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 ABSTRACT 

 In this paper, the behavior of free vibrations and buckling of the sandwich panel with a 
flexible core was investigated using a new improved ‎high-order sandwich panel theory. 

In this theory, equations of motion were formulated based on shear stresses in the core. 
First-order shear deformation theory was ‎applied for the procedures. In this theory, for 

the first time, incompatibility problem of velocity and acceleration field existing in 
Frostig's ‎first theory was solved using a simple analytical method. The main advantage 

of this theory is its simplicity and less number of equations than the ‎second method of 

Frostig's high-order theory. To extract dynamic equations of the core, three-
dimensional elasticity theory was utilized. ‎Also, to extract the dynamic equations 

governing the whole system, Hamilton's principle was used. In the analysis of free 
vibrations, the ‎panel underwent primary pressure plate forces. Results demonstrated 

that, as plate pre-loads got closer to the critical buckling loads, the natural frequency of 

the panel tended zero. The results obtained from the present theory were in good 
correspondence with the ‎results of the most recent papers.                                 ‎               

                                  © 2017 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

ODEY, the use of lightweight and durable structures with high stiffness to weight and strength to weight ratios 

has become prevalent in engineering applications. One of the most recent and common strong engineering 

structures are sandwich beam and sheets. A sandwich structure, including beam and sheet, is composed of two thin 

and strong layers, encompassing a soft, flexible and relatively thick core. Layers are typically manufactured from 

thin and strong metal sheets or multi-layered composite sheets. Cores are mainly produced from lightweight 

polymers, foams or honeycomb structures. Generally, composite shells and sheets theories include equivalent single-

layer theories (multi-layer classical theory and multi-layer shear deformation theories) and 3-D elasticity theories 

(general theory of 3-D elasticity and layerwise theory). The equivalent single-layer theory assumes the multiple 

composite layers as a single equivalent layer and considers the kinematic displacement relations for it. This type of 

theory converts a 3-D problem into a 2-D one. On the contrary, there are 3-D theories in which each layer is 

considered as a separate 3-D object. The layerwise theory has an acceptable level of accuracy in calculating the 

natural frequencies since number of unknown functions depend on the laminate layers. 
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Rao et al. [1] Developed an analytical method for calculating the natural frequencies of multi-layered composites 

and sandwich beams based on high order hybrid theory. Each layer of multiple layers was considered as a 2-D 

orthotropic material in the plane stress case. Hamilton's principle was used to derive the equilibrium equations. Kant 

and Swamnata [2] proposed a formulation and analytical solution for free vibration analysis of multi-layered 

composite and sandwich sheets based on the improved high order theory. In the presented theory, multi-layer 

deformations were calculated considering the effects of transverse shear deformation, transverse normal stresses and 

strains and non-linear variables for the in-plane displacement. Mionir and Shenwi [3] applied Reddy’s improved 

shear deformation theory to investigate effects of damping on the dynamic response of sandwich panels. Nayak et al. 

[4] Proposed a new method based on Reddy’s higher order theory and finite element method to calculate the natural 

frequencies of multi-layered composite sheets as well as sandwich composite layers. They studied the effects of 

different parameters such as geometry and material properties on the structure’s natural frequencies. Frostig and 

Thomson [5] used the higher order theory of sandwich panels for the free vibration analysis of sandwich panels with 

flexible core. Malekzadeh et al. [6] Proposed an improved higher order theory for the sandwich sheets based on the 

theory by Frostig and Thompson [5] to conduct a free vibration analysis on sandwich panels. In this theory, 

contribution of in-plane forces in the top and lower layers of the sandwich sheet and the equivalent dissipation factor 

of the sandwich sheet were calculated; system’s damping was also studied for the vibration analysis. Frostig and 

