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 ABSTRACT 

 Nonlinear vibration of a fluid-filled single walled carbon nanotube (SWCNT) with simply 
supported ends is investigated in this paper based on Von-Karman’s geometric 
nonlinearity and the simplified Donnell’s shell theory. The effects of the small scales are 
considered by using the nonlocal theory and the Galerkin's procedure is used to discretize 
partial differential equations of the governing into the ordinary differential equations of 
motion. To achieve an analytical solution, the method of averaging is successfully applied 
to the nonlinear governing equation of motion. The SWCNT is assumed to be filled by the 
fluid (water) and the fluid is presumed to be an ideal non compression, non rotation and in 
viscid type.  The fluid-structure interaction is described by the linear potential flow theory. 
An analytical formula was obtained for the nonlinear model and the effects of an internal 
fluid on the coupling vibration of the SWCNT-fluid system with the different aspect ratios 
and the different nonlinear parameters are discussed in detail. Furthermore, the influence 
of the different nonlocal parameters on the nonlinear vibration frequencies is investigated 
according to the nonlocal Eringen’s elasticity theory. 

                                                © 2015 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 ARBON nanotubes (CNTs) have always attracted scientists and engineers because of their wide range of 
applications and the superior mechanical properties. The fluid-filled CNTs may be used as gas storage tanks or 

as nanopipes for conveying medicines to a person’s blood stream. With the perfect hollow cylindrical geometry and 
the superior mechanical properties, these tubes can be used in a variety of technological and biomedical applications 
to hold fluid such as gas storage tanks[1]or drug-delivery devices[2, 3]. Hence, the CNTs transport properties could 
be sensitive to their vibration modes and frequencies, it is essential to consider the mechanical properties of fluid-
filled CNTs. There are two major categories for simulating the mechanical properties of the CNTs: The molecular 
dynamics approaches (MD) and the continuum mechanics. The molecular simulations are computationally 
expensive and limited to study the small systems. Hence, the continuum modeling is an efficient method for 
considering the CNTs characterization. There are two different modeling which are used in continuum mechanics: 
the beam theories and the shell theories. 
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In the last two decades many continuum structural models have been proposed for considering the CNTs 
characterization. For the first time, Yokobson et al., (1996) [4]used a traditional continuum shell model to predict 
the buckling of a SWCNTs and compared it with the MD simulation. Most of the researches which have been done 
on the nanotubes containing fluid are those which have been done on the dynamic characteristics of CNTs 
conveying fluid Yoon et al. [5] studied the vibration and instability of CNTs conveying fluid with the method of 
beam model. Yan et al.[6, 7] ,Wang et al. [8] and Khosravian.et al [9] discussed the dynamical stability behaviors of 
fluid-conveyed CNTs, and found that the natural resonant frequencies depend on the fluid flow velocity and the 
instability of the CNTs occurs at a critical flow velocity. Rasekh and Khadem. [10] studied the relationship of 
nonlinear amplitude and frequency for SWCNTs in the presence of an internal fluid flow is expressed using the 
multiple scales perturbation method. Ghavanloo et al. [11]used Euler-Bernoulli’beam theory to study the vibration 
and instability of CNTs conveying fluid and resting on a linear viscoelastic Winkler foundation by using the finite 
element model. Although many researches have been done on the dynamic characteristics of CNTs conveying fluid, 
there are few reports on fluid-filled CNTs vibration and the dynamic behavior of fluid-filled carbon nanotubes still 
remain many unexplored in the literatures. Dong et al. (2008) [12]studied and calculated characteristics of wave 
propagation in fluid-filled multi-walled carbon nanotube. Yan et al. (2010) [13]studied the noncoaxial vibration in 
CNTs and found that the resonant frequencies are decreased due to the effect of the flow. Also, they[14] have 
studied the nonlinear vibration of the double walled fluid-filled CNTs based on the harmonic balance method. 

This study focuses on the nonlinear vibration of an empty and a fluid-filled SWCNT with simply supported ends 
using Donnell’s cylindrical shell model considering the effects of an internal fluid on the coupling vibration of the 
SWCNT-fluid system with the different aspect ratios and the different nonlinear parameters. Moreover, the method 
of averaging is applied to analyze the nonlinear vibration of the SWCNTs in the analytical calculations. Though the 
classical (local) continuum models are applicable to some extent, the length scales related with nano technology are 
often sufficiently small to be used in the local model. But, small length scales such as lattice spacing between 
individual atoms, becomes more important and its effect can no longer be ignored. It is a possible solution to extend 
the classic continuum approach to smaller length scales by incorporating information regarding the behavior of nano 
scales. It is possible by the use of the nonlocal continuum mechanics. 

