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 ABSTRACT 

 An analytical method for predicting elastic–plastic stress distribution in a cylindrical pressure 
vessel has been presented. The vessel material was a ceramic/metal functionally graded 
material, i.e. a particle–reinforcement composite. It was assumed that the material’s plastic 
deformation follows an isotropic strain-hardening rule based on the von-Mises yield criterion, 
and that the vessel was under plane-stress conditions. The mechanical properties of the graded 
layer were modelled by the modified rule of mixtures. By assuming small strains, Hencky’s 
stress–strain relation was used to obtain the governing differential equations for the plastic 
region. A numerical method for solving those differential equations was then proposed that 
enabled the prediction of stress state within the structure. Selected finite element results were 
also presented to establish supporting evidence for the validation of the proposed analytical 
modelling approach. Similar analyses were performed and solutions for spherical pressure 
made of FGMs were also provided. 
                                                                             © 2013 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 HE intensity of stress concentrations and stress effects due to the large mismatch in material properties can be 
substantially reduced if the microstructure transition behaviour is graded. Advances in material synthesis 

technologies have spurred the development of functionally graded materials (FGM) with promising applications in 
aerospace, transportation, energy, cutting tools, electronics, and biomedical engineering [1]. An FGM comprises a 
multi-phase material with volume fractions of the constituents varying gradually in a pre-determined profile, thus 
yielding a non-uniform microstructure in the material with continuously graded properties [2]. 

Elastic and elastic-plastic analyses of thick-walled pressure vessels have always attracted a lot of research 
interest because of their importance in engineering applications. Figueiredo et al. [3] proposed a numerical 
methodology in order to predict the elastic-plastic stress behaviour of functionally graded cylindrical vessels 
subjected to internal pressure. They assumed that the structure undergoes small strain and that the material 
properties of the graded layer were modeled by the modified rule of mixtures approximation. Furthermore, the 
plastic domain for ductile phases was defined through the Von-Mises yield criterion. They proposed an iterative 
method for solving the nonlinear system, combining a finite element approximation and an incremental-iterative 
scheme. Haghpanah et al. [4-5] extended the Variable Material Property (VMP) method developed by Jahed and 
Dubey [6] for materials with varying elastic and plastic properties. In the VMP method, the linear elastic solution of 
a boundary value problem is used as a basis to generate the inelastic solution. Through iterative analysis, the VMP 

______ 
* Corresponding author.  
   E-mail address: hadidi@um.ac.ir (S. Hadidi-Moud). 

T
 

  



64                    A.T. Kalali and S. Hadidi-Moud 

© 2013 IAU, Arak Branch 

method was used to obtain the distribution of material parameters which were considered as field variables. The 
application of the VMP method, generally applied to homogeneous elastic-plastic materials was extended to 
materials with varying elastic-plastic properties in order to calculate the residual stresses in an autofrettaged FGM 
cylindrical vessel by Jahed and coworkers [7-9]. 

Although there are several papers in the elastic analysis of FGM spherical pressure vessels in the literature [10-
12], elastic-plastic stress analysis of FGM spherical pressure vessel not such a customary study. Sadeghian and 
ekhteraei [13] studied the thermal stress analysis for an FGM spherical pressure vessel made of Elastic–Perfectly 
Plastic and power law material model. 

In this paper, a new analytical method is proposed for predicting stress components of a strain-hardening 
cylinder based on the von-Mises yield criterion under plane-stress conditions by assuming an isotropic material 
model. Results obtained from finite element analyses using the commercial software, ABAQUS (v 6.10), were also 
used to validate the proposed analytical method. The method was further extended to obtain solutions for FGM 
spherical vessels. 

Elastic-plastic governing equations for the functionally graded cylindrical pressure vessel are presented in the 
next section. Section 3 describes the material properties of the graded layer modelled by the modified rule of 
mixtures approximation. Solution procedures and results of the elastic-plastic analysis for the FGM cylindrical 
vessel are presented in section 4, whereas section 5 provides key conclusions. 

2    GOVERNING EQUATIONS FOR CASE STUDIES  
2.1 Cylindrical pressure vessel 

Consider the axisymmetric problem of a hollow circular cylinder subjected to uniform pressure on the inner 
surfaces. The problem can be studied in polar coordinates ( r , ). Due to axisymmetric deformations, the only 
displacement component is ( )r ru u r , i.e. the radial displacement. The equilibrium equations with zero body force 
reduce to the single equation: 
 

0rrd

dr r
  

    
(1) 

 
where r  and   are the radial and hoop stresses respectively. 