Barak [7] carried out a research based on the higher order theory considering the effects of out-of-plane flexibility 

and shear stiffness of the core for a sandwich beam. Frostig and Barak investigated buckling and vibrations in panel 

with a soft core and composite layers and asymmetric and unparalleled lamination [8-9]. Frostig and Thompson [10] 

investigated buckling of a sandwich panel with a soft core under non-linear mechanical-thermal loading. A higher 

order layerwise model was proposed by Defader et al. [11]. In this model, three displacements and three transverse 

stresses were assumed to exist at the intersection of the core and layer which was used in calculation of third order 

variations of displacement components in each layer. Since there is a large number of the unknown, a simplified 

model was proposed in which the proposed model was applied to a single equivalent layer which eliminates the 

accuracy of predicting the panel’s buckling behavior. Pundit et al. [12] proposed an improved high order theory to 

investigate buckling in a multi-layered sandwich panel. Changes in the in-plane displacements for both layers and 

core along the direction of thickness and changes in the transverse displacement of the core were respectively 

considered to be of third and second orders. Setkovic and Vaksanoic [13] studied bending, free vibration and 

buckling of the sandwich panels using layerwise displacement model. In the proposed model, changes in the in-

plane displacement components and changes in the transverse displacement along the sheet thickness were 

considered were considered linear and constant, respectively. Using the assumed displacement field, strain-

displacement ratio, 3-D single-layer structural equations and motion equations were derived from Hamilton's law. 

Buckling and vibrations of multi-layered composite sheets with different fiber spacing were investigated by Yaoko 

et al. Using finite element analysis [14]. Position-dependent stiffness matrix formulation was extracted considering 

properties of inhomogeneous materials. Fiedler et al. [15] investigated the initiation of buckling phenomenon in 

multi-layered composite square sheets under uniaxial loading. They used the generalized higher order shear 

displacement theory which was able to include the effects of shear displacements in the sheet’s transverse and 

thickness directions. Displacement field was modeled using Taylor series. They demonstrated that higher order 

polynomial terms are required to reach the solutions divergence for the critical buckling load coefficient. Shari’at 

[16] proposed a generalized higher order theory for sheets to study bending and buckling in sandwich panels under 

mechanical-thermal loads. In order to provide an exact and comprehensive theory which satisfies the continuity of 

all the transverse stress components, non-linear strain-displacement relations were used for sandwich panels under 

thermal-mechanical loading. Dariush and Sedighi [17], investigated behavior of a sandwich beam under static 

loading based on the non-linear higher order theory. 

In this study, free vibration and buckling behavior of a sandwich panel with flexible core was investigated using 

an improved higher order theory. In this theory, equations of motion were formulated based on shear stresses in the 

core. The first order shear theory was used for analysis of the layers. In this theory, for the first time the problem of 

inconsistencies between acceleration and velocity fields in the Frostig’s first order theory was resolved by a simple 

method. The main benefit of this theory is its simplicity and limited number of equations with respect to the second 

method of Frostig’s higher order theory. To extract the dynamic equations for the core, 3-D elasticity theory was 

utilized. 
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2    STATEMENT OF PROBLEM  

The sandwich sheet in this study is a rectangle with two composite layers and a middle core made of soft and 

flexible material. The thicknesses of the middle core, top layer and lower layer are respectively c, dt and db. Fig. 1 

also shows the coordinate axes. Length and width of the sheet are respectively a and b. The conducted analysis is 

within the linear elastic area and the layers and the middle core are completely attached to each other and strain 

functions at the layers’ contact points are continuous. 

2.1 Kinematic relations 

For top and bottom layers, the first order shear theory was used by considering small displacement and rotations. 

Therefore, displacement components in top and bottom layers are: 
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xj
  and 

yj
  are rotational components of transverse sections of the sheet around respectively x and y axes in top 

and bottom layers.    0 0
, , , , ,

j j
u x y t v x y t  and  0

, ,
j

w x y t  are displacement components of in the middle plane of 

the layers along x, y and z axes. Zj is the vertical coordinate in each layer which is measured from the midpoint of 

each layer downwards (Fig. 1). 

Kinematic relations for the core based on small displacement are as follows: 
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Fig.1 

Geometry of the sandwich plate. 

 

 

where ,
cc

u v  and  
c

w  , are displacements along x and y axes and core creep, respectively. Consistency relation, with 

the assumption of complete contact of core between top and bottom layers is as follows: 
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It is assumed that 
c

xz
 and 

c

yz
  are constant along z direction and are only functions of x and y. In fact, it is 

assumed that the core acts as a mediator that transfers the load to the layers, instead of bearing it [9]. 

Stress-strain relationship for a compressible orthotropic core is as follows: 
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where 
c

G  and 
c

E  are shear modulus in the vertical plane and elastic modulus, respectively. 