While the local continuum mechanics assumes that the stress state at a given point is dependent uniquely on the 
strain state at that same point, the nonlocal continuum mechanics regards the stress state at a given point as a 
function of the strain states of all points in the body. Thus, the theory of nonlocal continuum mechanics contains 
information about the long-range forces between atoms, and the internal length scale is introduced into the 
constitutive equations simply as a material parameter. Moreover, the influence of the different nonlocal parameters 
on the nonlinear vibration frequencies is considered according to the nonlocal elasticity theory proposed by 
Eringen[15-17]. In addition, the related material and geometric parameters were used from Gupta et al. [18] 

2    DONNELL SHELL MODEL 

Consider a thin-walled simply supported cylindrical shell with radius R, thickness h and length L, as shown in Fig.1. 
Where O is the origin placed at the centre of one end of the shell, x is the axial and r is the radial coordinate. The 
displacement field of the middle surface of the shell is given by the following components: u, v and w; in the axial, 
circumferential and radial directions, respectively. Donnell’s nonlinear shallow-shell theory is used and the 
nonlinear equation of motion for cylindrical shell is derived by means of the variational techniques. [19-21]. 
 

 

 
 
 
 
 
 
 
Fig. 1 
Cylindrical shell representation of a SWCNT with 
the coordinate system used. (a) Complete shell;(b) 
Cross section of the shell surface. 
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The elastic strain energy U of a circular cylindrical shell, neglecting stress z  according to Love’s first 

approximation assumptions, is given by: [19] 
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By using Eqs. (2), the following expression is obtained: 
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      The strain components ,x   ,  and x  at an arbitrary point of the shell are related to the middle surface strains, 

,x   , ,and x  and to the changes in the curvature and torsion of the middle surface ,xk k , and xk   by the 
following relationships:[20] 
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According to Donnell’s nonlinear shell theory, the middle surface strain–displacement relationships for a circular 

cylindrical shell are given by: 
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Assuming a positive radial deformation w inwards, the simplified version of Donnell’s nonlinear shallow-shell 

equation is given by:[19] 
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The expressions for the resultants force per unit length in the axial and circumferential directions along with the 
shear stress resultant are given by:[19, 20] 
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with substituting Eqs. (7) in to (6): 
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where F is the in-plane airy stress function which satisfies the above compatibility equation  3 2/ [12(1 )]D Eh is 
the flexural rigidity of the shell, t is the time, t  is the mass density and E is the elastic modulus and υ the Poisson 
ratio. 

3    FLUID STRUCTURE INTERACTION 

The shell is assumed completely filled with a dense fluid. Furthermore, the fluid is assumed to be an ideal non 
compression, non rotation and in viscid type. Nonlinearities in the dynamic pressure and in the boundary conditions 
at the fluid–structure interface are neglected, because fluid movements of the order of the shell thickness may be 
considered to be small; and hence a linear formulation is valid. Indeed, these nonlinear effects have been found to be 
negligible by Gonc-alves and Batista [22]. In addition, pre-stress in the shell due to fluid weight (Hydrostatic effect) 
is neglected.  Both ends of the fluid volume (in correspondence of the sell edge) are assumed to be open, so that a 
zero pressure is assumed there, and boundary conditions are x 0 x L( ) ( ) 0     (velocity potential of the 
fluid).With these assumptions, the fluid–structure interaction can be described by potential flow theory[19, 23, 24].  

fq  is the flow pressure which is considered as: 
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where f  is the mass density of the internal fluid, nI  is the modified Bessel Function of order n and nI  is the 

derivative of  nI  with respect to argument.[19] 