Considering the geometric relations: 
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where   and r  are the hoop and radial strains in terms of the radial displacement, ru  must satisfy the 
compatibility equation: 
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Considering the quasi-static plasticity and small deformations hypothesis, the total strains may be split into 

elastic and plastic components as follows: 
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where )(rE  and   are the Young modulus and the Poisson’s ratio, respectively. 

It is assumed that   is constant while )(rE  varies with the position across the radius of the cylindrical vessel. 
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Substituting Eq. (4) into Eq. (3), the governing equation for the functionally graded cylindrical vessel is obtained 
Eq. (5). This equation shows the relationship between stress and plastic strain. 
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Stress and plastic strain in cylindrical vessels may be obtained by solving the differential Eqs. (1) and (5) 

simultaneously. However, solving this system of differential equation is not possible because the number 

of variables ( r ،  ، p
r ، p

 ) is more than the number of equations. Substituting plastic strains in terms of 
stresses, this system of differential equation can be solved. For a von-Mises material with associated flow rule, 
plastic strain increment is defined as [14]: 
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where p
ed is the equivalent plastic strain increment.   

e , the equivalent stress and S , the deviatoric stress for plane stress are defined as: 
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(8) 

 
Assuming small strains, the plastic stress–strain relation proposed by Hencky may be written as Eq. (9), better 

known as “total strain theory” [15] Mendelson explained that using the total strain theory is valid for cylindrical 
problems and the results match well with the actual material response [16]. 
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For a linear strain hardening material , Fig. 1, equivalent stress e  is determined by: 
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(10) 

 
and the equivalent plastic strain is obtained from: 
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where )(rhp  is plasticity modulus (gradient of the stress–plastic strain curve) and )(0 ry is the initial yield stress of 

FGM material. Both )(rhp  and )(0 ry  are functions dependent on the position, r . 

The plastic strain components can be determined by substituting Eqs. (7), (8), and (11) into Eq. (9): 
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(12) 

 
Furthermore, differentiating the hoop plastic strain with respect to radius )(r , gives: 
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Finally, the system of differential equations (14) is obtained by substituting Eqs. (12) and (13) into Eq. (5), as:  
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Fig. 1  
Stress–strain curve for linear strain hardening. 

 
Applying appropriate boundary conditions, distribution of radial and tangential stresses in the plastic region is 

obtained. We can also obtain the distribution of stress in the elastic zone from Eq. (15). 
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2.2 Spherical pressure vessel 

In order to obtain stress distributions for a spherical thick-walled functionally graded pressure vessel, the 
equilibrium equations with zero body force reduce to the following single equation in the spherical coordinate 
system ( r , , )): 
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where   and   are the circumferential stresses and r is the radial stress component. 

Considering the geometric relations: 
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where   and   are the circumferential strains and r is the radial strain in terms of the radial displacement, ru . The 

compatibility equation must be satisfied: 
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Following similar procedures to those explained in the previous section, i.e. considering the quasi-static 

plasticity and small deformations hypothesis, the total strains may be split into its elastic and plastic components as 
follows: 
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By substituting Eq. (19) into Eq. (18), the governing equation for the functionally graded spherical vessel is 

obtained Eq. (20).  
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e , the equivalent stress and S , the deviatoric stress for spherical vessel are defined as: 
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The plastic strain components can be determined by substituting Eqs. (21), (22), and (11) into Eq. (9): 
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Furthermore, differentiating the hoop plastic strain with respect to radius )(r , gives: 
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Finally, the system of differential Eqs. (25) is obtained by substituting Eqs. (23), and (24) into Eq. (20):  
 

  0

0
02

1 ( ) ( )
2 2 (1 ) ( )

(1 ) ( ) 2 (1 ) ( )

( ) ( )( )
( )( ) ( )

2 (1 ) ( )

2

r
r r y

p

y pr
p r y

p

rr

d dE r E r
r

dr r E r dr r h r

d r dh rd dE r
h r

dr dr dr drh r

d

dr r

 
 






                     
                


    


   (25) 

 
The distributions of radial and circumferential stresses in the plastic region are obtained by applying the 

appropriate boundary conditions. Also the distribution of stress in the elastic zone may be obtained from Eq. (26). 
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3    THE MECHANICAL BEHAVIOUR OF FGM 