To describe the relations of the core based on layers displacement fields, first core deformation field must be 

determined. Using the results obtained in reference [9], and relations (2), (3) and (4), normal stress and vertical 

displacement in the core are as follows: 
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Furthermore, using Eq.(3), the core displacement along x and y directions are as follows: 
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(6) 

2.2 Strain components in the layers 

The strain-displacement relations for the face sheets ( , )j t b  can be defined as: 
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(7) 

2.3 Stress-strain relationships 

Layers are produced from multi-layered composite sheet. A single composite layer can be considered an orthotropic 

material. For this orthotropic single layer, the reduced stress-strain relation can be defined as follows: 
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In this equation, ( , 1,2,6)
mn

Q m n  are the reduced in-plane spring constants and ( , 4,5)
kl

Q k l   are the transverse 

shear constants for the assumed single layer. 

2.4 Equation of motion 

In this section, minimum potential energy principle is used to calculate the governing equations of motion for the 

problem. Based on this principle, we have: 
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In the above relation, U is the total strain energy of the sheet, V is the work done by the external loads on the 

sheet, T is the total kinetic energy of the sheet and  is the variation operator. The general equation of the first order 

variation of strain energy for a sandwich panel has been introduced by relation (10). 
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i
q  are the normal dynamic loads distributed over the top and bottom layers of the sheet. n  are the external plane 

loads which are stress in nature and are present on surfaces of top and bottom layers. 
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equation of variation of first order kinetic energy for a panel sandwich is written in relation (12). 
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where Eq.(12) are ( , , )
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i t b c   respectively densities of top, bottom and core and , , ( , , )
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u v w i t b c are respectively 

acceleration components of top, bottom and core. 

In Frostig's theory, velocity and acceleration fields are linear, while the displacement fields resulting from 

elasticity theory are non-linear. Thus, velocity and acceleration are not obtained from the first and second 

derivatives of movement fields, which is a contradiction. This problem was solved in this new theory. The 

distributions of the accelerations through the depth of the core are assumed to take the shape of the static 

displacement fields so, according to Eqs. (5b) and (6) we have: 
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2.5 Resultant of stress on the layers 

In order to extract the governing equations of the problem, it is necessary to replace the strain energies in the sheet. 

This can be done by defining a number of parameters with the general name of resultant of stress. Parameters of the 

resultant stress in the layers are as follows: 
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Now, by substituting relations (10), (11), (12) in Eq. (9) and applying the variation operator and considering the 

resultants of stress, the governing equations can be extracted. 
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The structural relationship between the resultants of stress in multi-layered composite layers with respect to the 

displacement is as follows: 
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(16) 

 

where ,
ij ij

A B  and 
ij

D  are respectively tensile stiffness, coupling stiffness and bending stiffness matrices with 3*3 

dimensions whose elements are obtained using following relations: 
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3    FREE VIBRATION AND BUCKLING RESPONSE OF THE SANDWICH SHEET WITH SIMPLE 

SUPPORT  

Boundary conditions of the problem at each of the four edges of the sandwich panel are assumed to be simple 

support. Following relations, called Navier response, satisfied the boundary conditions. Constant coefficients in 

these series are obtained from the equilibrium equations. 

.cos( ).sin( )
( , , )

.sin( ).cos( )
( , , )

.sin( ).sin( )
( , , )

.cos( ).sin( )
( , , )

.sin( ).cos( )
( , , )

( , , )

ojmn m n

oj

ojmn m n

oj

ojmn m n

oj

jmn m n

xj

jmn m n

yj

cxm

yz

u x y
u x y t

v x y
v x y t

w x y
w x y t

X x y
x y t

Y x y
x y t

T
x y t

 

 

 

 


 




 
 
 
 
 

 
 
 
 
 
 

1 1

.cos( ).sin( )

.sin( ).cos( )

m n

n m n

cymn m n

x y

T x y

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
  

  

 

 

 

 

(18) 

 

According to the symmetry of the problem with respect to the middle plane, interactions of membrane forces, 

bending curvatures, and bending forces with middle surface strain become zero, and in this condition we have: 
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Substituting relation (18) and relation (15), different x and y factors are eliminated from the equations and the 

differential equation system governing the sandwich sheet’s vibration are converted into a algebraic coordinate 

system with following general form: 