4    THE NONLOCAL ELASTIC SHELL THEORY 

In the nonlocal elasticity (Eringen, 1976)[16], the stress at a reference point x is considered to be function of the 
strain field at every point in the body. Thus, the theory of nonlocal continuum mechanics contains information about 
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the long-range forces between atoms, and the internal length scale is introduced into the constitutive equations 
simply as a material parameter The basic equations for linear, homogeneous, isotropic, and nonlocal elastic solids 
with zero body force are given as follows (Eringen, 1983)[17]: 
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where T(x) is the classic stress tensor at point x, (x)  is the strain tensor, C(x) is the fourth-order elasticity tensor 

and denotes the ‘double-dot product’ ( ( x x ), )   is the nonlocal modulus or attenuation function incorporating 

into the constitutive equations the nonlocal effects at the reference point x produced by the local strain at the source 
x . x x    is the Euclidean distance, 0e .a / l   is defined as small scale factor where 0e  is a constant to adjust the 

model to match the reliable results by experiments or other models, and a and l are the internal and the external 
characteristic length (e.g. the length of C–C bond, the lattice spacing and the granular distance.), respectively. In the 
context of two-dimensional nonlocal elasticity, the equivalent of Eq. (11) in a differential form can be expressed as: 
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when the nonlocal parameter 0e .a  becomes zero, the nonlocal elasticity reduces to the classical (local) elasticity. 
Following Eringen’s theory and using Eq. (11), the nonlocal elasticity based on the stress-strain relationships are in 
the following form: 
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In the nonlocal elastic shell theory, the stress and moment resultants are defined based on the stress components 

in Eq. (12), and thus can be expressed as follows: 
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By using Eqs. (13), the nonlocal governing equations based on Donnell’s shell theory can be obtained as follows: 
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5    MODELLING AND FORMULAION 

The coupled shell model with fluid-filled for the nonlocal model is stated as: 
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with substituting Eqs. (7) and (9) into (15): 
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The radial displacement w is expanded by using the linear shell Eigen modes as basis; in particular, the flexural 
response may be written as below[25]: 
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where m is the axial wave number (equal to the number of half-waves along the shell), and n is the circumferential 
wave number. The amplitude functions, A is an unknown generalized time function of the vibration.  

Substituting Eq. (17), in the right-hand side of compatibility equation Eq. (16), and solving for the particular 
solution, we have 
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1 2A ,A  and 3A  values are not reported here for the sake of brevity. 
For solving Eq. (16) substitute Eqs. (17) and (18) into Eq. (16), but the direct solution is impossible. Thus, the 

Galerkin’s method was used to obtain an approximate solution. 

5.1 Galerkin’s method   

Galerkin's method was used in most of the analyses and proved to be certainly the simplest method in the 
investigations of nonlinear vibrations of shells. Galerkin's procedure provides a very powerful approximate method 
by employing any set of basic functions  , which reduces a system of nonlinear partial differential equations 
(PDEs) into a system of nonlinear ordinary differential equations (ODEs) which becomes manageable. The 
Galerkin’s projection of the equation of motion (15), in this case, may be expressed as: 
 

2 l.. ..
4 4

0 0

D w h w ...., (D w h w ....) .


   
 

        
     

 
(19) 

 
The Galerkin’s weighting function is obtained from the first derivative of Eq. (17) with respect to time. 
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After the evaluation of the integrals, an ordinary non-linear differential equation is obtained. 
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  values are not reported here for the sake of brevity. 

5.2 The method of averaging  

The ordinary non-linear differential Eq. (21) cannot yet be solved exactly. But, an approximate solution can be 
obtained by the procedure known as the method of averaging. The method of averaging has been applied to a wide 
variety of problems dealing with nonlinear vibrations [26]. First of all the method is used to obtain simpler relations 
for the first and second order derivatives of a function A(t) with slowly varying amplitude a(t) and phase (t) . [27] 
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In this paper the steady-state vibrations are considered, which means the average values A and   remain steady 

with time. These expressions then are substituted into the governing equation. After some regrouping, in the final 
state of the analysis, the equation is "averaged" by integrating over one period of the vibration. In this case, the 
average derivative (t) is identically zero, and Eq. (21) can be reduced to: 
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(26) 

 
 values are not reported here for the sake of brevity. 

The related non-linear algebraic equations in non dimensional form may conveniently be represented as follow: 
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
 

 
(27) 

 
where, A  is the non dimensional amplitude,   is non dimensional nonlinear frequency,   is nonlinearity 
parameter,  is an aspect ratio and  is the non dimensional frequency. Z values are not reported here for the sake 

of brevity. 