It is assumed that the functionally graded metal-ceramic composite is locally isotropic and yields according to the 
von Mises criterion. Three important material properties for elastic-plastic analysis are the elastic modulus )(rE , the 

initial yield stress )(0 ry , and the tangent modulus )(rH . These properties can be calculated using the modified 

rule of mixtures for composites [17]. 
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where the subscripts ‘c’ and ‘m’ indicate ceramic and metal material respectively. The volume fraction of ceramic 
particles is denoted by cf , and q  is the ratio of stress to strain transfer as follows, where c and c are the average 

stress and strain of ceramic respectively, and similarly for m  and m  (see Fig 2.). 
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The empirical parameter q  depends on many factors including material composition, microstructural 

arrangements, and the internal constraints. For example q  if the constituent elements deform identically in the 
loading direction, while 0q  if the constituent elements experience the same stress level. In this analysis, the 

ceramic particle reinforcement is assumed to have a volume fraction that varies from 0 at the inner radius ir , to 0cf  

at the outer radius or  according to the following relationship: 
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where n  denotes the reinforcement distribution exponent ( 0n  denotes uniformly-reinforced metal-ceramic).The 
material property for each constituent phase is listed in Table 1. The parameter q  may be approximately determined 
by experimental calibration of tensile tests performed on monolithic composite specimens. For example, a value of 

Gpaq 5.4  has been used for a TiB/Ti  FGM [18] whereas the Poisson ratio is constant and equal to 0.3. 
 
 
Table 1 
Material properties [2] 
 Young’s modulus (GPa) Yield stress (MPa) Tangent modulus (GPa) 
TI 107 450 10 
TIB 373   

 
 
 

 
 
Fig. 2  
(A) Schematic representation of a thick FGM vessel with internal radius ir  and external radius or . (B) Schematic representation 

of modified rule of mixtures used to estimate the behavior of ceramic particle-reinforced metal composite. 
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4    RESULTS 

By substituting Eqs. (27)– (32) into the system of differential Eqs. (14) and (25), a set of complicated equations are 
obtained that are difficult to solve parametrically. Therefore, numerical methods may be used as an alternative. 
ODE45 Solver in MATLAB (2008) has been used for this purpose. ODE45 is a function for the numerical solution 
of ordinary differential equations and employs variable step size Runge-Kutta integration methods. This solver uses 
a 4th and 5th order pair for higher accuracy [19]. 

To verify the accuracy of the analytical solution, finite element analyses were performed using the commercial 
finite element code ABAQUS [20]. The common method for modelling FGM cylinder vessels in commercial finite 
element software is to subdivide the thick wall into thin layers with equal thicknesses. This method of modelling 
leads to a discontinuity in the mechanical properties of FGM materials and is both difficult and time-consuming. 
Setoodeh et al. [21] proposed a new approach for analysing the FGM material in the elastic zone without the need 
for division of the thickness of the cylinder into thin strips. They used the facilities available in ABAQUS software 
(or other commercial finite element) to define continuously variable properties. In this technique, applying a virtual 
temperature distribution in the cylinder wall and creating a correspondence between the distribution of 
temperature and mechanical properties of FGM material, allowed for variation of the FGM properties in the cylinder 
to be modelled. This method allowed for the analysis of the elastic-plastic FGM cylinder vessel. The three-
dimensional 8-node linear coupled temperature-displacement family of finite elements in ABAQUS was used to 
model the cylinder. Mesh sensitivity analysis was also performed to ensure the results were not sensitive to the 
element size. 

In order to evaluate the analytical method, a set of results from the finite element calculations obtained for the 
plane stress conditions were compared with results obtained from the analytical method for an FGM cylindrical 
vessel subjected to an internal pressure of 320 MPa (Fig.3). The results indicated that the proposed analytical 
method was capable of calculating stress components in a cylindrical vessel with great accuracy. The developed 
method was also used to study the stress components in a cylindrical FGM vessel with various ceramic particle 
reinforcement distributions. All the results are presented for the plane stress condition. Fig.4 illustrates the 
distribution of von-Mises stresses across the thickness in the cylindrical vessel subjected to different levels of 
internal pressure where 2n   and 0.8fc0  . The magnitude of von Mises stresses, indicate that with increasing the 
internal pressure, the plastically deformed region extends across the thickness of the cylinder from both the inner 
and the outer surfaces. In cylindrical vessels made of homogeneous material the plastic region grows only from the 
inner surface. Figs. 5 (A) and (B) describe the distributions of modulus of elasticity and the initial yield stress in an 
FGM vessel with 1fc0   for different reinforcement distribution exponents n . With increasing n  the metal 
properties dominate the behaviour, overcoming the ceramic properties, and therefore the plastic behaviour of the 
material becomes more evident. Fig. 6 shows the von-Mises stress distribution in an FGM vessel subjected to an 
internal pressure of 300 MPa with 1fc0   and different reinforcement distribution exponents, n . By increasing n , 
the plastic region gradually spreads from the inner surface of the cylinder. 