 

     2

12*1212*12 12*12
0k M    (20) 

 

where k,M and   are respectively stiffness matrix, mass and matrix of the unknowns and   is written as follows: 
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To analyze the buckling, we can write: 
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In this article, each layer bears some part of the load depending on its intra-axial stiffness. Therefore, each of the 

top and bottom layers reaches their critical buckling loads at the same time. The contribution of each of the top and 

bottom layers of the applied axial load can be obtained as [9]: 
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In this condition, the algebraic coordinates system would take the following form: 
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Matrix coefficients include constant numbers and loading parameters of the buckling which can be written as a 

multiplier of 
xx

N . Dimensionless parameter of the buckling load which is widely used in many references to 

compare the results of buckling analysis in sandwich sheets, is defined as follows: 
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3.1 Results of sandwich panel’s free vibration  

In this section, results of free vibration of a 5-layered sandwich panel (0.90/core/0.90) are compared with that 

reported by the references and presented in Table 1-3. 

Mechanical properties related to the sheet’s layers are [2]: 
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In Table 1., results of the present method are compared with the exact solution [18], finite element analysis [19], 

and equivalent single-layer model [2] for different .a H Theoretical results in the present study are in good 

agreement with the finite element method [19]. In this method, 8-needed elements with non-linear acceleration along 

the x and y axes and constant acceleration in z direction were assumed which caused 1.01% error for 4a H  . Also, 

the maximum difference of the present method was related to the exact solution method [18] and equivalent single 

layer theory [2] with errors respectively equal to 6.85% and 59.32%. 

In Table 2., dimensionless frequency is compared with different references for different a/b ratio. The greatest 

difference in the results of the present theory in Table 2. was respectively, with finite element method (2.52%), exact 

solution method (6.89) and equivalent single layer theory (64.85%). 

As shown in Tables 1 and 2., this theory has acceptable accuracy, also on the contrary, to reference [5], in order 

to overcome the problem of inconsistency between acceleration and velocity fields, equation of motions (13) were 

used to obtain the acceleration field. The main benefit of this theory is its simplicity and limited number of equations 

with respect to the second method of Frostig’s higher order theory [5]. To extract the dynamic equations for the 

core, 3-D elasticity theory was utilized. 

 
Table 1 

Comparison of the first non-dimensional fundamental frequencies of (0/90/core/0/90) sandwich plate with different a H . 

a H  Present theory [18] [19] [2] 

2  0.7379 0.7141 0.7368 1.1734 

 4    0.9804 0.9363 0.9904 1.0913 

10 1.9736 1.8480 1.9712 4.8519 

20 3.6870 3.4791 3.6836 8.5838 

30 5.3084 5.0371 5.3034 11.0788   
40 6.7792 6.4634 6.777  12.6555   
50 8.0703 7.7355 8.0698 13.6557   
60 9.1993 8.8492 9.1929 14.3133   
70 10.1561   9.8118 10.153   14.7583   
80 11.0010   10.6368   10.9672  15.0702   
90 11.6574   11.3408   11.6552  15.2946   

100   12.2361   11.9400   12.2358  15.4647   
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Table 2 

Comparison of the first non-dimensional fundamental frequencies of (0/90/core/0/90) sandwich plate with different  a b . 

a b  Present theory [18] [19] [2] 

1   1.9736 1.8464 1.9712 4.8519 

1.5 1.1658 1.0900 1.1644 2.8130 

2   0.8601 0.8048 0.8584 2.4469 

2.5 0.7073 0.6627 0.7045 1.5660 

3   0.6189 0.5804 0.6145 1.2976 

5   0.4794 0.4494 0.4676 0.8102 

 

In Figs. 2 and 3, two first modes ( 1m n  ) are plotted for transverse, longitudinal and vertical displacements of the square 

sandwich panel (0.90/core/0.90).  In the first mode (Fig. 2), the motions are in-phase with each other. The entire sandwich panel 

has one vibration. The sheets move up and down and the top and bottom layers move vertically in the same direction. However, 

in the second mode (Fig. 3), the motions are out-of-phase with each other and the vertical displacement is opposite to each other. 

Plane and transverse displacement of the sandwich panel are plotted in Figs. 2 and 3 (first row) with respect to the dimensionless 

thickness (z/H). 

