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 ABSTRACT 

 In the present paper, effect of initial stresses on the propagation of Love waves has been 

investigated in a fluid saturated, anisotropic, porous layer lying in welded contact over a 

prestressed, non-homogeneous elastic half space. The dispersion equation of phase velocity has 

been derived. It has been found that the phase velocity of Love waves is considerably influenced 

by porosity and anisotropy of the porous layer, inhomogeneity of the half-space and prestressing 

present in the media, the layer and the half-space. The effect of the medium characteristics on the 

propagation of Love waves has been discussed and results of numerical calculations have been 

presented graphically. 

© 2010 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

URFACE waves propagating over the surface of homogeneous and inhomogeneous elastic half-spaces are a 

well-known and prominent feature of wave theory. Surface waves carry the greatest amount of energy from 

shallow shocks and are of primary cause of destruction that can result from earthquakes. Biot [1-4] has first 

discussed the theory of propagation of elastic waves in a statically isotropic, fluid saturated, porous solid. Using the 

Biot’s theory, several investigators (Deresiewicz H. [5-9]; Bose [10]; Deresiewicz and Rice [11]; Rao and Sarma 

[12]; Burridge and Vargas [13]) have studied extensively the propagation of surface waves such as Rayleigh and 

Love waves. Love [14] developed a mathematical model of surface waves known as Love waves. He predicted the 

existence of Love waves mathematically in 1911. The study of Love wave is important to seismologist for its 

possible application in prediction of earth structure and analysis of earth-quakes. Nowinski [15] has studied the 

effect of high initial stresses on Love waves in an isotropic, elastic, and incompressible medium. The naturally 

occurring medium is often porous and liquid filled. The size of pores is assumed to be small and, macroscopically 

speaking, their average distribution is uniform. The role of pore-water in seismology has been emphasized in many 

studies. The diffusion of water and readjustment of fluid pressure has been in vague as a triggering mechanism for 

earthquakes. Chattopadhyay and De [16] have studied the propagation of Love waves in a porous layer underlain by 

isotropic elastic medium with a rectangular irregularity at the interface. 

The dispersion of love waves can be used to refine our knowledge of crustal and sub-crustal region near the earth 

surface. The earth’s crust and subcrust can be anisotropic in nature, in addition to being porous. The most 

satisfactory theory has been given by Weiskopf [17], who considered the medium to have a particular kind of 

transverse-isotropy. Furthermore, the earth is an initially stressed medium. Due to the presence of external loading, 

variation in temperature, slow process of creep, and gravitational field, a considerable amount of stresses (called 

prestresses or initial stresses) remain naturally present in the layers. These stresses have much effect on the 

propagation of elastic waves (Biot [18]). It is, therefore, interesting to study the Love wave propagation in a medium 

which is formed by an initially stressed, anisotropic, porous layer lying over an elastic half-space under initial stress. 
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The half-space could be nonhomogeneous because non-homogeneity characteristics is one of the most 

generalized elastic condition inside the earth. Recently, Dey, Roy and Dutta [19] have investigated the propagation 

of Love waves in an initially stressed anisotropic porous layer lying over a pre-stressed non-homogeneous elastic 

half-space. In this paper [19], exponential variation of rigidity and density has been considered. Linear variation of 

rigidity and density has been taken and the effect of initial stress, anisotropy and porosity on the propagation of 

Love waves is studied. Ghasemi et al. [20, 21] described several ground-motion models for seismic hazard analysis. 

Keeping in mind the above ideas and using the theories of Biot ([3, 18]) and Weiskopf [17], the propagation of Love 

waves in a water-saturated, anisotropic, initially stressed, porous layer lying in welded contact over a prestressed, 

nonhomogeneous half-space has been studied in the present analysis. The fluid inside the pores could be viscous. 