6    VERIFICATION RESULTS 

Most of the researches which have been done on CNTs containing fluid are those have been done on the dynamic 
characteristics of conveying fluid CNTs. Moreover, all of publications considered fluid-filled CNTs are based on 
local theory, and most of them investigated linear vibration. Yan et al. [13] have considered noncoaxial vibration of 
double walled CNTs which is based on local theory, and linear vibration has been considered. Also, they have 
considered nonlinear vibration characteristics of fluid-filled Double-Walled CNTs based on local shell theory [14], 
and the method of "harmonic balance” has been used for,  however; we used "Averaging method", and based on 
nonlocal shell theory. Yan et al [28] have considered linear vibration of fluid-filled SWCNT based on local theory. 
Hence, In Table 1. the results of recent paper both local and nonlocal theories have been compared with the results 
obtained by Evensen [25].When 0e a 0nm  actually the results are based on local theory. As it is seen, the results 
which are obtained from Evensen’s paper are very close to this recent paper and the difference between them is 
negligible. When the nonlocal parameter considered 0e a 1nm , with comparison the non dimensional frequencies 

  of each study, it was seen that there is a difference between these two papers. This difference is because that 
Evensen’s equations were based on macro shell, however; this study is based on Eringen’s theory in nano scale.  
 
 
Table 1 
Results verification 

   Ω [25] 
Ω (Present study) 

0e a 1nm 
Ω (Present study) 

0e a 0nm 

1
4

 

        0        1                0.9999999999 1                
0.01 0.9134970962 0.9712176002 0.9135113274 
0.1   0.7534025509 0.9466466704 0.7534862388 

1 0.8415883879 0.8582509652 0.8415519329 

2  

0 1                 1                1                
0.01 1.031175412    1.045485728    1.031263692   
0.1   1.341899079    1.236556788    1.342082467   

1  2.267650503    1.506669286   2.265575360   

7    RESULTS AND DISCUSSIONS 

Three zigzag SWCNTs have been investigated to analyse the nonlinear vibration of the fluid filled CNTs. As a case 
study, mechanical and dimensional properties of the SWCNT are shown in Table 2. The related material and 
geometric parameters were used from Gupta et al. [18] 

Table 2 
The parameters used for modeling (SWCNT) as a case study.[18] 

Case Study Tube Radius(R) (nm) ν h (nm) E (TPa) 
Case 1 (10, 0) 0.3713 0.265 0.0878 3.939 
Case 2 (20, 0) 0.7420 0.238 0.1251 2.704 
Case 3 (30, 0) 1.1129 0.227 0.1340 2.493 
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The related mass density of the SWCNT and the fluid are considered respectively 3
t 2.3(g / cm )   and 

3
f 1000kg / m   [13] and the related axial half wave number (m) and the circumferential wave number (n) are 

considered m=n=1. 

7.1 The effect of the different nonlocal parameters 

Fig. 2 and Fig. 3 show the effects of the different nonlocal parameters [29]on the nonlinear frequency for case 1, 
when the nanotube is fluid filled, and empty. It is seen that the nonlinear frequencies decreased with increment of 
the nonlocal parameters. The vibration behavior was softening for the low amplitudes and it showed hardening 
behavior for the large amplitudes in both cases. Also, it is observed that with increasing the nonlocal parameters, 
changing the softening behavior of the vibration into the hardening behavior occurred at the higher amplitudes for 
both cases. Fig.3 compared the nonlinear frequency between the fluid filled nanotube and an empty one for the local 
and the nonlocal theories. It is observed when nanotube is fluid filled, the frequencies decreased based on both 
theories.  
 
 

 

 
 
 
 
 
 
 
 
 
 
Fig. 2 
The effect of the different nonlocal parameters on the 
non-dimensional nonlinear frequency of the fluid 
filled CNT. 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 3 
The effect of the different nonlocal parameters on the 
non-dimensional nonlinear frequency of an empty 
CNT. 