In-plane changes u and v, and vertical displacement w at points ( 0x  and 2y a ), ( 2, 0x a y  ) and 

( 2, 2x a y b  ) are also studied. In the first mode, it is observed that displacements u and v have linear distribution, while w 

has non-linear distribution; on the contrary, in the second mode, u and v have non-linear distribution, while w has linear 

distribution. 
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Fig.2 

Through-the-thickness variations of the normalized 

displacements (first row) and normalized mode shapes 

(second row) corresponding to the Eigen-frequency 

1
2.1063   of wave number ( 1m n  ) for the 

(0/90/core/0/90) sandwich plate with 10, 10
t

a H c d  : 

(a) U(x=0, y=b/2); (b) v(x=a/2, y=0); (c) w(x=a/2, y=b/2); 

(d) U(y=b/2, 0, 2, 0
t c b

z z c z   ); 

(e) v(x=a/2, 0, 2, 0
t c b

z z c z   );  

(f) w(x=a/2, 0, 2, 0
t c b

z z c z   ). 
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Fig.3 

Through-the-thickness variations of the normalized 

displacements (first row) and normalized mode shapes 

(second row) corresponding to the Eigen-frequency 

2
13.8556   of wave number ( 1m n  ) for the 

(0/90/core/0/90) sandwich plate with 10, 10
t

a H c d  : 

(a) U(x=0, y=b/2); (b) v(x=a/2, y=0); (c) w(x=a/2, y=b/2); 

(d) U(y=b/2, 0, 2, 0
t c b

z z c z   ); 

(e) v(x=a/2, 0, 2, 0
t c b

z z c z   ); 

(f) w(x=a/2, 0, 2, 0
t c b

z z c z   ). 

3.2 Results of sandwich panel buckling 

Results of uniaxial buckling in the square 5-layered sandwich sheet (0.90/core/0.90) are compared with other references, as 

presented in Table 3. (material of the sandwich sheet is the same as previous section).  

The results of the present work have good agreement with the results of layerwise method in reference [11] where the 

equations were extracted based on non-linear higher order theory. Furthermore, the results of the method used by Shari’at [16] 

had a slight difference with that of the present method. In this method, Shari’at [16] considered the non-linear strain-displacement 

relationship which satisfied the continuity of all the normal transverse components. 

In addition, results obtained by the method used in reference [20], which is based on the linear theory, were not very similar 

to that of the present work because the stresses and normal transverse strains were ignored when extracting the equations. 

In Table 4., buckling load of the 5-layered sandwich sheet (0.90/core/0.90) are obtained with different thicknesses 

(a/H=20,10,20/3,5), different length to width ratio (a/b=1,2,5,10) and different load ratios (k). 

As presented in this table, for a sheet with fixed geometry, increased k decreases the buckling load, because the increase in 

the compressive load in other in-plane direction contributed to earlier buckling of the sheet and therefore decreased the buckling 

load. Investigating the results showed that at a constant a/b ratio, increase in the thickness of the sheet decreased the 

dimensionless buckling load. 

3.3 Investigation of vibration with the axial load 

In order to study the effect of external uniaxial force on vibration behavior, the 5-layered square sandwich sheet 

(0.90/core/0.90) was assumed to have material properties similar to the first example. 

Dimensionless frequency response with respect to the dimensionless load is plotted in Figs. 4(a) and (b). 

According to the figures, increasing the load decreases the system frequency to the extent that the frequency would 

tend to zero at the critical load. 
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Table 3 

Comparison dimensionless biaxial overall buckling load for rectangular sandwich plate with different a H . 

a H  Present theory [16] [11] [20] 

2   0.1089 0.0105 0.0109  0.01173 

4   0.0189 0.0181 0.0190  0.02083 

10   0.07488 0.0708 0.0749  0.08313 

20 0.2659 0.2513 0.2659 0.2952 

30 0.5576 0.5269 0.5576 0.6190 

40 0.9182 0.8707 0.9181 1.0128 

50 1.3151 1.2535 1.3150 1.4380 

60 1.7210 1.6492 1.7209 1.8643 

70 2.1157 2.0299 2.1156 2.2870 

80 2.4863 2.3923 2.4862 2.6739 

90 2.8261 2.7261 2.8260 3.0257 

100   3.1324 3.0282 3.1324 3.3408 

 