But in order to keep the analysis simple here, the material is assumed to be non-dissipative liquid filled porous solid; 

for instance, the water saturated rocks or grains. The porous medium is assumed to have kinetic isotropy, but elastic 

anisotropy of Weiskopf type; the viscosity of water is neglected. The inhomogeneity in the half-space has been 

assumed to be of the form 

 

0 (1 )bz   and 
0 (1 )az   

 

where a and b are constants having dimension that are inverse of length, density   and rigidity   vary linearly 

with space variable z, which is orthogonal to the x-axis i.e. direction of wave. It is also assumed that the shear 

velocity in the layer is constant and independent of the depth z. The dispersion equation of Love waves under such 

conditions has been derived. It has been observed that the phase velocity of Love waves is considerably influenced 

by porosity and anisotropy of the porous medium, inhomogeneity of the half-space and prestressing in both media, 

i.e., the layer and the half space. The effect of these characteristics of the media on the phase velocity of Love waves 

has been discussed and compared with the classical case when both media, i.e. the layer and the half-space, are 

homogeneous, isotropic and initially stress-free. The numerical values of the phase velocity have been calculated 

using the values of material constants given by Biot [4] from experiments.  

2    FORMULATION OF THE PROBLEM  

Consider a water saturated porous layer of thickness H with anisotropy of the Weiskopf type under the compressive 

initial stress 
11P S  along the direction of x over a non-homogeneous elastic half space under the compressive 

initial stress 
11P S  as shown in Fig. 1. The surface of contact is the plane z=0, and the z-axis is directed 

vertically downwards. The wave is assumed to propagate along the x-direction. Neglecting the viscosity of water, 

the dynamic equations of motion in the porous layer under the compressive initial stress 
/ ,P  in the absence of body 

forces, can be written as (Biot[2, 3] and Biot[18]) 
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(1) 

 

where 
/  ( , 1,2,3)ijs i j  are the incremental stress components, / / /( , , )x y zu v w  are the components of the displacement 

vector of the solid, ( , , )x y zU V W  are the components of the displacement vector of the liquid, S is the stress vector 

due to the liquid 
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Fig.1 

Geometry of the problem. 
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where / /,  ,x y  and /

z are the components of the rotational vector / .   

The stress-strain relations for the water saturated anisotropic porous layer under the normal initial stress /P are 
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(3a) 

 

where A, F, C, N, and L are elastic constants for the medium; N and L are, in particular, shear moduli of the 

anisotropic layer in the x and z direction respectively, and 
 

1
( ),   

2

j y zi x

ij

j i

u U Uu U
e

x x x y z
  (3b) 

 

Further, Q being the measure of coupling between the volume change of the solid and the liquid is a positive 

quantity, and S is the stress vector due to the liquid. This stress vector S is related to the fluid pressure p by the 

relation 

 

-S=fp (4) 

 

where f is porosity of the layer. The mass coefficients 11 12,   and 22  are related to the densities /

,,   s w   of the 

layer, solid and water, respectively, by (Biot[3]) 

 

11 12 12 22
(1 ) ,  

s w
f f       (5) 

 

So that the mass density of the aggregate is 

 
/

11 12 22
2 ( )

s w s
f        (6) 

 

These mass coefficients also obey the following inequalities 

 
2

11 22 12 11 22 12
0,   0,    0,    - 0       

(7)
 

 

The dynamic Eqs. (1) have been constructed by coupling the Biot’s dynamic equations in an initially stressed 

medium (Biot [18]) and his dynamic equations for a poro-elastic medium (Biot [2, 3]). 
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3    SOLUTIONS 

3.1 Solution for the upper layer 

For the Love waves propagating along the x-direction, having the displacement of particles along the y-direction, we 

have 

 
/ / / /

y

y

0,   0   and    v ( , , )

0,   0  and    V ( , , )

x z

x z

u w v x z t

U W V x z t  (8) 

 

These displacements will produce only the 
yze  and 

xye  strain components and the other strain components will 

be zero. Hence, the stress-strain relations useful in the problem are 

 
/ /

23 122   and  2  yz xys Le s Ne  (9a) 

 

Introducing relations (9a) into system (1), the equations of motion which are not automatically satisfied are 
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Since 
/ /

yv ( , , )  and ( , , ),yv x z t V V x z t with the help of Eqs. (8) and (9a), the above two equations reduce to 
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which gives  / / /