 
 
 

 

 
 

 
 
 

Fig. 3  
Comparison with the finite element method. The results 
show the stress components in a cylindrical vessel with 

c0f 0.8  and n 2  subjected to internal 

pressure 320 MPa . In this calculation, q 4.5GPa . The 

vessel has it/r 1 and plane-stress condition (other 

properties are listed in Table 1). 
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Fig. 4  
von-Mises stress along the thickness in a FGM vessel 
subjected to different internal pressure with c0f 0.8  

and n 2 . In this calculation, q 4.5GPa . The vessel 

has it/r 1  and plane-stress condition (other properties 

are listed in Table 1). 

 

 

(a) 
 

(b) 
Fig. 5  
(A)Elasticity modulus of a FGM vessel.(B) Initial yield stress of a FGM vessel. In this set of calculations, 

c0f 1 , q 4.5GPa , cE 373GPa , mE 107GPa , y0mσ 450 MPa  and mH 10GPa . 

 
 

 

 
 

 
 
 

Fig. 6  
von-Mises stress along the thickness in a FGM vessel 
subjected to internal pressure 300 MPa  with c0f 1  

for different reinforcement distribution exponents, n . 
In this calculation, q 4.5GPa . The vessel has 

it/r 1  and plane-stress condition (other properties 

are listed in Table 1). 

 
For the spherical vessel subjected to an internal pressure of 500 MPa results obtained from the analytical method 

were compared with the finite element analysis results. Excellent agreement was observed as shown in Fig. 7. The 
distribution of von Mises stresses across the thickness of the spherical vessel subjected to different levels of internal 
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pressure is shown in Fig. 8. Similar to the case of the cylindrical vessel, with increasing internal pressure, the 
plastically deformed region extends across the thickness of the spherical vessel from both the inner and the outer 
surfaces. 
 
 

 

 
 

 
 
 

Fig. 7  
Comparison with the finite element method. The results 
show the stress components in a spherical vessel with 

c0f 1  and n 2  subjected to internal 

pressure 500 MPa . In this calculation, q 4.5GPa . The 

vessel has it/r 1 (other properties are listed in Table 1). 

 

 

 

 
 
 
 
 
 
Fig. 8 
von-Mises stress along the thickness in an FGM 
spherical vessel subjected to different internal pressure 
with c0f 1  and n 2 . In this calculation, 

q 4.5GPa . The vessel has it/r 1 (other properties are 

listed in Table 1). 

5    CONCLUSION 

Using a new analytical method, the elastic-plastic stress distributions in a cylindrical pressure vessels made of a 
FGM material were determined. Solutions previously presented for this problem were based on numerical methods 
such as finite element analysis [3] and the Variable Material Property (VMP) method [4, 5] whereas the technique 
used in this paper is based on the application of basic plasticity equations only. Despite some the limitations in the 
application of this method, the proposed analytical approach provided very efficient, yet accurate results for the 
determination of the elastic-plastic stress-strain distribution in the cylindrical pressure vessels (similarly spherical 
vessels) made of FGM materials.  

Finite element analysis of the problem using ABAQUS commercial code was used for verification of the 
proposed analytical solution technique. An alternative modelling approach was developed and used for this purpose. 
The numerical analysis within the software was performed by the application of a “virtual thermal load” that enabled 
the continuous variation of material behaviour through the wall thickness of the FGM cylinder in the finite element 
model. An accurate solution was therefore obtained from the FE analysis. This was achieved without the need to 
consider a multi-layered cylinder with a stepwise solution as used in most previous solutions in the existing 
literature [3, 4, and 5].  

The analysis results obtained in this work also indicate the possibility of formation and growth of the plastic 
region within the wall thickness from the external surface of the FGM vessels whereas in a cylindrical (spherical) 
vessels made of homogeneous materials, plasticity starts essentially from the inner surface. 
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