 
Table 4 

Dimensionless biaxial overall buckling load for rectangular sandwich plate [0/90/Core/0/90]. 

a b  a H    0k   0.1k   0.2k   0.5k   1k   2k   5k   10k   

1 

20/1   0.2750 0.2500 0.2292 0.1834 0.1375 0.0917 0.0458 0.0250 

20/2   0.0816 0.0742 0.0680 0.0544 0.0408 0.0272 0.0136 0.0084 

20/3   0.0448 0.0405 0.00371 0.0297 0.0223 0.0148 0.0074 0.0040 

20/4   0.0314 0.0286 0.0262 0.0210 0.0157 0.0105 0.0052 0.0029 

2 

20/1   0.7332 0.5237 0.4073 0.2444 0.1466 0.0815 0.0349 0.0179 

20/2   0.2627 0.1876 0.1459 0.0876 0.0525 0.0292 0.0125 0.0064 

20/3   0.1741 0.1244 0.0967 0.0580 0.0348 0.0193 0.0083 0.0042 

20/4   0.1428 0.1020 0.0793 0.0476 0.0286 0.0159 0.0068 0.0035 

5 

20/1   6.4631 1.8466 1.0772 0.04784 0.2486 0.1267 0.0513 0.0257 

20/2   4.0308 1.1517 0.6718 0.2986 0.1550 0.0790 0.0320 0.0161 

20/3   3.5397 1.0113 0.5900 0.2622 0.1361 0.0694 0.0281 0.0141 

20/4   3.3223 0.9492 0.5537 0.2461 0.1278 0.0651 0.0264 0.0132 

10 

20/1 10.6362 5.6942 2.9827 1.2282 0.6202 0.3116 0.1250 0.0626 

20/2   8.6859 4.6987 2.4612 1.0134 0.5117 0.2571 0.1032 0.0516 

20/3   7.232 4.2930 2.2487 0.9259 0.4676 0.2349 0.0943 0.0472 

20/4   5.4557 3.9505 2.0693 0.8521 0.4303 0.2162 0.0867 0.0434 
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Fig.4 

Effect of increasing compressive loading on the fundamental frequency a) thick sandwich plate b) thin sandwich plate. 
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4    CONCLUSIONS 

In this article, equations of motion were formulated based on shear stresses in the core. First order shear stress 

theory was applied to the layers. In this theory, problem of inconsistencies between acceleration and velocity fields 

in the Frostig’s first theory was simply resolved. The main benefit of this theory is its simplicity and limited number 

of equations with respect to the second method of Frostig’s higher order theory. To extract the dynamic equations 

for the core, 3-D elasticity theory was utilized. To derive the governing dynamic equation of the entire system, 

Hamilton’s principle was used. In free vibration analysis, the panel was assumed to be under the effect of initial 

plane compressive pre-loads. Results showed that by approaching the plane pre-loads to the values of critical 

buckling load, the natural frequency of the panel tends to zero. Results obtained from the present theory are in good 

agreement with the results reported by the recent articles. Speed, simplicity and high accuracy of the analytical 

solution proposed in this article are among its advantages in comparison to other methods. In this study, free 

vibration and buckling behaviors of a sandwich panel with a flexible core and simple supports for all the boundaries 

were studied using the improved theory with the following results: 

1. Increasing the ratio a/b increases the length and reduces the width and the sheet would approach to a beam. 

On the contrary to the beams, in this case, all four edges of the sheet have simple support boundary 

condition and therefore vertical and shear deformations of the sheet decrease and stiffness and couplings 

between the membrane-bending and shear effects increase. As a result, natural frequency increases and the 

dimensionless frequency decreases. 

2. Increase in ratio q/H, i.e. making the sheet thinner, increase the sheet dimensionless frequency. 

3. At a constant dt/H, increase in the sheet thickness decreases the dimensionless buckling load. 

4. Increase in the ratio a/b increases the dimensionless buckling load. 

5. Natural frequency decreases by increasing the axial load and reaches zero at critical buckling load. 

6. In this research, for the first time, in addition to resolving the inconsistency in the mathematical logic of the 

Frostig’s first theory, theory of the layers and the results were also improved. 
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