12 22
( ) / ,V d v  where  / / /

12 22
.d v V  Now, 2 2 / / 2 / 2

11 12/ ( ) ( / ),t v V d v t   where 

/ 2

11 12 22( / ).d     Hence, Eq. (10) reduces to  
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From Eq. (12), it is clear that the velocity of shear wave along the x-direction is / / 0.5[( / 2) / ]N P d and that along 

the z-direction it is / 0.5( / ) .L d  The shear wave velocity in the porous medium along the x-direction can be expressed 

as 

 

( / 2) / 1 /aN P d d    (13) 

 

where 2

11 12 22( / ),  /ad N      is the velocity of shear wave in the corresponding initial stress-free, non-

porous, anisotropic, elastic medium along the direction of x, / / / 2P N  is the non-dimensional parameter due to 

the initial stress /P  and 
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where
11 12
, ,  and 

22
  are the non-dimensional parameters for the material of the porous layer as obtained by Biot 

[2]. For the Love wave propagating along the x-direction, the solution of Eq. (12) may be taken as 

 
/ i ( )( , , ) ( ) k x ctv x z t V z e  (15) 

 

Using (15) in Eq. (12), we get 

 
2

2/

2

d
0

d

V
q V

z
 (16) 
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2

2 /
/ 2 / .

2
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q c d N

L
 Solution of Eq. (16) is i -i e  e .q z q zV A B Hence, Eq. (15) gives 
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in which / // ,  / 2 ,N L P N   where k is wave number. 

3.2 Solution for the half-space 

The lower medium is considered as non-homogeneous elastic half space. The equation of motion corresponding to 

the displacement due to Love waves can be written as (Biot [18]) 

 
2 2

2321

2 2
( ) (  )
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ss P v
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x z x t
  (18) 

 

where ijs  are the incremental stress components in the half-space, P is the initial compressive stress along the x-

direction, and   is the density of the material of the half-space. The non-homogeneity in medium are taken as 

 

0 0(1 ),    (1 )       az bz  (19) 

 

where 
0 and 

0 are the values of  and  at z =0, and a, b are constants having dimensions that are inverse of 

length. Using the stress-strain relations 

 

21 232 , s 2  xy yzs e e  (20) 

 

and the relation (19), the equations of motion (18) can be written as 
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k x ct

v V z be the solution of (21), then Eq. (21) gives 
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Now then, we put 1/2( ) / (1 )V z az  in Eq. (22) to eliminate the term dV/dz, we get 

 

2 2

// 2

2 2

0

(1 )
( ) 1 ( ) 0  

4(1 ) 2 (1 ) (1 )
os

a P c bz
z k z

az az c az
 


 (23) 

 

where 
0 0/ osc and c is phase-velocity.  
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2

2 2

1

( )






os

a b
R

c a k
  

The solution of Whittaker’s Eq. (24) is given by 
1 /2,0 2 /2,0( ) ( ) ( )R RDW D W    , where 

1D and 
2D are 

arbitrary constants and 
/2,0 ( )RW   is the Whittaker’s function. The solution of Eq. (24) satisfying the condition 

lim z  when ( ) 0V z  i.e. lim   when ( ) 0   may be taken as 

 

1 /2,( ) ( ) R oD W    (25) 

 

Hence, the displacement component in the heterogeneous medium is given by 
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Expanding Whittaker’s function up to linear terms eq. (26) reduce to 
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4    BOUNDARY CONDITIONS AND DISPERSIVE EQUATION 

The boundary conditions suitable for the problem are 
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where /

y
f  and 

y
f  are the incremental boundary forces per unit initial area (Biot [18]), which in the present 

problem take the form 
/ /

23yf s  and 23. yf s  Now, using 
/ /

230 at - ,  i.e., 0 at - ,  we getyf z H s z H  
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/ /i i 0q H q HAe Be  (28) 

 

Using / /

23 23 at 0,  i.e.,  at 0, we gety yf f z s s z   
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Using /  at 0, we getv v z  
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Eliminating 
1,  ,  and A B D  from Eqs. (28), (29) and (30) we get 
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where 
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Eq. (31) is the dispersive equation for Love waves in the initially stressed, water saturated, anisotropic porous 

layer over the initially stressed, nonhomogeneous, elastic half space. The presence of /,  ,  ,  ,   and a b d   in Eq. 