7.2 The effect of the different nonlinear parameters 

The effects of the different nonlinear parameters on the nonlinear frequency for the fluid filled SWCNTs were 
shown in Fig. 4 and Fig. 5, the nonlocal parameter is 9

0e a 1 10 nm   . All three cases are used for considering the 

different nonlinear parameters. It is seen that the nonlinear frequencies have been reduced by reduction the nonlinear 
parameters. Furthermore, it is shown that the softening behavior was happened at the lower amplitudes, and it 
changed to the hardening type at the higher amplitudes by declining the nonlinear parameters. Fig.6 compared the 
nonlinear frequency between the fluid filled nanotube and an empty one for nanotube (10, 0) and nanotube (20, 0). It 
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is observed that vibration frequencies of fluid filled CNTs were lower compared to empty one, moreover, an 
influence of nonlinear parameter on an empty CNT is more than fluid-filled CNT. 
 
 

 

 
 
 
 
 
 
 
 
 
 
Fig. 4 
Comparison of the effects of the local and nonlocal 
theories on the nonlinear frequency of the fluid filled 
CNT. 

 
 
 
 
 
 
 
 
 
 
 
Fig. 5 
The effect of the different nonlinear parameters on the 
non-dimensional nonlinear frequency of the fluid filled 
CNT. 
 

  

 

 
 
 
 
 
 
 
 
 
Fig. 6 
The effect of the different nonlinear parameters on the 
non-dimensional nonlinear frequency of an empty 
CNT. 
 

7.3 The effect of the different aspect ratios 

Fig.7 and Fig. 8 showed an influence of the different aspect ratios on the nonlinear frequency for case 1, when the 
nanotube is fluid filled. The nonlocal parameter is 9

0e a 1 10 nm  . The nonlinear frequency grew with increasing 
the aspect ratios (reduction of the length to radius ratio). Also, the vibration behavior is softening for the low 
amplitudes and turns into hardening type at the higher amplitudes in lower aspect ratios. Fig.9 compared the 
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nonlinear frequency amid the fluid filled CNT and an empty one for the different aspect ratios. It is observed that 
vibration frequency of fluid filled CNT was lower compared with empty CNT.  
 
 

 
 
 
 
 
 
 
 
Fig. 7 
Comparison of the effects of the different nonlinear 
parameters on the nonlinear frequency of the fluid 
filled CNT. 

 

 

 
 
 
 
 
 
 
 
 
Fig. 8 
The effect of the different aspect ratios on the non-
dimensional nonlinear frequency of the fluid filled 
CNT. 
 

  

 
 
 
 
 
 
 
 
 
Fig. 9 
The effect of the different aspect ratios on the non-
dimensional nonlinear frequency of an empty CNT. 

8    CONCLUSIONS 

In this paper, the nonlinear vibration of an empty, and the fluid-filled SWCNTs with simply supported ends is 
investigated based on Von-Karman’s geometric nonlinearity and the simplified Donnell’s shell with the nonlocal 
model and the effects of an internal fluid on the coupling vibration of the SWCNT-fluid system with the different 
aspect ratios, the different nonlinear parameters and the different nonlocal parameters have been discussed in details. 
As a case study, the mechanical and dimensional properties of the SWCNT were used from Gupta et al[18]. It is 
seen although the nonlinear frequencies decreased with increment of the nonlocal parameters in both fluid-filled and 
empty CNTs, the nonlinear frequency increased with growing the aspect ratios and the nonlinear parameters for both 
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cases. Moreover, fluid-filled SWCNT compared with the empty one with the different aspect ratios, the different 
nonlinear parameters, and the different nonlocal parameters, and it was seen that for all these mentioned parameters, 
vibration frequencies of fluid-filled CNTs were lower than empty SWCNT. It means that fluid in SWCNT caused 
vibration frequencies reduced. Also, it is observed that with increasing the nonlocal parameters, the softening 
behavior of the vibration is occurred at the higher amplitudes for both fluid-filled and empty SWCNT, however; it is 
observed that with increasing the nonlinear parameter and the aspect ratios the softening behavior of the vibration is 
occurred at the lower amplitudes for both types of CNTs. 

APPENDIX 

1 2A , A  and 3A  values mentioned in Eq (19): 
2 2 2 2

1 2 2

3 2 2 4 2

2 4 4 4 4 4 2 2 2 2 2

2 2 2 4 2

3 4 4 4 4 4 2 2 2 2 2

1 A(t) R m
A

32 n l

1 A(t) R m n l
A

4 (n l 81R m 18R m n l )

1
A(t) R m (2R .n .A(t) )1 2A

2 (n l R m 2R m n l )




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
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