predicted by linear and non-linear 

pressure sensitive criteria are compared with other criteria and experimental data in Fig. 1. It is seen that all criteria 

could forecast experimental results with proper accuracy for Al 2008-T4. Using Eqs. (22, 24) and coefficients from 

Table 4 and 5., directional tensile and compressive yield stresses can be achieved. Figs. 2, 3 show the tensile and 

compressive yield stresses in different orientations compared to other criteria and experimental data. It is seen that 

new criteria can predict experimental tensile and compressive yield stresses more precisely. Fig. 4 shows the 

Lankford coefficients in different directions for coefficients of Tables 6, 7. and using Eqs. (23, 24). It is seen that the 

new criteria predict experimental data with better accuracy compared to Lou et al. [13] and approximately similar to 

each other. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 
Comparison of yield functions in xx yy   plane for Al 

2008-T4. 
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Fig.2 
Comparison of the tensile yield stress directionality for Al 

2008-T4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 
Comparison of the compressive yield stress directionality 

for Al 2008-T4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 
Comparison of Lankford coefficients directionality for Al 

2008-T4. 

 

5.2 Application to Al 2090-T3 

In this section the yield functions in xx yy   plane and also directional tensile and compressive yield stresses 

along with directional Lankford coefficients of linear and non-linear pressure sensitive criteria are investigated for 

Al 2090-T3 which is a FCC material. It is observed that the experimental data are predicted with all three criteria in 

xx yy 
 
plane with proper accuracy, Fig. 5. Moreover, although the new criteria are not as successful as the 

others in predicting experimental tensile yield stresses they are very accurate in predicting the experimental 

comressive yield stressesin in compare of others, Figs. 6, 7. It is observed that the new criteia are much better than 

Lou et al. [13] one and has almost the same accuracy to predict the directional Lankford coefficients compared to 

experimental results, Fig. 8. 
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Fig.5 
Comparison of yield functions in xx yy   plane for Al 

2090-T3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 
Comparison of the tensile yield stress directionality for Al 

2090-T3. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 
Comparison of the compressive yield stress directionality 

for Al 2090-T3. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.8 
Comparison of Lankford coefficients directionality for Al 

2090-T3. 

5.3 Application to AZ31 

The linear and non-linear pressure sensitive criteria can also be applied for a HCP material, AZ31 at 3% plastic 

strain. The experimental data for AZ31 are showed in Tables 1, 2. 
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Fig. 9 shows the yield functions of linear and non-linear pressure sensitive criteria in xx yy   plane and its 

comparison with experimental results. It is observed that although the experimental data are predicted by both new 

criteria the geometries of loci are different. Moreover, the directional tensile and compressive yield stresses of two 

criteria are nearly the same. 

 

 

 

 

 

 

 

 

 

 

 
Fig.9 
Comparison of yield functions in xx yy   plane for 

AZ31. 

 

6    DISCUSSIONS   

In order to compare the accuracy of linear and non-linear pressure sensitive criteria for Al 2008-T4, Al 2090-T3 and 

AZ31, the RMSEs are employed. The experimental results of these materials are shown in Tables 1-3. The relative 

errors inserted in Tables 8-10. show the differences between different criteria and experimental data.  

Table 8. refers to computing relative errors of Al 2008-T4 compared with experimental results. In computing 

uniaxial tensile yield stresses, the relative error  TE  is minimum for non-linear pressure sensitive criterion i.e. this 

criterion is the most accurate one in computing this item with relative error of 0.2414%TE    which is a highly 

acceptable low error. Other criteria are used to compute directional uniaxial tensile yield stresses as Lou et al. [13] 

with 0.2704%TE  , linear pressure sensitive criterion with 0.3119%TE   and Yoon et al. [15] 

with 0.4460%TE  . In regard with computing uniaxial compressive yield stresses the relative error is  CE . It this 

case also the non-linear pressure sensitive criterion with relative error with 0.2607%CE   is the best choice and 

other criteria can be arranged in order as linear pressure sensitive criterion with 0.3926%CE   , Yoon et al. [15] 

with 0.8255%CE   and Lou et al. [13] with 1.5915%CE   respectively. In predicting the tensile uniaxial 

Lankford coefficients the relative error is  T

RE . Both linear and non-linear pressure sensitive criteria are more 

accurate ones and have nearly the same relative error with 0.4507%T

RE   and Lou et al. [13] has more difference 

with 3.9852%T

RE  . 

 

Table 8 

The obtained computation errors for Al 2008-T4 compared with experimental results (in percentage). 

 Yoon et al. [15] Lou et al. [13] linear pressure sensitive criterion non-linear pressure sensitive criterion 

TE  0.4460 0.2704 0.3119 0.2414 

TbE  0.0694 0.0778   0.9695 0.1213 

CE  0.8255 1.5915 0.3926 0.2607 

CbE  0.1170 6.0219 0.7801 0.0720 

T
RE  - 3.9852   0.4507 0.4507 

Tb
RE  - 13.6586 0.0635 0.0768 
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Table 9.  indicates the relative errors for Al 2090-T3 compared with experimental results. In computing uniaxial 

tensile yield stresses, the lowest and highest errors are related to Lou et al. [13] and linear pressure sensitive criteria 

with 0.7350%TE   and 1.5430%TE  , respectively. However, in calculating the uniaxial compressive yield 

stresses, the lowest and highest errors are the ones of linear pressure sensitive and Lou et al. [13] criteria with 

0.8646%CE   and 2.4651%CE  , respectively. While, in predicting the tensile uniaxial Lankford coefficients the 

non-linear pressure sensitive and Lou et al. [13] criteria have the minimum and maximum errors, respectively. 

Generally, it may be concluded that the non-linear pressure sensitive is the most proper criterion to predict 

directional mechanical properties in asymmetric anisotropic sheet metals.  
 

Table 9 

The obtained computation errors for Al 2090-T3 compared with experimental results (in percentage). 

 Yoon et al. [15] Lou et al. [13] linear pressure sensitive criterion non-linear pressure sensitive criterion 

TE  1.0599 0.7350   1.5430 1.1307 

TbE  0.0009 0.0015 0.2563 0.0081 

CE  1.2441 2.4651 0.8646 0.8728 

CbE  0.0005 8.2141 0.2963 0.0070 

T
RE  - 12.8890 3.3955 3.3953 

Tb
RE  - 4.1151 1.5543 1.5762 

     

 
Table 10 

The obtained computation errors for AZ31 compared with experimental results (in percentage). 

 linear pressure sensitive criterion non-linear pressure sensitive criterion 

TE  0.0033 0.0043 

TbE  0.0011 0.0018 

CE  0.0161 0.0149 

CbE  0.0021 0.0009 

   

7   CONCLUSIONS 

Two new non-AFR criteria with introducing a pressure sensitive function for their yield functions and a pressure 

insensitive function for their plastic potential functions are proposed entitled linear and non-linear pressure sensitive 

criteria. The dependency to modified hydrostatic pressure is linear to the former and non-linear to the latter. The 

yield and plastic potential functions are calibrated with ten and eight experimental data, respectively. To verify the 

linear and non-linear pressure sensitive criteria, three anisotropic materials are selected contain of Al 2008-T4 (a 

BCC material), Al 2090-T3 (a FCC material) and AZ31 (a HCP material). Finally, with computing relative errors it 

is shown that generally the non-linear and linear pressure sensitive criteria can predict directional tensile, 

compressive yield stresses and Lankford coefficients more successful than Yoon et al. [15] and Lou et al. [13] 

compared to experimental results. 
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