(31) shows that the Love wave is affected by the parameters under study. It should be noted that (1-d) gives the 

fraction of porosity in the layer. If the layer is non-porous then 0f and hence /

s  .From relation (5) one gets 

11 12 12 221 and 0,    which leads to 2

11 12 22( / ) 1,  i.e. 1.d   Again, if 1f , then /

w  and 
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the layer becomes a fluid, and in that case the shear velocity in the layer cannot exist which happens when 
2

11 12 22/ ,  i.e., 0.d    Thus we have: 

(I) 1,d  when the layer is non-porous 

(II) 0,d  when the layer tends to be fluid 

(III) 0 1,d , when the layer is porous 

5    PARTICULAR CASES 

(I) In the case when both the layer and half-space are free from initial stresses, i.e.
/ 0   , the dispersive eq. 

(31) takes the form 
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where 
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(II) In the case when the layer is non-porous, i.e. 0f , then d=1, then the dispersion Eq. (31) takes the form 
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This is dispersive equation of Love waves in an initially stressed, non-porous anisotropic medium. 

(III) If the lower half-space is homogeneous, i.e. 0 and 0a b then the Eq. (31) is reduced to 
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which for an initial stress-free, isotropic, homogeneous, elastic layer / /(i.e. 0,  1,  )N L    lying over an 

initial stress-free, isotropic, homogeneous half-space (i.e. =0, =0, =0)b a  is reduced to 
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which is well-known classical result. 

6    EXISTENCE OF LOVE WAVES 

From Eq. (31), it follows that Love waves can propagate in the porous layer if  
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Relation (32) indicates the role of initial stresses, nonhomogeneity and porosity of the media for the existence 

and non-existence of Love waves. From this condition, particular cases can be obtained as follows  

6.1 Particular cases 

(i) When both the layer and the half-space are free from initial stresses, i.e., / 0,   then condition (32) takes 

the form 
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(33) 

 

This shows that the propagation of Love waves depends on both the porosity and the ratio of shear velocities in 

the layer and in the half-space. The propagation also depends on the nonhomogeneity of the half-space. It is clear 

from (33) that as d decreases, i.e. as the porosity of the layer increases, the phase velocity of Love waves increases. 

(ii) When the porosity and /a osc are constant and / 0,  / 0a k b k then (32) takes the form  
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(34) 

 

Taking / 0.7 and =0.6154a osc d as a particular case, relation (34) is changed to 

 
2

/

2
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a

c
 


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Hence, the propagation is favoured by positive value of /  and negative value of  , i.e. compressive initial 

stress in the porous layer and tensile initial stress in the half-space.  

(iii) If / 0,  0,  0,  0 and =1    a b d  then inequality (32) takes the form a osc c  which agrees with the 

well-known classical result. 
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7    RESULTS AND DISCUSSION 

To show the effect of porosity, anisotropy, nonhomogeneity and initial stresses on the propagation of Love waves, 

numerical computations of eq. (31) were performed with different values of the parameters representing the above 

characteristics. The values of 
0 / L  and /a osc were taken -in all these calculations- as 2.5 and 0.7, respectively. 

The results are presented in Figs. 2-7. Fig. 2 shows the effect of porosity on the propagation of Love waves in a 

nonhomogeneous, anisotropic, initially stress free medium. It has been observed that as the porosity increases, i.e. as 

0
 the value of d 2

11 12 22( / )     decreases, the velocity of Love waves increases. This effect becomes more 

prominent for higher frequencies. Fig. 3 shows the effect of anisotropy on the propagation of Love waves in a 

porous medium. The square of the velocity of Love waves in a medium corresponding 

to
11 12 220.65,  0.15,  and 0.65,    i.e. d=0.6154 in homogeneous or nonhomogeneous case, is always 

greater than 1.625 for all frequencies. It has been observed that as the anisotropy increases, the velocity of Love 

waves in the porous medium decreases. We now turn our attention to show the effect of initial stresses present in the 

porous layer. The conditions for propagation of Love waves under initial stresses have already been discussed in 

connection with Eq. (35). Fig. 4 shows the effect of initial stresses /( ) present in the porous layer while the half-

space is initially stress-free, i.e. 0.  In comparison with curve2 /( 0 and =0)  it has been observed from curves 

3-6 that an increase in compressive initial stresses /( 0)  in the porous layer decreases the velocity of Love waves 

for the same frequency. The tensile initial stresses /( 0)  of small magnitude in the porous medium, however, 

increase the velocity (curve-1), but the large magnitude of tensile stress / does not allow Love waves to propagate. 

 

 

 

Fig. 2 

Velocity dispersion curves of Love waves in a porous layer for 

various porosity in terms of parameter d and for 
0

/ 2.50,L  

1,  b/k=0.4, a/k=1, / 0,   and / 0.7.
a os

c  

  

 

Fig. 3 

Effect of anisotropy (  ) in the porous layer on the propagation 

of Love waves for 
0

/ 2.50,L  b/k=0.4, a/k=1, / 0,   

and / 0.7.
a os

c  
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Fig. 4 

Effect of initial stresses ( / ) in the porous layer on the 

propagation of Love waves for 
0

/ 2.50,L  b/k=0.4, a/k=1, 

1,  0.6154,d 0,  and / 0.7.
a os

c  

 

  

 

Fig. 5 

Effect of tensile initial stresses (  <0) in the half-space, in the 

absence of initial stresses in the porous layer ( / =0) on the 

propagation of Love waves for 
0

/ 2.50,L  b/k=0.4, a/k=1, 

1,  0.6154,d 0,  and / 0.7.
a os

c  

  

 

Fig. 6 

Love wave dispersion curves in the presence of equal initial 

stress ( /  ) in both the mediums when the layer is porous 

(d=0.6154) or non-porous (d=1) for 
0

/ 2.50,L  b/k=0.4, 

a/k=1, 1,  and / 0.7.
a os

c  

 

 

In Fig. 5 the effect of tensile initial stresses ( 0) in the half-space, in the absence of initial stresses in the 

porous layer, is shown. The curves show that the tensile initial stresses in the half-space increase the velocity of 

Love waves remarkably at low frequency; for compressive initial stresses in the half-space, the Love waves do not 

propagate. Fig. 6 shows the values of 2 2/ ac   in the porous medium (curves1-3) and non-porous medium (curves 4-

6) in the presence of initial stresses of equal magnitude in the upper layer and half-space. Fig. 6 shows that porosity 

has significant effect on the propagation of Love waves. In Fig. 7 the comparison has been made with the velocities 

of Love waves in the classical non-porous case /( 1,  0,  0,  curve1)   d  and initial stress-free porous case 

/( 0.6154,  0,  0,  curve2)   d  in anisotropic medium. 
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Fig. 7 

Effect of different combinations of the initial stresses 
/( , )  on the propagation of Love waves for 

0
/ 2.50,L  

b/k=0.4, a/k=1, 4,  and / 0.7.
a os

c  

8    CONCLUSIONS 

As the porosity of the layer increases, the phase velocity of Love waves increases. As the anisotropy increases, the 

velocity of Love waves in the porous medium decreases. An increase in compressive initial stresses in the porous 

layer decreases the velocity of Love waves. The tensile initial stresses of small magnitude in the porous medium, 

however, increase the velocity, but the large magnitude of tensile stress does not allow Love waves to propagate. 

The tensile initial stresses in the half space increase the velocity of Love waves remarkably at low frequency; for 

compressive initial stresses in the half-space, the Love waves do not propagate. 
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